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Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices
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The Moiré superlattice realized in two-dimensional heterostructures offers an exciting platform to access
strongly correlated electronic states. In this work, we study transition metal dichalcogenides (TMD) Moiré
superlattices with time-reversal symmetry and nontrivial spin/valley-Chern numbers. Utilizing realistic material
parameters and the method of exact diagonalization, we find that at a certain twisting angle and fractional
filling, gapped fractional topological states, i.e., fractional Chern insulators, are naturally stabilized by simply
introducing the Coulomb repulsion. In contrast to fractional quantum Hall systems, where the time-reversal
symmetry has to be broken explicitly, these fractional states break the time-reversal symmetry spontaneously.
We show that the Chern number contrasting in the opposite valleys imposes a strong constraint on the nature of
fractional Chern insulator and the associated low-energy excitations.
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Introduction. When two layers of two-dimensional materi-
als are placed on top of each other with slight misalignment
it creates a superlattice with periodicity much larger than the
atomic lattice parameter. Because of the large lattice peri-
odicity, one can fill or empty the entire band by electrode
gating. This Moiré superlattice provides a tunable platform
to control the electronic band structure [1,2], and therefore
enables access to a plethora of interesting quantum states.
Because the bandwidth in these systems can be tuned to be
extremely narrow [2], these Moiré superlattices open up a
new pathway to stabilize various strongly correlated phases,
such as superconductivity and correlated insulators [3–27].
Furthermore, such electronic band structure can also be topo-
logically nontrivial, e.g., with a nonzero integer Chern number
[28–32]. Combined with their strong coupling nature, such
Moiré superlattices offer a promising route to realize the long-
sought fractionalized topological order [33–39].

Recently, gapped electronic states at various fractional
fillings (e.g., 1/3) were observed in transition metal
dichalcogenide (TMD) Moiré superlattices, e.g., WSe2/WS2

[18,40–43]. In general, gapped electronic states at fractional
filling may have two origins: (i) charge order that sponta-
neously breaks the translational symmetry and (ii) fractional
topological order, e.g., fractional Chern insulators (FCI)
[44–51]. In these TMD Moiré superlattices, the observed
gapped states were interpreted as Wigner crystals of electrons
because the underlying single-particle bands are topologically
trivial [52].

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Encouraged by such exciting experimental progress, here
we explore the feasibility of the second category in TMD
Moiré superlattices. In particular, we focus on systems like
MoTe2, which may host topologically nontrivial bands with
nonzero spin/valley-Chern numbers [53]. In contrast to a
partially filled Chern band [44–51], because these systems
preserve the time-reversal symmetry, two types of fractional
states are, in principle, allowed (i) time-reversal invariant
fractional topological insulators [54] and (ii) FCIs via sponta-
neously breaking the time-reversal symmetry. The key focus
of this study is whether Coulomb repulsion could stabilize
some of these fractional states in TMD Moiré superlattices.

In this work, we show that by simply increasing the
Coulomb interaction strength in such TMD Moiré superlat-
tices, the system undergoes a quantum phase transition that
spontaneously breaks the time-reversal symmetry by polar-
izing electrons into one of the two valleys. Further increase
of Coulomb interaction will trigger a second quantum phase
transition and stabilize a FCI at a fractional filling. For ex-
citations, our numerical studies observe both (intravalley)
fractional excitations from the fractional topological order and
(intervalley) valley-wave excitations from the spontaneous
symmetry breaking. We argue that the symmetry breaking
state and low-energy excitations are constrained by the valley
contrasting Chern number in the TMD Moiré superlattice.

Model. We consider twisted homobilayer TMD materials.
For each single layer, the low-energy electronic states reside
at the valence band maxima at ±K valleys. Contrary to bi-
layer graphene systems where the valley and spin degrees
of freedom are both present, in TMD each valley in the top
valence band has fixed spin orientation due to strong spin-
orbit coupling and the broken inversion symmetry [55]. With
a small twist angle θ between two layers, the +K valley for
the top and bottom layers are shifted to Kt and Kb in the
Moiré Brillouin zone (MBZ), respectively, [Fig. 1(b)]. For

2643-1564/2021/3(3)/L032070(6) L032070-1 Published by the American Physical Society

https://orcid.org/0000-0003-3580-5506
https://orcid.org/0000-0001-6322-9839
https://orcid.org/0000-0002-4368-5244
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.L032070&domain=pdf&date_stamp=2021-09-22
https://doi.org/10.1103/PhysRevResearch.3.L032070
https://creativecommons.org/licenses/by/4.0/


LI, KUMAR, SUN, AND LIN PHYSICAL REVIEW RESEARCH 3, L032070 (2021)

(a) (b)

(c) (d)

FIG. 1. (a) Schematic view of the Moiré superlattice. (b) We
choose the Moiré Brillouin zone (MBZ) to be the rhombus and the
origin in momentum space is chosen at M. (c) Moiré band structure at
θ = 1.38◦. The top Moiré band is nearly flat with Chern number ±1.
(d) The gap ratio �12

W = min[E1(k)]−max[E2(k)]
max[E1(k)]−min[E1(k)] as a function of twisted

angle θ , where E1(k) [E2(k)] is the energy of the first (second)
topmost Moiré band.

convenience we choose the rhombus-shaped MBZ and set the
point M = (Kt + Kb)/2 as the origin. We employ the contin-
uum model [2] in which the Moiré Hamiltonian for the +K
valley is

H+(k, r) =
(

− h̄2(k−Kb)2

2m∗ + �b(r) �T (r)

�
†
T (r) − h̄2(k−Kt )2

2m∗ + �t (r)

)
.

(1)

Here m∗ is the effective mass. The form of the Moiré potential,
�b,t,T , is dictated by the D3 crystalline symmetry and a com-
bination of C2z rotation followed by switching the two layers,
and can be parameterized by [53]

�T (r) = w(1 + e−iG2·r + e−iG3·r),

�l (r) = 2wz

∑
j=1,3,5

cos (G j · r + lψ ), (2)

where l ∈ {b, t} = {+1,−1} and G j is the Moiré recipro-
cal lattice vectors with length |G j | = 4π√

3aM
and polar angle

π ( j−1)
3 . Here aM = a0/θ is the Moiré lattice constant for

a small twisted angle θ and a0 is the lattice parameter
of TMD. The Hamiltonian for the valley −K can be ob-
tained by the time-reversal symmetry H−(k, r) = H+(−k, r)∗.
To be specific, we focus on the twisted MoTe2 homobi-
layer with typical parameters (h̄2/2m∗a2

0, wz, w, ψ ) =
(495 meV, 8 meV, −8.5 meV, −89.6◦) [53].

The top valence band of a TMD single layer splits into
multiple Moiré bands due to the Moiré potential. As shown
in Figs. 1(c) and 1(d), when the twist angle is close to θ0 =
1.38◦, the top Moiré band becomes nearly flat. The flatness
of a band can be characterized by a ratio of the gap between
the nearest bands to its bandwidth. For the top Moiré band,
the ratio can be as large as 13. When θ < 3.1◦, The top
Moiré band is topologically characterized by a valley/spin
Chern number C = ±1 due to the skyrmion lattice pseudospin
textures of the Moiré potential [53]. The Chern number for the

opposite valley/spin is opposite as required by time-reversal
symmetry. Thus, at the single-particle level, such TMD homo-
bilayer realizes a quantum valley/spin Hall insulator.

We then introduce the screened Coulomb interaction and
project it to the nearly flat top Moiré band [56]

Hint = 1

2A

∑
q

: ρ(q)V (q)ρ(−q) :

=
∑

k,k′,q,τ,τ ′

U

2Ncell
v(q)λτ,q(k)λτ ′,q(k′)∗,

C†
τ (k)C†

τ ′ (k′ + q)Cτ ′ (k′)Cτ (k + q), (3)

where τ = ± is the valley index and λτ,q(k) = 〈uτ,k|uτ,k+q〉 is
the form factor originated from the projection. Here v(q) =
4π tanh(qd )/

√
3qaM is the dimensionless screened Coulomb

potential with d the separation between the electrode and
Moiré superlattice, which is set to d = 2aM in the calcula-
tions. A is system area and Ncell is the number of the unit cells
in the calculations. The coefficient of v(q) is chosen to make
U equal to the bare Coulomb potential between two particles
separated by aM . Cτ (k) is the annihilation operator for the
single-particle state |uτ,k〉. We neglect the weak intervalley
impurity scattering process associated with a large momentum
transfer, and therefore the Hamiltonian also has a valley U (1)v
symmetry. In this model, there are two competing symme-
try breaking states: An intervalley coherent state that breaks
the valley U (1)v symmetry and a valley/spin polarized state
that breaks the time-reversal symmetry. At half filling of the
topmost band (account for the valley degree of freedom), our
Hartree-Fock analysis and exact-diagonalization results both
suggest that a valley-polarized state is energetically favored,
which spontaneously breaks the time-reversal symmetry and
leads to an interaction-induced Chern insulator [57]. At frac-
tional filling, in principle, two types of fractional topological
states might emerge, a fractional Chern insulator or a frac-
tional topological insulator [54,58], depending on whether the
time-reversal symmetry is spontaneously broken or preserved
[59], and our exact diagonalization below shows that the FCI
is favored and stabilized in our system.

Valley polarized FCI. We define the filling factor ν =
2ρe/ρs, where ρe is the electron density occupying the top
Moiré band and ρs is the electron density for the full filling
of the two-fold degenerate top Moiré band. The factor of
2 accounts for the valley degree of freedom. Using exact
diagonalization, at ν = 1/3 we observe numerical evidence
of spontaneous valley polarization and FCI in the strong inter-
action limit, as shown in Fig. 2(a). For eight electrons in 4 × 6
unit cells (4 × 6 × 2 single-particle states including both val-
leys), the ground states are fully valley polarized with three
nearly degenerate ground states for each valley polarization,
separated from the excited states by an energy gap of the order
of 2 K. We calculated the many-body Chern number of each
ground state [48], and the topological index is found to be
1/3, characterizing a 1/3 FCI phase. This conclusion is further
supported by the total momentum for each ground state, which
obeys the generalized Pauli exclusion rule [60].

The occupation number n(k1, k2) of single-particle states
for each of the three many-body ground states are plotted
in Fig. 2(b). n(k1, k2) is uniformly distributed for different
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FIG. 2. Numerical diagonalization results for eight particles in
4 × 6 Moiré lattice. We choose θ = 1.38◦ and U = 1.38 meV. The
bandwidth at this twist angle is W = 0.083 meV. Here N = N1 ×
N2/3 is the number of particles. (a) Energy spectrum with three
nearly degenerate ground states in each valley. (b) The occupation
number of single particle states n(k1, k2) for each of the three many-
body ground states. The nearly uniform distribution of n(k1, k2)
suggests the ground state is an incompressible liquid. (c) Under
flux insertion along k2 direction, the ground states evolve into each
other. (d) Particle entanglement spectrum (PES) for the separation of
NA = 4 particles.

single-particle states, consistent with the fact that the ground
state is an incompressible liquid. The spectrum evolution un-
der flux insertion along the k2 direction is shown in Fig. 2(c).
The excitation gap is maintained throughout the flux insertion
process.

The topological nature of the ground states are further
confirmed by our calculation of the particle entanglement
spectrum (PES) [60]. To compute PES, we divide the N par-
ticles into two collections of NA and NB = N − NA particles
and trace out NB particles to get the reduced density matrix
ρA. The PES levels ξ are obtained from the logarithm of
eigenvalues of ρA, and are labeled by the total momentum of
the remaining NA particles, as shown in Fig. 2(d). There is
a clear entanglement gap with 2730 levels below the gap for
NA = 4, consistent with the counting of quasihole excitation
in the ν = 1/3 FCI [60].

To examine the finite-size effect, we study the scaling of
the many-body gap � with various system sizes. For a genuine
FCI, � remains finite in the thermodynamic limit when both
N1 and N2 approach infinity. However, � should vanish if only
one of N1 or N2 approaches infinity because this limit is a
one-dimensional system which should not support FCI [47].
This is confirmed in Fig. 3(a), which shows � decreases when
N1 is fixed at 3 and N2 increases from 4 to 8, but � increases
when the system size changes from 3 × 8 to 4 × 6.

We then map out the phase diagram at ν = 1/3 filling as a
function of the interaction strength U , which can be controlled
by distance between the electrodes and the Moiré superlattice
in experiments and the dielectric constant ε. The results are
shown in Fig. 3(b). We find a valley nonpolarized Fermi liquid
at a small 1/ε corresponding to a small U , a Fermi liquid
with valley polarization at an intermediate interaction, and
the FCI phase with valley polarization at strong interaction.

(a) (b)

FIG. 3. (a) The many-body gap � for various system sizes at v =
1/3 filling. The interaction strength is fixed to be U = 1.38 meV. The
increase of � in 4 × 6 system suggests the gap persists in the two-
dimensional thermodynamic limit. (b) The phase diagram for Fermi
liquid (FL), FL with valley polarization (VP) and fractional Chern
insulator (FCI) at different interaction strength U (ε) = e2

4πεε0aM
and

twisted angle θ . The dashed line corresponds to U (ε) = �12, above
which the interaction starts to mix different bands and the single-
band approximation breaks down.

Depending on the twisted angle θ , which controls the band-
width, the valley nonpolarized Fermi liquid can transit directly
to FCI with valley polarization or through an intermediate
Fermi liquid with valley polarization. The phase transition
between the valley-polarized Fermi liquid and FCI can be
described by Ginzburg-Landau theory with a Chern-Simons
term [57]. The direct transition occurs near θ = 1.38◦ where
the single-particle Moiré band has the largest gap to band-
width ratio [see Fig. 1(d)]. This is consistent with the quantum
Hall systems with flat Landau levels, where the interaction
stabilizes simultaneously the fractional quantum Hall state
with spin polarization. Note that the FCI can be stabilized in
a relatively broader region of the twisted angle here compared
to that in the magic angle twisted bilayer graphene [33–39],
and the region of angle for FCI increases with interaction. For
interaction above the dashed line in Fig. 3(b), our single-band
approximation used in the numerical calculations breaks down
and it requires taking other nearby bands into account.

Excitations. Here we study the charge neutral excita-
tions above the FCI ground states. As a consequence of
the spontaneous valley polarization, we consider the val-
ley waves’ excitation |�v (q)〉 = ∑

k zkC†
+(k + q)C−(k)|�−〉,

where |�−〉 is the FCI ground state with the τ = − valley
fully occupied and zk is a variational parameter. The presence
of the form factor in Eq. (3) breaks the valley pseudospin
SU(2) rotation symmetry down to the valley U (1)v symmetry.
As a result, the valley wave excitation are gapped as shown in
Fig. 4, which can be fitted by Ew(q) = Jq2 + A. The valley
wave disperses weakly in momentum and thus is well local-
ized in real space.

The lowest intravalley many-body excitation has lower en-
ergy than the valley wave excitation for the parameters we
used, i.e., the energy difference between the lowest fully po-
larized excited state and the FCI state is Emb = 0.167 meV <

Ew, see Fig. 4. Nevertheless, the valley wave excitation re-
mains a stable excitation because the decay of the valley
wave to the intravalley many-body excitations are forbidden.
Intravalley many-body excitations have the valley quantum
number 0, while the valley wave has the valley quantum
number 2.
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FIG. 4. Dispersion of valley wave excitation Ew (q) for eight
particles in 4 × 6 lattice. Excitation above the ground state with
total momentum k1 = 0, k2 = 0 (k1 = 0, k2 = 2) are labeled by the
squares and circles, respectively. The slight energy difference for
these two ground states is caused by finite-size effect. The inset
compares the energy of the lowest valley wave excitation Ew , the
lowest intravalley many-body excitation Emb, and the ground-state
energy Eg.

In quantum Hall ferromagnets, a pair of skyrmions has
lower energy than the particle-hole bound state [61]. The sys-
tem size limitation in the exact diagonalization does not allow
us to study the valley skyrmion excitation in our numerical
calculations. Here we use an effective Hamiltonian density for
valley pseudospin n(r) [61]

Hn(r) = J

2
(∇n)2 − A

2
n2

z + 1

2

∫
dr′2V (r − r′)ρs(r)ρs(r

′),

(4)

where J and A are given by the valley wave spectrum. The
presence of the valley pseudospin anisotropy can be traced
back to the opposite Chern number for the opposite valley.
One cannot rotate n from one valley to opposite valley adi-
abatically without closing the energy gap, which implies the
existence of anisotropy for n. The last term accounts for the
Coulomb interaction V (r − r′) because a skyrmion is dressed
with charge distribution ρs(r) = εi jεabcna∂inb∂ jnc/8π , where
εabc(εi j ) is the Levi-Civita tensor with i, j being the space
index and a, b, c being the spin index. The skyrmion topologi-
cal charge Qs = ∫

dr2ρs(r) is quantized to an integer number.
The easy axis anisotropy favors skyrmions with a small radius
while the Coulomb repulsion favors skyrmions with a large
radius. Their competition determines the skyrmion size [62].

FCI at v = 2/5. In twisted graphene Moiré superlattices,
the Halperin (332) state is stabilized at v = 2/5 due to the re-
maining SU(2) spin rotation symmetry in the valley polarized
state [36]. In our TMD Moiré superlattices, the spin rotation
symmetry is absent because of the spin-valley locking. The
Chern number contrasting valley degree of freedom disfavors
the (332) state. To demonstrate this explicitly, we calculate the
energy spectrum, spectrum flow under flux insertion, and en-
tanglement spectrum at v = 2/5, and the results are displayed

(a) (b)

(c) (d)

FIG. 5. FCI at v = 2/5. (a) The energy spectrum of eight parti-
cles in 4 × 5 system, and (b) six particles in 3 × 5 system. (c) The
flux insertion for the system in (a), where the five ground states are
marked in red (some of them are on top of each other). A finite gap
remains during flux insertion. (d) The particle entanglement spec-
trum for (a) with NA = 3. There are 51 × 20 = 1020 states below the
dashed line, consistent with quasihole counting.

in Fig. 5. The five-fold degenerate ground states are valley
polarized, and are consistent with the v = 2/5 FCI state. In
the fractional quantum Hall, the v = 2/5 state belongs to the
second hierarchical Jain state, and similarly one can assign
the v = 2/5 FCI as a second hierarchical FCI. Our results
highlight the importance of symmetry in dictating the ground
state and contrast the difference between the graphene and
TMD Moire superlattices.

Discussions. We show that TMD Moiré superlattices can
host fractional topological states via spontaneously break-
ing the time-reversal symmetry, using realistic parameters
of TMD Moiré superlattices. Comparing with graphene, the
spin-valley locking in TMD materials breaks the SU(2) spin
rotation symmetry and eliminates the spin-wave Goldstone
modes, which could help stabilize the FCI states. The val-
ley contrasting Chern number in TMD Moiré superlattices
also dictates the symmetry breaking states, hence the nature
of fractionalized topological states, and also the low-energy
excitations in the FCI. The gapped nature of these states can
be detected by transport, optical measurements, and so on, and
its topological nature can be accessed by the Hall conductivity
measurement. Due to the strong analogy between FCI and
chiral spin liquids, it is plausible that Moiré superlattices may
also help realize/stabilize exotic spin liquid phases [63–65]
by unitizing the valley/layer pseudospin or real spin degrees
of freedom.
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