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E2 and gamma distributions in polygonal networks
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From solar supergranulation to salt flats in Bolivia, from veins on leaves to cells on Drosophila wing disks,
polygon-based networks exhibit great complexities, yet similarities and consistent patterns emerge. Based on
analysis of 99 polygonal tessellations with a wide variety of physical origins, this work demonstrates the ubiquity
of an exponential distribution in the squared norm of the deformation tensor E2, which directly leads to the
ubiquitous presence of gamma distributions in the polygon aspect ratio, as recently demonstrated by Atia et al.
[Nat. Phys. 14, 613 (2018)]. In turn an analytical approach is developed to illustrate its origin. E2 relates to most
energy forms, and its Boltzmann-like feature allows the definition of a pseudotemperature that promises utility
in a thermodynamic ensemble framework.
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I. INTRODUCTION

Polygonal networks are one of nature’s favorite ways
of self-organizing, from supergranulation on the solar sur-
face [1] to cracked dry earth [2], from ice wedges in northern
Canada [3] to the scenic Salar de Uyuni in Bolivia [4],
and from veins on leaves [5] to cells on Drosophila wing
disks [6] (Fig. 1). These systems are driven by distinctive
physical mechanisms, yet they share common features. In-
dividual constituents, namely, “cells” appear to “randomize”
into statistical distributions and interact with only their imme-
diate neighbors. On the collective level, especially in dynamic
and active systems, rich phenomena are observed, including
unjamming and jamming, fluid-to-solid phase transitions, and
flow and migration [7–15].

Despite the complexity and variabilities involved in these
phenomena, similarity patterns emerge. One particularly in-
teresting instance was provided recently by Atia et al. [16].
Within the context of confluent biological tissue and based on
extensive experiments both in vitro and in vivo, the authors
found that data on cell aspect ratio collapse and follow a
normalized gamma distribution, implying a universal prin-
ciple governing the geometric configuration and pertinent
processes.

What is the basis of this universality? Does it carry beyond
the biological context? This Letter comprises of a two-part

*Corresponding author: irvine@waksman.rutgers.edu
†Corresponding author: liu.liping@rutgers.edu
‡Corresponding author: hlin@soe.rutgers.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

discovery to answer these questions. In the first part, we
demonstrate that the gamma distribution in the polygon aspect
ratio derives from an exponential distribution in the squared
strain tensor norm E2. We show that such gamma distributions
do not share a physical origin similar to those in the granular
packing system as suggested by Atia et al. [16,17], but rather
are an approximation of a unifying solution that we develop.
More importantly, we are able to extend the universality of
the observations to a wide variety of systems (99 data sets in
8 groups) that include convection patterns (solar supergranu-
lation), landforms (in salt flats, on Mars, and in or near the
Arctic), cracked dry earth, and biological patterns (veins on
leaves, cells on Drosophila wing disks, and plated Madin-
Darby Canine Kidney cells (MDCK); Fig. 1 and Table I).
Both exponential and gamma distributions persist in all data
examined. In the second part, we tackle the origin of the E2

distribution and present a theoretical framework to accurately
compute E2 from vertex statistics. Importantly, E2 is closely
related to common definitions of system energy, including all
of the bulk-, perimeter-, and moment-based (known as the
quantizer) forms [7,10,18–21]. The Boltzmann-like feature
of E2 enables the definition of a pseudotemperature which
promises utility in an ensemble-based thermodynamic frame-
work [22–25].

II. E2 AND ITS RELATIONSHIP
WITH THE ASPECT RATIO

In this part, we define E2 and analytically establish its
relationship with the polygon aspect ratio. We demonstrate
that a k-gamma distribution in the latter is derivable from an
exponential distribution in the former. We begin by defining
the mean-field deformation tensor E. An exemplary processed
image of a Drosophila wing disk 120 h after egg laying
is shown in Fig. 1(h), where the color scale indicates the
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FIG. 1. (a)–(h) Examples of randomized polygonal networks.
(a) Land cracks due to desiccation [2]. (b) Ice wedges from northern
Canada [3]. (c) Veins on a Ficus lyrata leaf [5]. (d) Desiccation pat-
tern of an ancient lake on Mars (HiRISE image: PSP_002140_2025
[26], credit to NASA/JPL/University of Arizona). (e) A snapshot
of Salar de Uyuni in Bolivia, the world’s largest salt flat [4]. (f)
Supergranulation on the solar surface [1]. (g) Plated MDCK cells.
(h) A processed image of a developing Drosophila wing disk with the
aspect ratio of cells color mapped. (i) A regular hexagon PR (blue,
with vertices x j), a deformed hexagon P (red, y j), and a uniform
deformation approximation P ′ (black dashed outline, y′

j).

magnitude of the cell aspect ratio. We choose as our reference
frame a regular n-polygon centered at the origin, with vertices

x j = r0e j, e j = [cos( j2π/n), sin( j2π/n)], (1)

for j = 1, . . . , n. This polygon is denoted by PR, and r0 is to
be determined such that PR has the same area as the polygon
in comparison. Figure 1(i) uses n = 6, a hexagon, as an illus-
trative example. We consequently regard any n-sided polygon
P with vertices y j as a “deformation” from PR, namely,
y j = x j + u j , where we also assume that their centroids (de-
fined by Eq. (S6) in the Supplemental Material (SM) [27])
are aligned. The deformation is, in general, nonuniform, in
the sense that for vertex number n � 3, a single deformation
tensor of F ∈ R2×2 cannot be identified by y j = Fx j for all
j. Nevertheless, we can introduce an affine approximation,
namely, y j ≈ y′

j = Fx j . The use of a uniform deformation
to approximate the local and nonuniform deformation field is
effectively coarse graining, reducing the degree of freedom

from 2n to 4 and suppressing the fluctuations. This idea is
illustrated in Fig. 1(i) (right), where P ′ is the approximate
and uniformly deformed polygon. From F we define the usual
strain tensor and its squared Frobenius norm,

E = (FTF)
1
2 − I ≈ [(F − I) + (F − I)T]/2, (2)

where I is the identity tensor and the Frobenius norm is |E|2 =
Tr(ETE). Here we will use |E|2 and E2 (terminology) in-
terchangeably. The restriction to area-conserved deformation
requires that TrE = 0, which is satisfied by choosing r0 in (1).
Consequently, E has a degree of freedom of 2. We pursue
an analytical expression for E by minimizing the difference
between y j’s and y′

j’s, from which we obtain [27]

|E|2 =
n∑

i=1

n∑

j=1

vi · Ci jv j, (3)

Ci j = 2

n2
[(ei · e j )I + e j ⊗ ei − ei ⊗ e j], (4)

where v j = u j/r0, r0 = 1
n

∑n
j=1 y j · e j , and ⊗ denotes a

dyadic product.
Next, we show that if E2 follows an exponential distri-

bution (validated below via both data and analysis), namely,
ρE(|E|2) = β exp(−β|E|2), then the aspect ratio follows a
k-gamma distribution such as that shown in [16]. Here ρ(·)
denotes a probability density function (PDF), and β is similar
to an inverse temperature. The aspect ratio ar of the polygon
is calculated via the second area moment and is related to E2

as [27]

a2
r = (x + 1)2 = g(|E|2), (5)

where g(t ) = 1 + 2t2 + 4t + [(2t2 + 4t + 1)2 − 1]1/2 and for
convenience we have defined a shape factor x. Based on (5), a
transformation ρE(|E|2)d|E|2 = ρX (x)dx leads to

ρX (x) = ρE(|E|2)
d|E|2

dx
= βζ ′(x) exp[−βζ (x)], (6)

where ζ (x) = g−1[(x + 1)2] and the superscript denotes an
inverse function. Equation (6) is our prediction of the distri-
bution in the aspect ratio.

III. DATA VALIDATE E2 AND ar DISTRIBUTIONS

Both distributions and their relationship are extensively
validated, with a total of 99 data sets spanning 8 groups, as

TABLE I. Summary of data for a total of Mtot = 99 tessellations. Abbreviations used in Fig. 3 are given in parentheses. M is the number
of data sets in each type; N is the number of polygons in each set (a range is provided). R2 for |E|2 indicates the quality of fitting (e.g., in the
left column of Fig. 2); R2 for ar − 1 indicates the quality of agreement between theory and data (e.g., in the middle column of Fig. 2).

Type (abbreviation) M N R2, |E|2 R2, ar − 1

Salt flat of Uyuni (Salt Flat) 7 193–849 0.994 ± 0.0058 0.939 ± 0.0255
Landforms on Mars (Mars) 9 219–5826 0.986 ± 0.0125 0.935 ± 0.0461
Veins on leaves (Leaves) 6 338–6050 0.994 ± 0.0047 0.936 ± 0.0328
Landforms in the Arctic (Arctic) 11 104–1061 0.982 ± 0.0169 0.902 ± 0.0728
Supergranulation on the solar surface (Solar) 9 192–1645 0.991 ± 0.0075 0.932 ± 0.0463
Cracked dry earth (Cracks) 11 298–1596 0.992 ± 0.0067 0.943 ± 0.0353
Drosophila wing disk (Droso) 42 902–4205 0.991 ± 0.0083 0.955 ± 0.0335
Plated MDCK cells (MDCK) 4 1148–2283 0.997 ± 0.0012 0.936 ± 0.0157
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FIG. 2. Universality in strain and aspect ratio distributions. The left column shows the PDFs of |E|2, fitted with an exponential form
exp(−β|E|2) to extract β. β is then used in (6) to generate the theoretical curves in the middle column (dashed lines), in comparison to
the aspect ratio (symbols). The coefficients of determination R2 are shown. In the right column both data and theoretical curves from the
middle column are normalized and fitted with a k-gamma function (7) (thick dashed lines). k is extracted and shown in the legends. Data are
from [28,29] and this work.

summarized in Table I; detailed descriptions, data sources,
and the method of analysis are presented in the SM [27].
Figures 2 and S2 use eight representative cases from each
group to demonstrate the agreement. The left column shows
the PDFs of |E|2, which are very well fitted by the expo-
nential form, exp(−β|E|2), where β is extracted as a fitting
parameter. [See also Fig. 4(b) below, where all |E|2 profiles
are presented and the value of β is theoretically predicted.]

The middle column of Fig. 2 shows the PDFs of the
shape factor, ar − 1 (symbols). The theoretical predictions
per Eq. (6) are shown by dashed lines and exhibit excellent
agreement with the data. They are generated per Eq. (6), with
the single input parameter, β, extracted from the analysis of
the |E|2 distribution.

Last, in the right column, the PDFs for ar − 1 are normal-
ized with 〈ar〉 − 1, where 〈·〉 denotes a mean. Both data and
theoretical predictions are normalized following this practice.
The dot-dashed lines are best fits using a k-gamma distribution
following [16]

ρkG(x1; k) = kk

�(k)
xk−1

1 exp(−kx1), (7)

where �(k) is the gamma function and k is the single fitting
parameter. The agreement is evident, and the k values are
found to vary by about 2–3.

Overall, corroboration between theory and data is quan-
tified by the coefficient of determination R2, which is listed
in Table I for all cases. The values are uniformly close to 1.
The validity of the theoretical prediction (6) is also attested
by Fig. 3(a). Here we define a pseudotemperature T as the
inverse of β, namely, T = β−1. To make a comparison with

the data, a theoretical prediction is generated by using (6) to
obtain the mean.

The above results validate that the E2 does follow an expo-
nential, Boltzmann-like distribution. The universality of this
distribution in all data sets, according to our theory, neces-
sarily leads to a universality of k-gamma distributions for the
aspect ratio. That is, the validity extends beyond the confluent
tissues studied in [16] to all systems we analyzed.

IV. E2 DISTRIBUTION IS A χ2 DISTRIBUTION

In this part, we demonstrate the origin of the highly reg-
ular statistical distribution in E2. We first show that due to
the small degree of freedom of E, we can write |E|2 as the
sum of two squared entities. These entities are then shown to
follow normal distributions due to the machinery of the central
limit theorem. The combined effects lead to an exponential
distribution for |E|2 as a special case of the χ2 distribution.
Figure 3(b) shows results comparing the pseudotemperature
computed from data with the theoretical prediction we de-
velop below (denoted “theory”). Here the subscript n denotes
a restriction to the subensemble of n-gons, Tn := 〈|E|2〉n.

Polygons other than n = 4–8 are of statistically insignificant
occurrences and are not included.

The key relationship we utilize is a quadratic form to com-
pute |E|2 given vertex displacement v j . We concatenate v j’s
to a vector in R2n, namely, v̂ := [v1; . . . ; vn] = [v̂1; . . . ; v̂2n].
(We similarly define other vectors and tensors from their
two-dimensional counterparts and denote them with a hat.)
We then have |E|2 = v̂ · Ĉv̂, where Ĉ ∈ R2n×2n

sym has block

components Ci j given in (4). Ĉ has a single eigenvalue 2/n of
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FIG. 3. (a) Overall correlation between ar and T (β−1) for all
99 data sets (symbols); the theoretical prediction (dashed line) is
generated per (6). (b) A comparison between data and predicted
temperature, Tn and T (“theory”). The inset shows that subensemble
temperatures Tn are quantitatively similar to the tessellation temper-
ature T .

multiplicity 2 [27]. |E|2 can thus be reduced to a particularly
simple form,

|E|2 = (2/n)
(
ŵ2

1 + ŵ2
2

)
, (8)

where ŵk := p̂k · v̂ and p̂k is an eigenvector of Ĉ. If v̂ is
characterized by a covariance matrix, �̂, then the variance of
ŵk is Var(ŵk ) = p̂k · �̂p̂k = Tr(p̂k ⊗ p̂k · �̂) [30], and Tn is
readily computed as

Tn = 〈|E|2〉n = (2/n)Var(ŵ1 + ŵ2) = Tr(Ĉ�̂). (9)

Note that we have used Ĉ = (2/n)(p̂1 ⊗ p̂1 + p̂2 ⊗ p̂2) and
v̂ has a zero mean. Equation (9) is a precise expression to
compute Tn given �̂ and is used to generate the theoretical
predictions in Fig. 3(b). The tessellation average T can be
computed by taking the weighted sum of Tn, namely, T =∑

n(NnTn)/
∑

n Nn, where Nn is the number of n-gons. On the
other hand, subensemble temperatures are typically quantita-

FIG. 4. Normality of key variables; an asterisk (∗) denotes nor-
malization by its own standard deviation to compare with N (0, 1)
(dark lines). (a) ŵ1,2 for all tessellations (198 profiles). (b) Nor-
malized |E|2 follows a simple exponential distribution (99 profiles).
(c) and (d) The normality of ûk and v̂k for n = 6, 1188 profiles
each. (e) Initial displacement for two exemplary cases. (f) and (g)
ûk and v̂k asymptote toward normality. (g) Normalities of ŵ1,2 are
well established.

tively similar to the tessellation temperature, as shown in the
inset in Fig. 3(b).

If we further assume that ŵ1,2 follow identical normal
distributions, immediately, we have

ρE(|E|2) = (1/Tn) exp(−|E|2/Tn). (10)

In other words, the exponential distribution arises actually
as a χ2 distribution with two degrees of freedom. On the
other hand, if the variances Var(ŵ1,2) are not identical but
quantitatively similar, which is true for all tessellations we
study (Fig. S5), Eq. (10) still holds to the leading order. (This
point is straightforward to prove via Taylor expansion and not
shown here for brevity.) Note that even in this situation, per (9)
the formula for Tn is still accurate without approximation.
This provides an essential illustration of the origin of the
E2 distribution, and Eq. (10) is a main result of the current
work. It remains to be shown below that ŵ1,2 distributions are,
indeed, approximately normal and independent.

V. ASYMPTOTIC NORMALITY CONTRIBUTES
TO STATISTICAL REGULARITY

Figure 4(a) presents ŵ1,2 in the hexagon subensemble
(n = 6) for all 99 tessellations, whereas the cases for n = 5
and 7 are included in the SM [27]. PDFs are all normalized
for comparison with the standard Gaussian N (0, 1) (dark solid
lines). Although the PDFs exhibit appreciable fluctuations due
to the relatively small sample size in the n subensemble, the
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approximate normalities are evident. Quantitative similarities
of ŵ1,2 are demonstrated in Fig. S5. In addition, ŵ1,2 are,
indeed, only weakly dependent, as Cov(ŵ1, ŵ2)/Var(ŵ1) =
0.078 ± 0.046 for all cases, consistent with the anticipated
two degrees of freedom. All E2 distributions normalized by
the predicted temperature Tn are shown in Fig. 4(b).

The apparent candidate to explain the resulting normality
is the central limit theorem in the generalized version for
dependent and identical random variables [31], noting that
ŵk derives from v̂k via a linear combination. It is peculiar to
note that ûk and v̂k themselves also demonstrate approximate
normality, shown in Figs. 4(c) and 4(d). The normality in ûk

is again explained by the central limit theorem. We can write
û, the concatenated vector for u j’s, as û = R̂(ŷ − 〈ŷ〉), where
R̂ := Î − 1

n ê ⊗ ê [27]. In the absence of apparent anisotropy,
components of ŷ − 〈ŷ〉 are approximately identical, satisfying
the precondition of the theorem. Hence, ûk asymptotes to
normality. On the other hand, we have v̂ = û/r0 and r0 =
(ŷ · ê)/n. The normality in v̂ is difficult to theoretically prove.
However, it is reasonable to speculate that the loss of the
apparent scale would create similarity to preserve or even
enhance normality [see also Figs. 4(f) and 4(g)]. In addition,
it is extensively confirmed by the data, as shown in Fig. 4(d).

The asymptotic normality can be better illustrated via
a simple Monte Carlo simulation following the schematic
in Fig. 1(i), where we temporarily restrict ourselves to an
isolated hexagon, and initial (centroid-uncorrected) displace-
ments ûk,0 (k = 1, 2, . . . , 2n) are prescribed according to in-
dependent, identical distributions, as shown in Fig. 4(e) [27].
Two representative cases are examined; the first has a steeper
than Gaussian initial descent (red), and the second is non-
monotonic (blue). In Figs. 4(f) and 4(g), both ûk and v̂k

already demonstrate trending toward normality, although
some differences from N (0, 1) are still visible. Note that ûk

is obtained from ûk,0 after centroid correction, and only an
arbitrary index k is shown as these distributions are expected
to be identical. Subsequently, in Fig. 4(h) the normality of ŵ1,2

is well established. |E|2 distribution quantitatively follows
our theoretical prediction and is not shown. Although only
two exemplary tests are presented, repeated simulations reveal
the same asymptotic trend to normality, and the quantitative
relationships (9) and (10) always hold.

In summary, the above exercises demonstrate that asymp-
totic normality is prevalent in planar tessellations, as key
variables derive from linear combinations of statistically sim-
ilar components. As a result E2 distributions become highly
regular due to combined normality and its low dimensionality.

VI. PHYSICAL IMPLICATIONS

Atia et al. contemplated that the gamma distributions in
aspect ratio have a physical origin similar to granular packing
systems, in which the conservation of area gives rise to the
k-gamma distribution, where k is the number of “local ele-
mentary cells” [17]. However, in such a theory k is typically
a large number when compared with values in [16] or here.
This Letter indicates that it is rather an approximation of solu-
tion (6) derived above, and k is an empirical fitting parameter
which is positively related to β [Fig. S7(a)]. This trend is fully
corroborated with data from our own work and Atia et al. [16]

(Fig. 3 therein), as well as predictions from a self-propelled
Voronoi model in the supplemental information of the latter.

We propose that the deformation tensor E is also a more
fundamental quantity with evident physical meaning: It rep-
resents deformation and hence is typically associated with
energy in one form or another. Some of the usual possibilities
can be contemplated. If the energy is bulk elastic in nature,
then any physically reasonable elastic model of a polygonmust
follow the form �	 = μ|E|2 [32], where μ is the first Lamé
constant [27]. On the other hand, if energy is associated with
edge lengths or perimeters, such as in the case of models
for two-dimensional confluent tissues [7,10,21], the linear
dependence on |E|2 is still a formally valid approximation
to leading order [27]. Last but not least, in the quantizer
problem [18–20] the cellwise energy functional is the moment
of inertia, which is TrM = 2m0(1 + |E|2) in both two and
three dimensions [27], and 2m0 is the moment of inertia of
the regular reference polygon PR. Thus, its distribution can
be computed by knowing both the area and E2 distributions.
These examples of constitutive relations cover a reasonably
wide range of physical systems.

Above we have taken the liberty of naming a pseudotem-
perature T (or Tn for the subensembles). Indeed, such a
definition is both tempting and appropriate in the presence
of a Boltzmann-like distribution. The tests by Dean and
Lefèvre [25] and McNamara et al. [23] become trivial: The
ratio of two overlapping exponential distributions will nec-
essarily give another exponential distribution. We therefore
name this pseudotemperature the “E2 temperature.” This tem-
perature quantifies the overall deformation and possibly also
system energy. Not surprisingly, this temperature is very well
correlated with a similar pseudotemperature defined in Atia
et al. [16] due to the direct relationship between |E|2 and the
aspect ratio [Fig. S7(b)]. On the other hand, the relationship
between the E2 temperature and “compactivity” in a granular
assembly such as in [22,23] awaits further exploration. In our
ongoing endeavor we attempt to incorporate this temperature
into an ensemble framework.

We have thus demonstrated three main points in this work:
(i) An exponential distribution in E2 leads to a k-gamma
distribution in the aspect ratio. In fact, k-gamma distributions
are mere approximations of a more basic solution that depends
on the E2 temperature. (ii) E2 arises as a χ2 distribution which
results from both asymptotic normality and its small dimen-
sionality, which is analogous to the small dimensionality of
the volume function in granular assembly [33]. (iii) E2 and
aspect ratio distributions as well as normality in displacements
are true universal features, as we have shown via both a large
collection of data and theoretical derivations illustrating their
origins. The strong regularity in E2 and vertex displacements
are “hidden patterns” revealed by this work. The mean-field
strain tensor, with its clear physical and geometric meaning,
is an ideal quantity connecting the conservation principles, the
energy landscape, and the geometric distributions. Analysis
may also extend to polytopes in three and higher dimensions.
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