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Characterization of control in a superconducting qutrit using randomized benchmarking
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We characterize control of a qutrit implemented in the lowest three energy levels of a capacitively shunted
flux-biased superconducting circuit. Randomized benchmarking over the qutrit Clifford group yields an average
fidelity of 98.89 ± 0.05%. For a selected subset of the Clifford group, we perform quantum process tomography
and observe the behavior of repeated gate sequences. Each qutrit gate is generated using only two-state rotations
via a method applicable to any unitary. We find that errors are due primarily to decoherence and have a significant
contribution from level shifts. This work demonstrates high-fidelity qutrit control and outlines avenues for future
work on the optimal control of superconducting qudits.

DOI: 10.1103/PhysRevResearch.3.L042007

Recent advances in large-scale quantum information pro-
cessors have relied on manipulating quantum information
using two-level systems as qubits [1–4]. Theoretical work
shows that using multilevel systems as qudits offers perfor-
mance advantages in quantum error correction [5–8], quantum
sensing [9,10], and quantum communication [11]. Efficient
universal qudit control for these applications follows from
an extension of the Solovay-Kitaev theorem from the qubit
unitary group SU(2) to the qudit group SU(d ), where d is
the dimension of the qudit’s Hilbert space [12]. However, im-
plementation of such control brings new challenges including
mapping qudit gates to experimentally accessible controls and
understanding how control errors translate into errors in the
qudit gates. Characterizing qudit gates is also more resource
intensive than characterizing qubit gates because the larger
Hilbert space allows more complex states to form.

In this Letter, we characterize qutrit control using ran-
domized benchmarking (RB), which is a protocol that yields
the average fidelity for the elements of the Clifford group.
We implement qutrit gates using a universal decomposition
method that can be used to generate any unitary for a qutrit
and more generally for qudits of any dimension. The mea-
sured average fidelity is F̄ = 98.89 ± 0.05% for members of
the qutrit Clifford group C3. In addition, we characterize a
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subset of the Clifford group using quantum process tomog-
raphy (QPT), which provides an independent verification of
the unitary synthesis method and yields results in agreement
with RB. Analysis of this experiment revealed errors due to
decoherence, level shifts, and leakage. Level shifts, which do
not lead to significant errors in the usual case of resonant
control in a two-dimensional subspace, are a significant source
of error in this experiment, pointing to relevant future work on
shaped control pulses for qudits.

The experiment is performed on a variant of the ca-
pacitively shunted flux qubit that combines relatively long
coherence times with high anharmonicity [13]. Anharmonic-
ity here is defined as the difference between the second and
first transition frequencies. A qutrit is encoded in the lowest
three energy states of the device, denoted by 0, 1, and 2. The
large anharmonicity enables fast selective driving of the 0-1
and 1-2 transitions. Qutrit control is done using microwave
pulses sent via a coplanar waveguide capacitively coupled to
the device [see Fig. 1(a)]. Application of a microwave pulse
resonant with the m-n transition implements a rotation R(θ )mn

φ

in the two-dimensional space formed by states m and n, where
θ is the rotation angle and φ is the rotation axis phase [14].
Control pulses are synthesized using mixers Marki IQ1545
and IQ0307, for the 0-1 and 1-2 transitions, respectively, fed
by two Agilent E8527D PSG signal generators and quadra-
ture control signals from a Tektronix AWG5014 arbitrary
waveform generator. The device state is measured using the
heterodyne readout of a coplanar waveguide resonator also
coupled capacitively to the device. The readout voltage, av-
eraged over many repetitions, corresponds to the expectation
value of the operator V = V0 |0〉 〈0| + V1 |1〉 〈1| + V2 |2〉 〈2|.
State preparation is done by waiting for the device to re-
lax to the thermal state ρth = Pth,0 |0〉 〈0| + Pth,1 |1〉 〈1|, where
Pth,n = 〈n|ρth|n〉. We assume that higher state populations are
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FIG. 1. (a) A representation of the experiment setup showing a
scanning electron micrograph of the device, capacitively coupled to a
control line and to a readout resonator. The control setup synthesizes
a sequence of Clifford gates C1 to Cl for an RB experiment. (b) The
control waveform for a qutrit Walsh-Hadamard gate H3. Black (red)
lines are signals resonant with the 0-1 (1-2) transition. Control volt-
age refers to the voltage at the output of the control setup. (c) The
level diagram for the qutrit, with transition frequencies shown.

negligible, in line with the large transition frequency between
states 1 and 2. The thermal excited state population Pth,1

and the readout voltage levels V0, V1, and V2 are measured
using a protocol based on observing Rabi oscillations on the
0-1 transition starting with initial states based on the thermal
state with additional population swaps [13,14]. Based on the
measured values of V0, V1, and V2, the populations in any state
can be characterized by measuring 〈V 〉 in combination with
suitable premeasurement analyzer pulses [14].

Performing a qudit gate U requires a decomposition of U
that can be mapped to the available controls, which becomes
more difficult as d increases. In this experiment, each gate U
is decomposed into the product of a set of Givens rotations
and a diagonal unitary, using an approach that is universal
for any qudit of dimension d as long as d − 1 different
transitions involving all the d states can be controlled. The
Givens rotations are determined based on the procedure in
Ref. [15]; a maximum number of 1

2 d (d − 1) Givens rotations
are required. Each Givens rotation R(θ )mn

φ is then mapped
to a control pulse with the envelope area proportional to θ ,
frequency resonant with the m-n transition, and phase given by
φ. The control Hamiltonian for R(θ )mn

φ in the rotating frame
is Hdrive(t ) = 1

2�mn(t )e−iφ |m〉 〈n| + H.c., where �mn(t ) is the
drive strength for the m-n transition. We use Givens rotations
in subspaces 0-1 and 1-2. Rotations in the 0-1 subspace have
cosine-shaped rise and fall envelopes with a total duration of
18.4 ns. Rotations in the 1-2 subspace have derivative removal
by adiabatic gate (DRAG) [16] cosine-shaped pulses with a
duration of 16.8 ns [14]. We use DRAG for the 1-2 transition
in order to suppress leakage to state 3 arising from the small
difference between the 1-2 and 2-3 transition frequencies [17].
The diagonal component of U is tracked, and the phases of the

Givens rotations in the subsequent gate are modified in order
to implement phase gates at the software level [13,14,18].

We verify this approach of implementing qutrit gates using
QPT, which is a standard technique for finding the process
matrix of a black box [19]. We implement QPT using the pro-
cedure from Ref. [20]. The gate fidelity [21] calculated using
the process matrix determines whether a qutrit gate is synthe-
sized as intended. We performed QPT for two representative
gates, the Walsh-Hadamard gate H3, which together with the
phase gate S3 generates the Clifford group, and the Pauli X3

gate, which together with the Pauli Z3 gate generates the Pauli
group [22,23]. We note that S3 and Z3 are diagonal gates, and
are therefore software defined. The process fidelity for the
Walsh-Hadamard gate H3 is 97.45% and the generalized Pauli
gate X3 is 98.47%. QPT shows that the experimental imple-
mentation of the gate decomposition synthesizes the intended
gates.

Next, the average fidelity F̄ of C3 is characterized using RB
[23]. RB relies on the fact that the application of a sequence
of l gates, of which the first l − 1 are chosen randomly from
C3 and the last is chosen as the inverse of the product of
the first l − 1 gates, behaves on average as a depolarizing
channel with depolarizing coefficient pl [23–25]. Specifically,
the population Pn for each level n decays with l as

Pn = (Pin − 1/3)pl + 1/3, (1)

where Pin is the initial population of state n. The average
gate fidelity F̄ is related to the depolarization coefficient p
via F̄ = p + (1 − p)/3. Randomized benchmarking is more
efficient than QPT for measuring F̄ while being immune
to state preparation and measurement errors, at the expense
of not giving information about individual gates in C3 [25].
Based on the fact that Hd and Sd generate Cd for any prime d
[26], we find all 216 elements of C3 by calculating all distinct
products of H3 and S3. Each Clifford gate is decomposed into
Givens rotations as explained above. We measure the result
of applying a set of random gates of length l ranging from
l = 2 to l = 987, with 25 different randomizations for each
value of l . The measurement is repeated Nrep = 8192 times
for each different random sequence. Figure 2(a) shows the
results of a RB experiment, with the initial state set to be the
thermal state. The fit of the populations versus the sequence
length, given by Pn = (Pin − Pfn)pl

n + Pfn, with Pin, Pfn, and
pn as free parameters, is in excellent agreement with the data.
The polarization decay coefficients are the same within the
experimental errors, with an average p = 0.9833 ± 5 × 10−4

and a corresponding fidelity F̄ = 98.89 ± 0.05%. Similarly,
the final values Pf0 = 0.341 ± 0.003, Pf1 = 0.333 ± 0.001,
and Pf2 = 0.325 ± 0.003 are close to the expected value of
1
3 corresponding to the fully depolarized state of a qutrit.
Repeating the experiment with 50 randomizations for each l
gave the same result to within experimental error.

Since each element in C3 has a finite order, repeated ap-
plication of the same gate leads to a periodic result versus the
number of repetitions N . This is tested experimentally by mea-
suring the populations after repeated application of H3, S3, X3,
and Z3, starting with the thermal state as an initial state. For
S3 and Z3, an H3 gate is prepended and appended to produce
a change in the measured populations. Figure 3 shows the
populations Pn for these gates. The experiments confirm the

L042007-2



CHARACTERIZATION OF CONTROL IN A … PHYSICAL REVIEW RESEARCH 3, L042007 (2021)

FIG. 2. (a) The experimentally measured average populations P0

(black squares), P1 (red circles), and P2 (blue triangles) vs sequence
length l . Solid lines show exponential fits. For P0, P1, and P2, the pn

values are p0 = 0.9839 ± 5.4 × 10−4, p1 = 0.9814 ± 1.1 × 10−3,
and p2 = 0.9846 ± 6.9 × 10−4, respectively. (b) The experimentally
measured P0 (black squares), P1 (red circles), and P2 (green triangles)
vs the sequence length l , compared to the simulated P0 (open blue
squares), P1 (open purple circles), and P2 (open dark green triangles).
Solid lines show the fits of the RB model to the simulated P0, P1,
and P2.

expected periodicity of these elements of the Clifford group,
which is 4, 3, 3, and 3 for H3, S3, X3, and Z3, respectively.
The effect of control errors and decoherence is visible as N
increases, in good agreement with numerical simulations of
the dynamics [14]. The lack of decay in S3 and Z3 signals is
due to these gates being entirely defined in software following
the decomposition above. In the S3 and Z3 sequence, errors in
control arise only from the preparation and post H3 pulses.

We now discuss the sources of error in the RB experi-
ment. Numerical simulations of the dynamics are done with
two models, based on coherent and incoherent evolution. The
device Hamiltonian is truncated to the seven lowest-energy
states, which was found to be sufficient to properly explain
level shifts in previous work including two-photon driving
[14,20]. The superconducting circuit parameters are extracted
based on a model fit against the measured spectroscopy data.
In addition, calibration of the pulses is done in the simulation
in a manner similar to the experiment [14]. We model the dy-
namics under the randomized benchmarking sequences used
in the experiment, by numerically solving the Schrödinger
equation with driving [27]. With coherent evolution, state pop-
ulations extracted from the simulations give a fidelity of F̄ =
99.91 ± 0.02%, significantly higher that the experimental re-
sult. In addition, simulations indicate that leakage to states
outside the qutrit space is negligibly small (2.29 × 10−4% at
l = 377).

The role of decoherence is analyzed using a model that
includes the measured relaxation and excitation rates and

FIG. 3. The experimentally measured populations P0 (black
squares), P1 (red circles), and P2 (blue triangles) vs the number N
of repetitions of gates (a) H3, (b) X3, (c) S3, and (d) Z3.

dephasing in the qutrit space. The decoherence model con-
sists of Lindblad operators of the form

√
�mn

1 |n〉 〈m| for

relaxation/excitation, and
√

1
2�mn

2 (|m〉 〈m| − |n〉 〈n|) for de-
phasing [14]. Dynamics are simulated using a master equation
solver [27,28]. Figure 2(b) shows the numerically calculated
populations with decoherence. The fit of this simulation gives
a fidelity of F̄ = 98.9 ± 0.03%, which is within the fit error
of the experimental result. As for the coherent case, the to-
tal population outside the qutrit space is negligible, reaching
0.244% at l = 377. Numerical simulation of each gate in
C3 individually, and then averaging their respective fidelities,
gives F̄ = 98.9% with a standard deviation of 0.3% and a
worst-case fidelity of 98.5%. This compares well with exper-
imental values, and indicates that in addition to the average
fidelity being high, each gate in C3 is synthesized with high
fidelity as well. The range in fidelity is also comparable to
the fidelities measured using QPT. From fitting the model
in Ref. [29] to the numerically calculated populations, we
determine the leakage L1 per Clifford gate [17], the seepage
L2, and the adjusted average fidelity F̄L. Whereas leakage
measures population transfer out of the qutrit space, seep-
age measures population transfer into the qutrit space. From
simulation, we find L1 � 6.26 × 10−5, L2 � 6.78 × 10−5, and
F̄L = 98.9 ± 0.2%. Since F̄L is not significantly smaller than
the simulated F̄ , leakage does not contribute significantly to
the error in the simulation.

The analysis discussed above indicates that the dominant
source of error in the current experiment is decoherence.
Faster control using stronger driving can help to mitigate
this error, but coherent control errors must be understood,
since these errors increase with faster driving. To analyze
coherent control errors in the qutrit RB experiment, it is
useful to connect the errors of Clifford group unitaries to
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errors in their component R(θ )mn
φ . For a noisy implementation

C̃ = ∏
n R̃n of a qutrit gate C = ∏

n Rn, with R̃n of noisy
versions of ideal Givens rotations Rn, the gate error r(C̃,C) =
1 − F (C̃,C) is approximately r(C̃,C) ≈ ∑

n r(R̃n, Rn), with
r(R̃n, Rn) the error for a Givens rotation. The approxima-
tion follows from modeling the error for a Givens rotation
as an operator Kn = R̃nR†

n, with Kn = αnI + βnMn, where αn

the complex number minimizing ||I3(Kn − αnI )I3||∞ and I3 =
|0〉 〈0| + |1〉 〈1| + |2〉 〈2|, βn = ||I3(K − αIn)I3||∞, and Mn =
1
βn

(Kn − αnI ). ||A||∞ is the magnitude of the largest eigen-

value for an operator A. Relating αn and βn to F (R̃n, Rn) and
F (C̃,C) using

F (Ã, A) =
∑

Uj∈Pd
Tr(A†UjAÃUjÃ†) + d2

d2(d + 1)
(2)

for two unitary operators A and Ã yields r(C̃,C) ≈∑
n r(R̃n, Rn), assuming products of βn are small [14]. Fig-

ure 4(a) shows that the approximation holds numerically.
To understand the errors in individual Givens rotations,

the effective Hamiltonian Heff = − i
τ

ln R̃n is calculated for
each numerically calculated R̃n, where τ is the effective
time to implement Rn and ln R̃n is the matrix logarithm. The
difference between Heff and the ideal control Hamiltonian
Hdrive can be connected to errors introduced by the failure
of the rotating wave approximation. Figure 4(b) shows the
error of the Givens rotations versus drive strength, showing
that the error scales quadratically with the drive strength.
The effective Hamiltonian is well approximated by Hdrive +∑

m,n smn�
2
mnσ

mn
z , with σ mn

z = |m〉 〈m| − |n〉 〈n|, and smn be-
ing a real coefficient. The quadratic scaling indicates that
the main errors are caused by driving-induced level shifts.
Figures 4(c) and 4(d) show the total frequency shifts versus
the drive strength, i.e., Tr(−Heffσ

mn
z ), for mn = 01 and mn =

12 transitions induced by R(π )01
0 and R(π )12

0 pulses, respec-
tively. The calculated total frequency shifts are in excellent
agreement with the analytical formula given in Ref. [20]. The
leakage error identified in the RB analysis is also visible in
simulations of the Givens rotations as non-negligible values of
〈2|Heff |3〉, 〈1|Heff |6〉, and 〈2|Heff |6〉. However, these terms are
small compared to Tr(Heffσ

mn
z ), confirming that the contribu-

tion of leakage to the control error is small compared to level
shifts. Note that level shift errors are much more significant
for qutrit control than for qubit control, since the level shift is
a coherent error on levels used to store information in qutrits,
compared to an incoherent error on levels not used to store
information in qubits.

In conclusion, we demonstrated control sufficient to syn-
thesize the qutrit Clifford group C3 with 98.89 ± 0.05%
fidelity, using a universal method for gate decomposition into
Givens rotations. This fidelity is in agreement with QPT data.
The experimental errors are dominated by decoherence, but
level shifts due to off-resonant coupling to states outside
the driven two-dimensional subspace of each Givens rotation
contribute to control error as well. In future work it will be
interesting to explore the application of level shift corrections,
as done in Ref. [20], and more generally design optimal
control pulses that mitigate both level shifts and leakage.
These results establish randomized benchmarking as a tool to
understand superconducting qutrit control and pave the way

FIG. 4. (a) The error of the Clifford gate vs the sum of the errors
of its constituent Givens rotations for all gates in C3. The black
squares, red circles, and green triangles correspond to amplitudes
multiplied by 1.5, 1.0, and 0.5 relative to the experiment pulses,
respectively. Pulse durations for each multiplication case are adjusted
to preserve the intended rotation angles. (b) The error r = 1 − F vs
the drive strength for a set of Givens rotations. Different symbols cor-
respond to the different rotations. (c), (d) The value of the indicated
component of the effective Hamiltonian for (c) R(π )01

0 and (d) R(π )12
0

vs drive strength. Black squares (red circles) indicate the 01 (12) level
shift. The black solid (red dashed) line shows a quadratic fit to the 01
(12) level shift vs drive frequency.

towards using superconducting qudits in quantum information
tasks.

Note added. Recently, we became aware of a related
manuscript in qutrit randomized benchmarking [30].
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