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Disorder-induced vibrational anomalies from crystalline to amorphous solids
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The origin of the boson peak—an excess of the density of states over Debye’s model in glassy solids—is still
under intense debate, among which some theories and experiments suggest that the boson peak is related to a
van-Hove singularity. Here we show that the boson peak and the van-Hove singularity are well separated entities
by measuring the vibrational density of states of a two-dimensional granular system, where the packings are
tuned gradually from a crystalline to polycrystalline structure and toward an amorphous material. We observe
the coexistence of the boson peak and the van-Hove singularities being well separated in the polycrystals. The
van-Hove singularities gradually shift to higher-frequency values while broadening their shape. They disappear
completely when the structural disorder becomes sufficiently high. By analyzing the system at different degrees
of disorder, we find that the boson peak is associated with spatially uncorrelated random flucutations of the shear
modulus, whereas the smearing of the van-Hove singularities is associated with spatially correlated fluctuations
of the shear modulus.

DOI: 10.1103/PhysRevResearch.3.L032067

Glassy materials show anomalies with respect to Debye’s
predictions, for example, a prominent peak in the specific heat
relative to T 3 [1–3], a plateau in the temperature variation of
the thermal conductivity [4,5], and a remarkable peak in the
reduced density of states D(ω)/ωd−1, normalized with respect
to the Debye law, with d being the dimension [6–9]. This latter
peak is called “boson peak” (BP) and is closely related to the
mentioned other thermal anomalies. The BP is associated with
a strong increase of the sound attenuation [10,11] as well as a
minimum in the frequency-dependent sound velocity [10,11].
Near the BP frequency, the sound waves reach the Ioffe-Regel
limit, where the mean free path of the sound wave approaches
its wavelength.

To understand the origin of the BP-related vibrational
anomalies has been taken as a challenge by many workers
ever since their discoveries [1,6–8,12–17]. In most efforts, the
structural disorder has been considered crucial. The influence
of disorder on vibrational spectrum has been theoretically
modelled by spatially fluctuating potentials [18–20], force
constants [8,21,22], and elastic constants [5,11,23]. In particu-
lar, excellent agreement between theory and both experiments
and simulations has been achieved using effective-medium
theories [11,24,25].
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However, there still exists a controversial and opposite
opinion, that the BP would be a washed-out version of the
lowest van-Hove singularity (VHS) of the transverse phonon
branch [22,26–28]. The argument in favor of this interpreta-
tion is that in lattice models of force-constant disorder the
VHS peak smoothly transforms into the boson peak with
increasing disorder [8,22,28] and that the BP in some glasses
appears in the same frequency regime as the VHS peak of the
corresponding crystal, if rescaled with the Debye frequency. A
rather strong argument against this interpretation is that near
and beyond the BP frequency the Ioffe-Regel limit shall be
reached and a dispersion of the transverse branch cannot be
defined [9,29].

To shed new light on this important issue, it is desirable
to present more evidence, in particular from experiments.
Granular materials show striking similarities with glasses. If
prepared properly, then jammed granular matter can have a
disordered structure like a liquid and can be mechanically sta-
ble like a solid. Moreover, granular materials can show caging
dynamics and dynamical heterogeneity as well [30–33]. Re-
cently, these similarities have been placed in a more rigorous
theoretical framework where the jamming line of granular
materials lies deep within the Gardner phase of the hard-
sphere glass [34,35].

From the theoretical perspective, the density of states
(DOS), constitutes the essence in understanding the ther-
mal anomalies of the low-temperature physics of glasses,
i.e., the BP, since the temperature dependence is encap-
sulated into the separate Bose factor. Therefore, much of
the physical insight of the BP can be gained by analyz-
ing the DOS of the zero-temperature amorphous packing,
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FIG. 1. Images of the bond orientation parameter ψ i
6 [(A)–(F)] and stresses [(a)–(f)] of packings of various degrees of disorder, showing

force chains, i.e., those filament-like structures composed of particles carrying large stresses [49,50]. Note that the same letters in upper and
lower cases denote the same packing, and the color bar under panel (A) indicates the values of ψ i

6. The ratio R between the number of small
and large disks and the disorder parameter η are [(A) and (a)] R = 1.0, η = 1.0; [(B) and (b)] R = 6.25, η = 0.74; [(C) and (c)] R = 33.1,
η = 0.41; [(D) and (d)] R = 178.92, η = 0.20; [(E) and (e)] (polycrystal): R = 1.0, η = 0.13; [(F) and (f)] (granular crystal): R = 1.0, η = 0.0.

in particular the anomalous vibrational properties of granu-
lar materials [15–17,36,37]. Using a two-dimensional (2D)
granular packing is more advantageous than 3D systems, es-
pecially experimentally, since contact forces can be precisely
measured to construct the Hessian matrix [29,32,38], despite
that the precise form of the excess DOS, i.e., the DOS sub-
tracting the Debye’s DOS [39], in 2D is still under intense
debate in contrast to that of 3D systems where the excess
DOS has a robust scaling same as that of the sound attenuation
[17,23,29,39–44].

Here we present evidence to demonstrate the separateness
of the BP and the VHS by means of a 2D experimental system
of granular materials in which the structural order can be
tuned from the limit of crystal to glass. We find that BP
and VHS are clearly separated. Specifically, we observe the
coexistence of the BP and VHS in polycrystals of moderate
degrees of disorder. Strikingly, we also observe that when the
degree of disorder increases, the VHS shifts to higher frequen-
cies. These observations strongly suggest that in general there
is no generic connection between the BP and the lowest VHS,
in contrast to the propositions in the literature [22,26,27]. In
addition, we investigate the relationship between the BP and
the relative fluctuations of the shear modulus δG/〈G〉 and the
degree of structural disorder. We find that the boson peak
is associated with spatially uncorrelated random flucutations
of the shear modulus δG/〈G〉, whereas the smearing of the
van-Hove singularities is associated with spatially correlated
fluctuations of the shear modulus δG/〈G〉 that are reminiscent

of a crystalline solid. The smeared VHS disappears com-
pletely at large disorder.

In this experiment, we study the vibrational properties of
2D dense packings of photoelastic disks with various degrees
and types of structural disorder, ranging from a glassy system
to a granular crystal with spatially fluctuating contact forces
and force constants [45–48]. This is achieved by systemat-
ically changing the number ratio of small disks (diameter
1.0 cm) to large disks (1.4 cm). For a ratio of 1:1, we obtain
the maximum random packing, whereas in the pure small-disk
system the packing forms a crystal of a triangular lattice. We
use the bond-orientation parameter ψ i

6 to determine the local
hexagonal order, as depicted in Figs. 1(A)–1(F). The ψ i

6 is
defined as ψ i

6 = | 1
Nnn

∑Nnn
k e6 jθik | [51–53], where Nnn is the

number of nearest neighbors, θik is the bond angle between
disk i and disk k, and j ≡ √−1. The average ψ i

6 varies be-
tween the values of 〈ψ i

6〉 = 0.552 (for a ratio 1:1) and 〈ψ i
6〉 =

1 (for the granular crystal1). In samples of intermediate
composition of small and large disks, 〈ψ i

6〉 varies continu-
ously. We define a disorder parameter η = (1 − 〈ψ i

6〉)/0.448,
such that η = 0 for granular crystal and η = 1 for the max-
imum random packing (see Fig. S1 in the Supplemental
Materials).

1By “granular crystal” we mean a structural single crystal, which,
however, exhibits force-constant disorder and contact-force disorder.
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FIG. 2. The DOS’s (a) and reduced DOS’s (b) of packings of
different disorder parameters η. Here each curve is ensemble aver-
aged over 10 independent packings of the same η. Moreover, the
frequency ω is normalized by the Debye frequency ωD. Inset of (b):
The positions of the boson peak ωb/ωD (red ◦), the first and second
VHS – ωvH1/ωD (green �) and ωvH2ωD (blue

�
) vs η. The dashed

line denotes the minimum η beyond which the two VHS disappear.
Here p = 26.5 ± 0.2 N/m.

For a given η, we repeat the experiment 10 times, start-
ing from an independently prepared initial packing. Images
of the spatial distribution of ψ i

6 and stress images of six
different η are shown in Fig. 1, including the polycrystals
in Figs. 1(C) and 1(c), Figs. 1(D) and 1(d), and Figs. 1(E)
and 1(e) and a crystalline packing with weak disorder of
contact forces in Figs. 1(F) and 1(f) [45–47]. To create an
initial packing, we use a biaxial-compression or shear device
(biax) [29,32,54], where four walls of a square domain move
inwards symmetrically while its center is fixed. This biax
is filled with photoelastic disks, from ∼1500 to ∼2200 de-
pending on η. Starting from an unjammed state, we compress
the system isotropically until it approaches a granular solid
state of various packing fractions depending on the value of
η, e.g., its volume fraction φ ∼ 0.84 if η = 1 [55] and φ ∼
0.90 if η = 0. During the compression, we constantly apply
agitations to eliminate residual stress to produce a random
close packing (RCP) of bidisperse particles of η = 1 (size
ratio 1:1.4 and a number ratio 1:1), resembling the corre-
sponding RCP of frictionless particles [15,56]. We prepare the
initial packing of other η in a similar way. Starting from an
initial packing, we compress the system into a set of highly
jammed packings in a series of steps, where the strain in-
crement in each step is 4.26 × 10−4. At each step, images
of the particle configurations and stress images are taken for
further analyses. After a precise measurement of the contact
forces between the disks [29,32,54], we construct the Hessian
matrices to analyze the corresponding normal modes of the set
of different packing [29,32]. Using the Hessian matrices, we
then determine the DOS and reduced DOS of these systems
[29,32].

The DOS and the reduced DOS of packings of different
η are shown in Fig. 2, where we normalize the frequency ω

using Debye’s frequency ωD—a natural frequency unit, and
we let

∫
D( ω

ωD
)d ( ω

ωD
) = 1. When 0 < η � 0.33, on each

curve, a shoulder in the DOS or a corresponding BP appears
in the reduced DOS in the low-frequency regime, and, mean-
while, two VHS’s appear in the high-frequency regime, as
seen in Figs. 2(a) and 2(b). When η > 0.33, two VHS’s barely
exist with two small bumps reminiscent of VHS’s, as shown

FIG. 3. The DOS (a) and the reduced DOS (b) at different p
collapse for the strongly disordered system (η = 1). Only data points
from four different values of the pressure p are shown for clarity,
results at other p are similar. (c) The relative fluctuations of the
shear modulus, δG/〈G〉 vs w/D at different pressure for the strongly
disordered system (η = 1), which is corresponding to (a) and (b).
The results are independent of p. Note that here w/D represents the
rescaled course-grain size, where D is the weighted average diameter
of disks, i.e., NbDb+NsDs

Nb+Ns
, here Nb (Ns) indicates the number of the

larger (smaller) disks for the whole system, and Db (Ds) indicates
the diameter of the larger (smaller) disks.

in Figs. 2(a) and 2(b). The evolution in Fig. 2 shows a clear
level repulsion due to the gradual loss of symmetry going
from the crystalline structure to a more and more disordered
system. This appears to push the states of two VHS’s toward
the low-frequency regime (leading to the formation of the
BP) and simultaneously toward the high-frequency regime
(causing Anderson localization [8,38,57–59]), in agreement
with theoretical findings [8,60,61].

In addition, a striking characteristic is that two VHS’s shift
gradually to higher frequencies as η increases, as shown in
Fig. 2(b) and its inset. The above observations are in sharp
contrast to Ref. [22] where the lowest VHS gradually shifts
to lower frequencies as the force-constant disorder increases,
leading to the conclusion [22] that the BP would be gener-
ically related to the lowest VHS. Moreover, the frequency
of the lowest VHS and the BP frequency are close with a
ratio of ∼1.4–2 for sufficiently high force-constant disorder
[22], whereas in our case these two frequencies are rather
distinct with a ratio of ∼5 as shown in Fig. 2(b). The opposite
trends in the change of VHS may be understood from the
different nature of disorder between Ref. [22] and our system:
Reference [22] is a lattice model with the force-constant disor-
der, different from the structure disorder in our system. These
two different types of disorder have long been believed to be
equivalent [22] but have qualitative differences in causing the
evolution of the VHS, as confirmed in the above discovery.
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FIG. 4. The DOS (a) and the reduced DOS (b) rescaled by the Debye frequency ωD at different pressure for the granular crystals (η = 0).
Each curve in (a) and (b) is ensemble averaged over 10 different runs at the same pressure. (c) With double y-axes: The left y axis represents
the frequencies of two VHS’s [ωvH1 (red ◦, solid line) and ωvH2 (red ◦, dashed line)] and the right y axis represents the heights of two VHS’s
[HvH1 (blue �, solid line) and HvH2 (blue �, dashed line)] versus pressure. Note that the data of the second VHS at p = 5.45 N/m are not
shown here, due to the disappearance of the second VHS. (d) The relative fluctuations of shear modulus, δG/〈G〉 vs w/D, at different pressure
corresponding to (a) and (b). The results are dependent on p. Note that here w/D represents the rescaled course-grain size, where D is the
weighted average diameter of disks. Each curve in (a)–(d) is ensemble averaged over 10 different runs at the same pressure.

In the simulations of Tong et al. [62,63], the authors
also observed the coexistence of the BP and the VHS’s in a
weakly disordered 2D system, by systematically increasing
the structural disorder starting from a perfect crystal. How-
ever, there are two differences between their findings and our
experimental results, as follows. First, in the simulations, it
is easy to isolate disorder type one at a time by exploring
force-constant disorder on a perfec lattice [62,63] and lattice
disorder [63], polydispersity of particles [62], the fluctuations
of local coordination number, or vacancies [63] to sufficiently
high degrees. In our experiment, the simultaneous presence of
the different types of disorder considered in Refs. [62,63] is
inevitable. Moreover, the positions of the lowest VHS hardly
change with disorder [62,63], while in our findings, the lowest
VHS evidently shifts to higher frequencies, as seen in Fig. 2,
which further verifies the distinction between BP and VHS.

Apparently, here BP’s are necessarily induced by disorder,
including both the structural disorder and the force-constant
disorder. To disentangle the two, we first investigate the role of
the force-constant disorder in the strongly disordered system
(η = 1) and the granular crystals (η = 0). Here we consider
the relative fluctuations of shear modulus, δG/〈G〉, which
is confirmed to be the leading contribution to BP formation
[11,32,64] (see the Supplemental Materials for the calcula-
tions of the local moduli [65]).

As shown in Figs. 3(a) and 3(b), the normalized DOS’s
and the reduced DOS’s do not show significant changes in
the strongly disordered systems (η = 1) when the pressure

p changes by a factor of five. The measured δG/〈G〉 ∝
w−1.0±0.05 at different pressure show little pressure depen-
dence, as depicted in Fig. 3(c), in consistent with the results
in Figs. 3(a) and 3(b). Here the δG/〈G〉 ∝ w−1.0±0.05 scaling
can be understood based on the central limit theorem and the
lack of long-range correlations in the spatial fluctuations of
moduli, equivalent to Gaussian statistics of the modulus flucu-
tation [11,32,64]. (See also Fig. S2– Fig. S4 for more details
on the spatial correaltion and the probability distributions in
the Supplemental Materials [65].)

Figure 4(a) shows the normalized DOS’s at different pres-
sure p in the granular crystals, where the triangular-lattice
structure is fixed but the force constant is disordered, due
to the force network and the nonlinear interactions [47,48]:
When p � 5.45 N/m, only the transverse VHS is left fol-
lowed by a knee structure that gradually transforms to the
longitudinal VHS when p > 5.45 N/m. Correspondingly in
Fig. 4(b), only the transverse VHS is followed by a knee
structure in the reduced DOS’s, nearly invisible at p = 5.45
N/m. In contrast, the transverse VHS changes little after nor-
malizing ω by ωD, which further verifies that the BP and the
VHS are two different entities. Additionally, when p > 15.62
N/m, both DOS and reduced DOS nearly collapse, as shown
in Figs. 4(a) and 4(b). Figure 4(c) shows the changes of
both frequencies and heights of the two VHS’s with pressure,
eventually leveling off. Here the change of the DOS’s with
pressure shows that the granular crystal is not an ordinary
crystal, with the force inhomogeneities and force-constant
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disorder at contacts due to the nonlinear contact-force
law.

To understand the results in Figs. 4(a)–4(c), we also
measure δG/〈G〉, as shown in Fig. 4(d). Apparently, there is
a change in δG/〈G〉 when p � 15.62 N/m, in consistent with
the evolution of the DOS’s and reduced DOS’s, especially the
longitudinal VHS. When p > 15.62 N/m, δG/〈G〉 does not
depend on p any more, consistent with the behavior of the
DOS’s and reduced DOS’s. Here δG/〈G〉 has a much smaller
value at the particle scale compared to that of Fig. 3(c),
and moreover δG/〈G〉 ∝ w−0.54±0.05 decays much slower with
spatial correlations—reminiscent of the crystalline structure.

Furthermore, the shear modulus fluctuations are at least
five times as large as the fluctuations of the bulk modulus
δB/〈B〉 (see Fig. S4 in the Supplemental Materials [65]).
Recall that our previous work [32] shows that in the η = 1.0
systems the wavelength of the transverse wave at the BP
frequency is comparable to the characteristic length associ-
ated with the shear modulus fluctuations and a strong spatial
correlation exists between the nonaffine shear modulus and
low-frequency modes. Hence, the BP and the VHS’s are
well-separated entities with different natures of shear modulus
fluctuations: The BP formation is strongly associated with
Gaussian random fluctuations of the shear modulus, whereas
the evolutions of the VHS’s are related to the spatially corre-
lated fluctuations of the shear modulus.

The systematic change of the exponent α with η in the
scaling of δG/〈G〉 ∝ w−α can be found in Fig. S5(g) in the
Supplemental Materials [65], showing that the Gaussian ran-
dom fluctuations of shear modulus start as early as η ∼ 0.33
with α ≈ 1.0 for η � 0.33 and interestingly the two VHS’s
disappear around η ∼ 0.33, as shown in Fig. 2. Addition-
ally, the spatial fluctuations of shear modulus suggest that
the formation of the BP is closely related to the local soft
regimes in space, in good agreement with the early propo-
sitions [9,11,14,32]. Moreover, the relative height of the BP

shows a nontrivial scaling function of δG/〈G〉η, for which we
do not have an theoretical explanation. [See Fig. S5(g) in the
Supplemental Materials [65] for more details.]

In conclusion, we have studied the vibrational properties of
dense granular materials with a broad range of structural dis-
order and find that the BP and the VHS are two well-separated
features. We observe the coexistence of the BP and the VHS in
packings of moderate degrees of disorder with η � 0.33 and
the complete disappearance of the two VHS’s when η > 0.33.
Around η = 0.33, there is an associated qualitatively differ-
ence in the spatial flucutions of shear modulus.

By analyzing the fluctuations of the shear modulus,
δG/〈G〉, at different pressure p both in the strongly disordered
system (η = 1) and the granular crystals (η = 0), we find the
Gaussian random spatial fluctuations of δG/〈G〉 play a crucial
role in the formation of the BP [11,24,29,32].

We further find that the formation of the BP is closely
related to local soft regimes of negative shear modulus, as
found in packings of all η except in the granular crystals.
Moreover, we find that δG/〈G〉 fluctuate randomly in space
as Gaussian random variables when η > 0.33, below which
its fluctuation has spatial correlation and two VHS’s become
visible. Hence, the formation of the BP is accompanied with
spatially uncorrelated random fluctuations of the shear mod-
ulus and the evolution of the VHS are accompanied with
spatially correlated fluctuations of the shear modulus.
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