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Efficient verification of entangled continuous-variable quantum states with local measurements
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Continuous-variable quantum states are of particular importance in various quantum information processing
tasks including quantum communication and quantum sensing. However, a bottleneck has emerged with the fast
increasing in size of the quantum systems which severely hinders their efficient characterization. In this work,
we establish a systematic framework for verifying entangled continuous-variable quantum states by employing
local measurements only. Our protocol is able to achieve the unconditionally high verification efficiency
which is quadratically better than quantum tomography as well as other nontomographic methods. Specifically,
we demonstrate the power of our protocol by showing the efficient verification of entangled two-mode and
multimode coherent states with local measurements.
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Introduction. Continuous-variable (CV) quantum systems
have demonstrated their unique role in various quantum infor-
mation processing applications [1,2]. Because of the quantum
description of the electromagnetic field, they are particularly
relevant for quantum communication and quantum-enhanced
techniques including sensing, detecting, and imaging. Also,
the atomic and solid state CV systems have the potential
for quantum computing. The actual realization of all these
applications must depend on the efficient and reliable charac-
terization of the quantum states in the first place. The standard
method of quantum state tomography (QST) [3–9] is able
to obtain all the information about the quantum states based
on the Wigner function or the density matrix with a certain
precision. As powerful as it is, however, QST consumes too
much resource, which is the reason why other nontomo-
graphic methods have been developed [10–15].

Recently, a new characterization method called quantum
state verification (QSV) has been systematically investigated
in discrete-variable (DV) quantum systems [16,17]. The task
of QSV is to verify that a given quantum device does in-
deed produce a particular target state that we expect. The
core advantage of QSV lies in its asymptotically quadratic
improvement of the verification efficiency as compared to
other methods. By the specific design, QSV can efficiently
or even optimally verify many different kinds of multipartite
quantum states with local measurements only [18–34], and
the methodology can also be extended to verify quantum pro-
cesses [35–37]. Considering CV quantum systems, however,
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even if the truncation method can reduce the dimension of
the CV states from infinite to finite, the limited choice of
measurements makes that the generalization of QSV to CV
systems is, in general, hard.

To characterize CV quantum states, intensity measure-
ments based on quadratures are usually employed in quantum
tomography and other nontomographic methods. The inten-
sity measurements are especially suitable for Gaussian states,
as they can be fully characterized by expectation values
of the quadratic operators. However, they are, in principle,
inappropriate for the task of quantum verification since post-
processing of the experimental data is needed for estimating
the quadratures. Except for some special quantum states de-
fined by quadratures directly like the CV cluster states [38],
of which the verification protocol can be generalized from the
discrete scenario [15]. Hence, we consider the energy-based
photon counting measurements, the realization of which relies
on the single-photon detector (SPD) and the more general
photon number resolution detector (PNRD) [39–43]. These
measurements can realize projections on the Fock bases, as
well as projections on the coherent states with the help of dis-
placement operations. Thus, postprocessing of the data can be
avoided by using these “deterministic” measurements. Note,
in particular, different from the recent work by Wu et al. [44]
on the verification of CV quantum states which demands a
necessary preprocessing step for the samples to satisfy the
condition of independent and identical distribution (i.i.d.),
the intrinsic nature of QSV is in general exempt from this
requirement. Hence, in the non-i.i.d. scenarios, QSV stands
out as a much more efficient method in terms of the resource
cost.

In this work, we propose a systematic framework for
verifying entangled CV quantum states with the help of
local measurements only. Our protocol is able to achieve
the unconditionally high verification efficiency with the re-
source overhead given by N ∝ O(ε−1 ln δ−1) within infidelity
ε and confidence level 1 − δ, which is quadratically better
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than quantum tomography as well as other nontomographic
methods [10–15]. For demonstration, we show the efficient
verification of entangled two-mode as well as multimode co-
herent states with local measurements. These states are crucial
in various quantum information processing tasks including
quantum teleportation [45,46], quantum computation [47–50],
and quantum metrology [51–53]. Moreover, a general opti-
mization strategy is given in order to achieve the optimal
efficiency for the specific scenarios under consideration.

General framework. The task of quantum state verification
is to determine whether the states σ1, σ2, . . . output from
a device, all of which are supposed to be the target state
|ψ〉 (DV or CV), are cases either σi = |ψ〉〈ψ | for all i, or
〈ψ |σi|ψ〉 � 1 − ε for all i. Then, a verification protocol �

can be generally constructed by several dichotomic-outcome
projective measurement settings {�l , 1 − �l}, such that

� =
∑

l

μl�l , (1)

where {μl} is a probability distribution. With the requirement
that the target state should always pass all the measurements,
i.e., 〈ψ |�l |ψ〉 = 1, errors of the verification protocol occur
only when the noisy states σ pass the protocol with the maxi-
mal probability [17,25]

max
〈ψ |σ |ψ〉�1−ε

tr(�σ ) = 1 − [1 − λ2(�)]ε = 1 − νε, (2)

where λ2(�) is the second-largest eigenvalue of �, and ν :=
1 − λ2(�) denotes the spectral gap from the maximal eigen-
value. Then, after N measurements, the maximal worst-case
probability that the verifier fails to detect the “bad” case is
given by (1 − νε)N . Hence, to achieve a confidence level
1 − δ, the number of copies of the states required is

N � 1

ln[(1 − νε)−1]
ln δ−1 ≈ 1

ν
ε−1 ln δ−1. (3)

In practice, searching for the optimal verification protocol
is a demanding task, if not impossible at all. For CV quantum
states, in particular, the intrinsic nature of their infinite dimen-
sional Hilbert space makes the spectral decomposition for �

even more challenging. To render the task, we may restrict
the type of noisy states to be in some specific form. Here, we
focus on the noisy states such that 〈ψ |σi|ψ〉 = 1 − ε for all i,
which is allowable since other states with 〈ψ |σi|ψ〉 < 1 − ε

would not make the verification worse [17], thus the original
task is retained. By choosing a set of bases S constructed from
the target state |ψ〉 and all of the mutually orthonormal states
{|ψ⊥

i, j〉} that form the subspace orthogonal to |ψ〉, we can write
the noisy states as

σi = (1 − ε)|ψ〉〈ψ | +
∑

j

εi, j |ψ⊥
i, j〉〈ψ⊥

i, j | + N.D., (4)

where
∑

j εi, j = ε and N.D. represents the nondiagonal terms
in S , i.e., |φ′〉〈φ| for all |φ′〉 �= |φ〉 ∈ S . Thus, the optimiza-
tion for the spectral gap can be reduced to

νopt := max
�

min
i

∑
l

μl kl,i, (5)

where kl,i := 1 − ∑
j

εi, j

ε
〈ψ⊥

i, j |�l |ψ⊥
i, j〉 ∈ [0, 1] (see Supple-

mental Material Appendix A [54] for the detailed derivation).

Note that the above framework including the optimization
method works for both the CV and DV scenarios.

One-mode coherent state superpositions. The one-mode
coherent states are defined as

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉, with α ∈ C, (6)

where |n〉 denotes the Fock states (or number states), which
form a complete set of bases in the Hilbert space. The veri-
fication of |α〉 can be easily done by invoking the projective
measurement |α〉〈α|, which is achievable via a Kennedy re-
ceiver [55,56], i.e., a SPD combined with the displacement
D(−α) in front,

|α〉〈α| ≡ D†(−α)|0〉〈0|D(−α). (7)

Then, we consider the superposition of one-mode coherent
states, usually referred to as the coherent state superpositions
(CSSs) [57,58]. Typical examples of CSSs are the even and
odd coherent cat states [59],

|+α〉 = |α〉 + | − α〉√
C(α)

+
, |−α〉 = |α〉 − | − α〉√

C(α)
−

, (8)

with the normalization C(α)
± = 2(1 ± e−2|α|2 ). They are useful

in various quantum information processing tasks including
quantum teleportation [45], quantum computation [49,50],
and quantum metrology [60]. These two cat states can be
discriminated using the parity measurement [61,62]

π =
∑

n

|2n〉〈2n| −
∑

n

|2n + 1〉〈2n + 1|, (9)

such that

π+|+α〉 = |+α〉, π−|−α〉 = |−α〉, (10)

which can be realized by PNRDs. The superscripts ± indicate
the projectors onto the eigenspace with the corresponding
eigenvalues ±1. Note, however, that the parity measurement
solely is not sufficient to verify the even or odd coherent cat
states, as for instance, |+α〉 and |+β〉 with α �= ±β have the
same behavior under the parity measurement.

Upon this point, we have revealed a significant difference
between CV and DV quantum states regarding their verifi-
cation, namely, the CSSs including the symmetric cat states,
cannot be verified straightforwardly. The reason is due to the
intrinsic nature of the infinite dimension of CV systems which
results in the fact that realization of a deterministic arbitrary
local operation in CV is still an open problem. Nevertheless,
some of the entanglement operations in CV are easier to
implement instead. For instance, in optical systems, consider
the beam splitter (BS) with the form

B(θ ) = exp[iθ (â†
1â2 + â1â†

2)], (11)

where â†
1(2), â1(2) are the creation and annihilation opera-

tors for the first (second) mode, respectively. The parameter
θ ∈ (0, π

2 ) determines the transmissivity of the BS, i.e.,
cos2 θ ∈ (0, 1). Then, by coupling to an ancilla vacuum mode
|0〉, we can convert, for example, the even coherent cat state
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to

B(θ )|+α〉|0〉 = 1√
C(α)

+
(|α cos θ〉|iα sin θ〉

+ |−α cos θ〉|−iα sin θ〉). (12)

This is the entangled coherent state, which we show how to
verify in the next section.

Two-mode entangled coherent states. The entangled co-
herent states (ECSs) usually refer to the superposition of
two-mode coherent states with the form |α〉|0〉 + |0〉|α〉 (un-
normalized) specifically [63,64]. Here, we consider a more
general form such that

∣∣ψECS
α,β

〉 = 1√
Cα,β

(|α〉|0〉 + |0〉|β〉), (13)

where the normalization is Cα,β = 2[1 + e−(|α|2+|β|2 )/2]. Note
that the transformed even coherent cat state in Eq. (12) is a
special case of |ψECS

α,β 〉 under proper local displacement oper-
ations. Furthermore, a class of more general entangled states
with the form (unnormalized)

|ψ̃ECS〉 := |α1〉|α2〉 + |β1〉|β2〉 (14)

is locally equivalent to |ψECS
α,β 〉 when α1,2, β1,2 ∈ R [65,66]

(see Supplemental Material Appendix B [54] for all the
derivations).

Although similar in form as the Bell states in the DV
scenario, verification of the two-mode |ψECS

α,β 〉 cannot use the
analytical technique as in Ref. [21] or the numerical approach
as in Ref. [20]. The infinite dimensional Hilbert space of the
CV systems severely restricts the type of measurements that
can be realizable. Hence, we start by fully exploring their
physical properties.

Measurements of the SPDs can be described by {τ+ =
|0〉〈0|, τ− = 1 − |0〉〈0|}, using which one finds the relation
(τ− ⊗ τ−)|ψECS

α,β 〉 = 0. Thus, to verify |ψECS
α,β 〉, the first mea-

surement setting we can employ is

�ECS
1 = 1− τ−⊗ τ− = 1 −

∞∑
n,m=1

(|n〉〈n| ⊗ |m〉〈m|), (15)

which satisfies �ECS
1 |ψECS

α,β 〉 = |ψECS
α,β 〉. Physically speaking,

this setting implies that the target state must have at least
one mode that has no photon. However, the possibility that no
photons emerge from both modes together cannot be ruled out
since 〈ψECS

α,β |(τ+ ⊗ τ+)|ψECS
α,β 〉 �= 0, which is rather different

from the property of the DV entangled states, like the Bell
states.

Next, we define the displacement operation
D(−α,−β ) := D(−α) ⊗ D(−β ) acting on the two modes,
which transforms the target state |ψECS

α,β 〉 to another ECS state
|ψECS

−α,−β〉. With this, we have the following measurement
setting:

�ECS
2 = D†(−α,−β )(1− τ−⊗ τ−)D(−α,−β ), (16)

which is in fact a generalized Kennedy receiver for two-mode
states.

FIG. 1. General framework for the verification of two-mode en-
tangled coherent states |ψECS

α,β 〉 as in Eq. (13). By randomly choosing
the displacement operation Dl , the outcomes with 1 or 0 of the coin-
cidences of the two detectors are counted. The outcome 1 represents
the “pass” instance and 0 for “fail.” With the number of successive
“pass” instances larger than N , |ψECS

α,β 〉 is verified.

The third measurement setting

�ECS
3 = D†

(
−α

2
,−β

2

)
(π ⊗ π )+D

(
−α

2
,−β

2

)
(17)

comes from the fact that ECSs have the parity symmetry under
proper displacement, i.e.,

D

(
−α

2
,−β

2

)∣∣ψECS
α,β

〉 = C+|+α/2〉|+β/2〉 − C−|−α/2〉|−β/2〉
2
√

Cα,β

,

(18)

where C± =
√

C(α/2)
± C(β/2)

± .

Briefly speaking, the first two measurement settings �ECS
1

and �ECS
2 check the existence of the vacuum mode and the

coherent mode, respectively. Together they ensure the super-
position of the two states |α〉|0〉 and |0〉|β〉. With the third
setting �ECS

3 confirming the balanced superposition, the ECSs
can be verified. Hence, these three measurement settings are
sufficient to verify |ψECS

α,β 〉; see the following theorem with its
proof postponed to Supplemental Material Appendix C [54].

Theorem 1. The two-mode entangled coherent states
|ψECS

α,β 〉 can be verified efficiently by the protocol

�ECS =
3∑

l=1

μl�
ECS
l , (19)

where the probability distribution {μl} is arbitrary. An optimal
efficiency can be obtained by optimizing {μl} under specific
scenarios as constrained by Eq. (5).

In Fig. 1, we show the general framework of the protocol.
The target states to be verified are input into two separate
channels, followed by the displacement operation Dl , and
finally measured by photon detectors. The displacement Dl

has three different cases {D1 = 1⊗1,D2 = D(−α)⊗D(−β ),
D3 = D(−α

2 ) ⊗ D(− β

2 )}, which are applied on each mode
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locally. PNRDs are required for the third setting �ECS
3 , while

the first two settings only need SPDs. The three measurement
settings are randomly chosen in accordance with the proba-
bility distribution {μl}. Then, the numbers of coincidences of
the two detectors are counted with outcome 1 representing a
“pass” instance and 0 for “fail.” If the number of successive
“pass” instances is larger than N , we confirm that the state is
|ψECS

α,β 〉 with certain confidence. As mentioned by Theorem 1,
the sample complexity N is determined by the optimal verifi-
cation efficiency 1/νopt which can be obtained by optimizing
the probability distribution {μl} under specific scenarios as
constrained by Eq. (5). Note, furthermore, if changing the
balanced superposition of the two terms in ECS from + to
−, to which the transformed odd coherent cat state is lo-
cally equivalent, all the experimental settings remain the same
except for �ECS

3 , which differs by a sign (see Supplemental
Material Appendix D [54] for more detailed discussions).

Before proceeding to give a concrete example, we have
a quick remark regarding the PNRDs. In practice, finite res-
olution of the PNRDs for the parity measurements always
leads to a systematic error. We can circumvent this problem
by directly dismissing the results when PNRDs are satu-
rated. For instance, consider the PNRD(3) with four outcomes
{0, 1, 2, 3+}, such that one can keep the outcomes {0, 1, 2}
only by discarding the rest. Some efficiency will be lost during
this process, and the probability to get the useful results with
PNRD(r) for a one-mode CV state |ψ〉 is given by

p(r) =
r−1∑
i=0

|〈i|ψ〉|2. (20)

However, we emphasize that when α is small, the loss is
negligible. For example, considering the one-mode even co-
herent cat state |+α〉 with α = 1, the efficiency is about 97.2%
by using PNRD(3). As for PNRD(20), which is the highest
resolution currently achievable in the laboratory [39], the loss
is around 10−16, which can be safely ignored.

Following the above discussion, here we demonstrate the
high efficiency of our protocol by considering the verification
of |ψECS

α,α 〉 with PNRD(5). The most significant decoherent
noise for verifying ECSs comes from the photon loss from
channels and the construction error from two-mode displace-
ments. Hence, as a demonstration, we assume that the input
noisy states σi = |φi〉〈φi| take the following forms, i.e.,

|φe(η)〉 := |α − κ + �〉|κ〉 + |κ + �〉|α − κ〉, (21)

|φs(η)〉 := |α − κ + �〉|κ + �〉 + |κ + �〉|α − κ + �〉,
where the perturbation κ = (1 − √

η)α/2 is caused by photon
loss with η denoting the fraction of photons that survives
the noisy channel [45], and the small value � represents
the displacement error. These two types of noisy states thus
correspond to the extreme one-mode error and the symmetric
two-mode error, respectively [67]. Then, the optimization in
Eq. (5) shows that the resource requirement for verifying
|ψECS

α,α 〉 is N ≈ 2.60(4)ε−1 ln δ−1 with the optimized proba-
bility {μl} = {0.49(7), 0.40(2), 0.10(1)}. As a comparison,
for the tomographic detection of an ECS with a 99.99% fi-
delity using PNRDs, the experiment in Ref. [68] used more
than 1010 measurements. Our protocol, instead, is much more

efficient which requires ∼105 measurements to reach the con-
fidence level of 99%. Note that this optimization procedure
can be generalized to deal with various types of noises (see
Supplemental Material Appendix E [54] for more detailed
discussions).

Multimode entangled coherent states. Here we consider a
class of multimode entangled coherent states with the form

|ψGHZ-m〉 = 1√
C

(
m⊗

i=1

|αi〉 + |0〉⊗m

)
, (22)

where the normalization is C = 2[1 + e− ∑
i |αi|2/2]. Depending

on the number of modes, we refer to them as the m-mode
GHZ-like coherent states, which are generalizations of the
states in Ref. [69]. Note that, for m = 2, states |ψECS

α,β 〉 and
|ψGHZ-2〉 are locally equivalent. In fact, a class of generalized
GHZ-like states

|ψ̃GHZ-m〉 :=
m⊗

i=1

|αi〉 +
m⊗

i=1

|βi〉 (23)

are locally equivalent to |ψGHZ-m〉 when αi, βi ∈ R for all i
(see Supplemental Material Appendix B [54] for the deriva-
tions).

To verify |ψGHZ-m〉, consider the following 2(m − 1) mea-
surement settings:

�GHZ-m
2l−1 = Pl

{
[B†

2l−1(1− τ−⊗ τ−)B2l−1]⊗ 1⊗(m−2)
}
,

�GHZ-m
2l = Pl

{
[B†

2l (1− τ−⊗ τ−)B2l ]⊗ 1⊗(m−2)
}
, (24)

with l = 1, 2, . . . , m − 1, where B2l−1 = D(−αl ) ⊗ 1 and
B2l = 1 ⊗ D(−αl+1) are local operations. The symbol Pl in-
dicates the permutation that only the l and l + 1 modes are
operated on for each setting. Moreover, we need one more
measurement setting

�GHZ-m
2m−1 =

[
m⊗

i=1

D†

(
−αi

2

)](
π⊗m

)+
[

m⊗
i=1

D

(
−αi

2

)]
, (25)

where (π⊗m)
+

is the projector onto the eigenspace with eigen-
value +1 of the parity measurement π⊗m. With these, we have
the following theorem for verifying |ψGHZ-m〉 (see Supple-
mental Material Appendix F [54] for the proof).

Theorem 2. The m-mode GHZ-like coherent states
|ψGHZ-m〉 can be verified efficiently by the protocol

�GHZ-m =
2m−1∑
l=1

μl�
GHZ-m
l , (26)

where the probability distribution {μl} is arbitrary. An optimal
efficiency can be obtained by optimizing {μl} under specific
scenarios as constrained by Eq. (5).

Two remarks are in order. First, except for the last setting
which requires PNRDs on each mode, the other 2(m − 1)
measurement settings have exactly the same framework as
�ECS shown in Fig. 1, thus only two modes are operated on
each time. Second, if changing the superposition of the two
terms in |ψGHZ-m〉 from + to −, they can still be verified ef-
ficiently with similar experimental settings (see Supplemental
Material Appendix G [54] for the details).

L042004-4



EFFICIENT VERIFICATION OF ENTANGLED … PHYSICAL REVIEW RESEARCH 3, L042004 (2021)

Conclusion. We have developed a systematic framework
for verifying continuous-variable quantum states with lo-
cal measurements only. Same as in the discrete-variable
scenario, the high verification efficiency with the resource
overhead of N ∝ O(ε−1 ln δ−1) within infidelity ε and con-
fidence level 1 − δ is retained. This efficiency is quadratically
better than quantum tomography as well as other nonto-
mographic methods which usually require the resource in
the order of N ∝ O(ε−2 ln δ−1). The high verification effi-
ciency of our protocol is confirmed with the demonstration
for verifying entangled two-mode and multimode coherent
states.

As an outlook, it is interesting to extend the current
study to verifying other important CV quantum states, and

even CV quantum processes. Also, the adversarial scenario
[15,25,26,70] is worth considering, of which correlations
among the input states can be included. In such a case the
scaling of the verification efficiency is expected to be kept,
but deteriorate by a constant factor [25,26]. Moreover, with
the techniques including adaptive measurements [20,27] and
nondemolition photon counting [34,71,72], our protocol has
the potential for further improvement.
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