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The one-body reduced density matrix y plays a fundamental role in describing and predicting quantum
features of bosonic systems, such as Bose-Einstein condensation. The recently proposed reduced density matrix
functional theory for bosonic ground states establishes the existence of a universal functional F[y] that recovers
quantum correlations exactly. Based on a decomposition of y, we have developed a method to design reliable
approximations for such universal functionals: Our results suggest that for translational invariant systems the
constrained search approach of functional theories can be transformed into an unconstrained problem through
a parametrization of a Euclidian space. This simplification of the search approach allows us to use standard
machine learning methods to perform a quite efficient computation of both F[y] and its functional derivative.
For the Bose-Hubbard model, we present a comparison between our approach and the quantum Monte Carlo

method.
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In 1964, Hohenberg and Kohn proved the existence of
a universal functional F[p] of the particle density p that
captures the exact electronic contribution to the ground-
state energy of a system of interacting electrons [1]. Due to
a remarkable balance of accuracy and computational cost,
first-principles modeling of electronic systems based on the
respective density functional theory (DFT) is nowadays a
well-established daily practice, with great impact in the fields
of materials science, quantum chemistry, and condensed mat-
ter [2]. For bosonic systems, however, a fully first-principles
description has been elusive. This is due in part to the un-
suitability of the particle density to describe fundamental
bosonic features as orbital occupations, mode entanglement,
or nondiagonal order, which are important for predicting and
describing bosonic condensation. As a result, the theoretical
treatment of interacting bosonic systems mainly relies on ex-
act diagonalization techniques, which are restricted to a few
tens of orbitals [3-5], or mean-field theories that are partic-
ularly suitable for dilute ultracold gases [6—8]. The quantum
Monte Carlo (QMC) method is known to be a powerful family
of techniques for computing ground-state properties but is still
restricted due to the fermion sign problem. While bosonic
systems do not suffer such a sign problem, the QMC method
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cannot be applied to, e.g., frustrated quantum spin systems
[9]. Nowadays, a renewed interest in the ab initio description
of many-body systems has been motivated by the successful
application of artificial neural networks to both fermionic and
bosonic problems [10,11].

Since the parameters of correlated bosonic systems (ultra-
cold gases, in particular) can be tuned with a high degree of
control, they are powerful platforms to study a wide range
of model Hamiltonians, ranging from Hubbard models to
bosonic antiferromagnets [12,13]. They have also become an
active research field in the context of quantum simulations
[14-16] and even quantum foundations [17-20]. Such a need
to describe quantum correlations of bosonic systems effi-
ciently has motivated quite recently the putting forward of a
physical theory for interacting bosonic systems [21,22]. Based
on a generalization of the Hohenberg-Kohn theorem [23,24],
this reduced density matrix functional theory (RDMFT) for
bosons establishes the existence of a universal functional
Fwly] of the one-body reduced density matrix (IRDM): y =
NTry_[T'], obtained from the N-boson density operator I" by
integrating out all but one boson, and the two-particle interac-
tion W. Since the 1RDM is the natural variable of the theory,
RDMEFT is particularly well suited for the accurate descrip-
tion of Bose-Einstein condensates (BECs), strongly correlated
bosonic systems, or fragmented BECs [25,26]. Furthermore,
the information contained in the spectra of the IRDM can also
be sufficient to investigate multipartite quantum correlations
in those systems [27-31].

Although RDMFT holds the promise of abandoning the
complex N-particle wave function as the central object, it
does not trivialize the ground-state problem. In fact, the
fundamental challenge is to provide reliable approximations
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to the universal interaction functional Fy[y]. Yet, while
the Hohenberg-Kohn-type foundational theorem of RDMFT
shows the existence of a universal functional, it does not
give any indication of its concrete form. For DFT, the so-
lution to this problem is given in the form of large classes
of approximate functionals, hierarchically organized in the
so-called Jacob’s ladder. In recent years, the number of such
approximations has significantly increased thanks to machine
learning [32—37] and reduced density matrix [38] approaches.

Our work succeeds in providing a strategy for comput-
ing approximations for Fy[y]. In this Research Letter we
(i) provide an efficient method to capture the essential fea-
tures of universal functionals for boson lattices, (ii) show
how the constrained search approach associated with it can
be simplified in the form of an unconstrained problem, and
(iii) implement this approach in a standard machine learning
library to compute Fy [y ], its derivative, and the ground-state
energy. We shall for simplicity describe our method for the
Bose-Hubbard model, but the same results apply to any type
of interactions for systems with translational symmetry.

Universal bosonic functionals. In this Research Letter we
consider Hamiltonians of the form

Hy(h)=h+W, (1)

with a one-particle term /i =7+ 9, containing the kinetic
energy and the external potential terms, and the two-particle
interaction W. The ground-state energy and 1RDM follow
for any choice of the one-particle Hamiltonian % from the
minimization of the total energy functional &,[y] = Tr[hy] +
Fwly]. The functional Fw[y] is universal in the sense that
it depends only on the fixed interparticle interaction W and
not on the one-particle Hamiltonian /. Hence determining the
functional Fy[y] would in principle entail the simultaneous
solution of the universal correlation part of the ground-state
problem for any Hamiltonian Hy (h). By writing the ground-
state energy as E(h) = minr Try[Hy (h)I'], and using the fact
that the expectation value of % is determined by y, one can
replace the functional Fy [y ] by the well-known constrained
search approach [39]:

Fwlyl = pli)r; Try[WT], ()

where I' — y indicates that the minimization is carried out
over all I' whose IRDM is y. The main challenge of this
approach is that the set of I' such that I = y is in general
extremely complex to characterize, and so far only partial
results are known for quasiextremal, two-particle, or trans-
lational invariant fermionic systems [40—44]. Even in the
extremely popular DFT, the constrained search over many-
body wave functions integrating to the same electronic density
(i.e., ¥ — p) is rarely explicitly carried out [45].

To shed some light on the problem, let us represent y, the
1RDM of an N-boson real wave function | W), with respect to
a set of creation and annihilation operators

vij = (Ibb;|w) 3)
and assume that the dimension of the one-particle Hilbert

space is M. Let us also define M (N — 1)-particle wave func-
tions |®;) = b;|V¥), which satisfy by definition the condition

(Pi|D;) = yij- 4

|D,)
|D1)

(P1]@1) (P1]P2) (P1]|P3)

v = | (P2]P1) (P2|P2) (P2|P3)

|D3) <<q>3|q>1> (®3]P2) <<I>3|<I’3>>
FIG. 1. Representation of three wave functions in the Hilbert
space of N — 1 particles giving place to a IRDM y. While the
magnitude of the vectors is ||®;||* = y;, the angles they form satisfy

(@i @) = /Yiyjj cos(6i))-

The meaning of these non-normalized wave functions is
clear: While their magnitude equals the diagonal entries of
y (e, (®;|P;) = y;;), the angles they form correspond
to the nondiagonal entries of y. Indeed, since (®;|®;) =
[|D;][1D ;]| cos(B;;) = /ViiVjj cos(8;;), we have

Vij
The bound of the nondiagonal entries, |y;;|~ < yiivjj, is the
Cauchy-Schwarz inequality for operators and is known to
be a representability condition for y [46]. The condition
> i Igjlcb ;) = N|¥) suggests that the minimizer of the min-
imization (2) can be written as a set of M vectors in the
Hilbert space Hy_; of N — 1 particles, such that their an-
gles and magnitudes are determined by Eq. (4) (see Fig. 1).
We now exploit this first insight to explicitly carry out the
constrained search approach and find the universal functional
of the Bose-Hubbard model, a workhorse in the context of
ultracold bosonic atoms [47].

Bose-Hubbard model. The Hamiltonian of the Bose-
Hubbard model reads

&)

cos(6;;) =

| 2

UM
H=—-tY bib;+ EZﬁj(ﬁj -1, (6)
(ij) j=1
where the operator Bj b ;) creates (annihilates) a boson on
site j, and 7; is the corresponding number operator. The first
term in Eq. (6) describes the hopping between two sites, while
the second one is the interacting term W= % Zjﬁj #A;—1).
Since the problem is determined by N spinless bosons and M
sites, we write for the functional Fy [y ]. For a given y, let us
take the minimizer of the functional (2) and call it |V, ) € Hy,
the N-particle Hilbert space. Using the prescription discussed
above, let us define M (N — 1)-particle wave functions
|®, ;) =bj|W¥,) € Hy_1, which satisfy by definition the
condition (4). Due to the translational invariance of the
Bose-Hubbard Hamiltonian (6), these wave functions are all
normalized to the filling factor, namely, (®, ;|®, ;) = N/M.
The functional is given by Fyuly]l= D, (P, il P, ),
using 7;(; — 1) = l;jﬁ,@i. As shown in the supporting
information [48], any rotation of the states [P, ;)
in the subspace spanned by themselves, G, =
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span{|®, 1), ..., |®, u)}, will give an energy greater than or
equal to the energy Fy u[y]. As a consequence, we rewrite
the constrained search approach in Eq. (2) as

Fyuly]= min (Dilf;| D), )

{®;}eG, -

subject to (®;|P;) = N/M and (®;|®;) = y;;. This indicates
that the constraint in Eq. (2) can be transferred to the subspace
G, . As we will see below, this result leads to a quite efficient
optimization problem for the functional.

Exact functional of the dimer. As a first illustra-
tion of this approach, let us take the simple case of
the Bose-Hubbard dimer with two particles (N =M =
2). The states of the Hilbert space can be written as
two occupations: |ny, ng). For the one-boson Hilbert space
we choose as a basis {|1,0),]0,1)}. We are interested
in the minimum of (&, |, |®;) + (Dgrl|iigr|Dr), such that
(®p|PRr) = yLr = cos(f). We write these two wave func-
tions as |®.) =sin(6.)|1,0) + cos(6.)|0,1) and |Pg) =
cos(0g)|1, 0) + sin(6g)|0, 1). As a result of the corresponding
minimization (7), the three angles are related as 6, = 6 =
(w/2 — 6)/2, and the universal functional is equal to

F22(0) = 2 sin? <3 - 9) — 1 —sin(0), (8)
' 4 2
which is one of the few analytical results for a universal
functional that can be found in the literature [49,50].
Machine learning. Despite the spectacular rise of machine
learning in the study of quantum many-body systems, no
implementation is known so far for the theory of reduced
density matrices [51,52]. One of the reasons for this lack of
progress is the large amount of constraints swarming in func-
tional theories. We now discuss how our findings will facilitate
learning the universal functional of bosonic systems. Notice
that a more appealing way of writing the functional in Eq. (7)
is the following: Let us choose a basis for the vector space
G,, say, {{lm) € Hy_1}. A set of wave functions of the sort
needed in the minimization (7) can now be written as |®;) =
>d im/m). The condition of Eq. (4) reads dd' = y, where we
have defined the matrix [d] jm = djm. Using the singular value
decomposition for such a matrix, we have d = UXVY, with U
and VM x M unitary matrices [53,54]. Since £X" = Uy U,
it is now clear that the spectral decomposition of y is equal
to XX7. As a consequence, we obtain [X]q = /T, Where
{ny} are the eigenvalues of y. Collecting these results, we
obtain that the exact universal functional (7) can be explicitly
written in terms of the eigenvalues and the eigenvectors of y
(contained in the matrix U):

Fwlyl =) J/laltgAup(U, V), ©)
af

where  Aug(U, V) = D Ly Ui Uip Vg Vg (M [72;lm).  The
concrete form of the functional presented in Eq. (9) is
striking: For fermionic density matrix functional theory, the
square root of the occupation numbers in Eq. (9) is known
to be the optimal choice for Ansdtze of the form nf‘n}_“,
compatible with the integral relation between the one- and
two-body reduced density matrices [55-58], even for systems

out of equilibrium [59]. As we can see, the only freedom in

the functional (9) is the matrix V, which is, unlike U and n,,
not fixed by y. We use this degree of freedom to introduce a
standard optimization problem on a connected manifold M:

Fyuly]= min zﬁj Valiy AUy, V). (10)

where we have included a subindex in U, to remember that
such a matrix is defined by y. Notice that the manifold M is
essentially the set of special orthogonal matrices of dimension
M, which generates the space G,. Although the definition
of such a space is far from trivial (and we will leave this
question open for future research), it is possible to establish
some elementary facts. For instance, in the strongly corre-
lated regime U/t > 1 with integer filling factor o« = N/M,
G, = span{b;|a, ..., o)}

To make further progress on our problem, notice that opti-
mization problems of the form min,c ¢ f(x) over a connected
manifold M can be transformed into an unconstrained one
of the form min,cr: f(¢(y)) by lifting the function f to the
current tangent space T, M [60,61]. The map ¢ : R" — M is
called a trivialization map [60]. By letting the minimization
in Eq. (10) run over the set of special orthogonal matrices
in dimension M, the relevant minimization space turns out
to be a Euclidian space R™. As a result, finding the univer-
sal functional of RDMFT presents itself as an unconstrained
minimization problem. This is the crucial and last finding of
this Research Letter, as it finally allows us to compute the
universal bosonic functional by solving the problem directly
over the set of orthonormal matrices.

Modern machine learning frameworks such as PYTORCH
[62] provide fast and rather efficient ways of performing op-
timizations on connected manifolds of the type we consider
here. For the results we will present below, we have imple-
mented the constrained minimization (10) in PYTORCH with
the constrained minimization toolkit GEOTORCH [63]. As a
first step we implemented a minimization procedure where for
each 1IRDM the matrix V in Eq. (10) is optimized to produce
the universal functional. As a second step we trained a neural
network as the universal bosonic functional (see below).

Results. In Fig. 2 we present the results for the
Bose-Hubbard model (6) for M sites and (eM) bosons, for
M =2,4,6 and @ = 1, 2. For this example, we have con-
sidered y of the form y; = « and y;; = an, for i # j with
0 < n < 1 (this choice ensures the positive semidefiniteness
of y [64]). The systems are fully condensated when n = 1
(i.e., an occupation number is macroscopically populated).
For comparison, all functionals have been normalized to 0
in the lower point (i.e., n = 0) and to 1 in the upper point
(n = 1). The exact known results for M = 2 in Eq. (8) are
verified in our calculations. Furthermore, we observe the ex-
istence of the Bose-Einstein force discovered in Ref. [21],
generalized in Ref. [22], and proved in Ref. [65], namely,
the divergence of the gradient d,Fy m(n) — (N — Nggc)?,
with ¢ < 0, when approaching to the condensation point (i.e.,
n — 1). The striking similarities of the functionals Fys p[y]
and Fou m[y] suggest the existence of a universal functional
independent of o, up to appropriate normalizations.

In functional theories the knowledge of the functional’s
form is as important as the knowledge of its derivative, as
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FIG. 2. Universal functionals Fy y[y] and Foyml[y] for the
M -site one-dimensional (1D) Bose-Hubbard model with filling factor
a=1,2,forM = 2,4, 6sites (see text). The functional corresponds
to all IRDM with y; = a = N/M and y;; = Nn/M for i # j. All
functionals are convex, as expected. For easy comparison, all func-
tionals have been normalized to O in the lower point (7 = 0) and to 1
in the upper point (n = 1).

both are needed for a ground-state calculation. To perform
the derivative of the functional, we trained a neural network
to output the matrix V using the degrees of freedom of our
1RDM as input. This has multiple advantages. First, once the
functional is trained for given particle and site numbers, it can
be evaluated for any y. Secondly, the automatic differentiation
allows an exact evaluation of the gradient V,, Fy »[y ] without
further work. For the Bose-Hubbard dimer it was sufficient to
use the diagonal term n = y;41) and its square as inputs. The
calculation was structured as follows:

FCNNy w61, n*,US) = V — Fymalyl.  (11)

Here, FCNNy 50 is a fully connected network for N particles
and M sites with the parameters 6 and

n O - 0
0 n --- 0
Us=Ux|. . . . 12)
0 0 0 ny
calculated from the eigenvectors U and eigenvalues n; of y.
During training we minimize the functional Fy s ¢[y] for a
set of y in parallel. The networks used two hidden layers, with
exponential linear units (ELU) [66] as activation functions,
and the output of the last layer was used to create an orthogo-
nal matrix through a matrix exponential. The network for the
dimer was trained on the set n € (0.005, 0.001, ..., 0.995).
When evaluating on the set (0.0025, 0.0075, ..., 0.9925), the
maximum absolute error is smaller than 10~!5. The network
for N =4, M = 4 was trained on the same set. Remarkably,
as shown in Fig. 3, for the Bose-Hubbard dimer (for which
we can compare with exact results) the derivatives provided
by the neural network only deviate by ~10~!3 from the exact
results.

105 _

104 4

103 4

I F(n)

102 4

101 4

Exact

10-9 10-7 10-5 10-3 10-
I—n

FIG. 3. Comparison between the gradient of the functional for
the Bose-Hubbard dimer computed with the neural network (NN)
and the exact analytical results as a function of 1 —n (see text).
Notice the log-log scale.

We demonstrate now that our approach allows us to com-
pute the ground-state energy and IRDM for a large system.
Notice first that for a fixed filling factor « = N/M, the energy
of the ground state of the Bose-Hubbard model (6) can be
computed as the minimum of the energy functional Ey y[y] =
—2t Zi Yiti+1) + Fymly]. By performing the minimization
V, En,mly] = 0 on the domain of positive semidefinite matri-
ces, it is then possible to compute the ground-state energy of
the system. To generate the functional in that domain, we have
optimized the Ansatz y;j = n“a (0 <n < 1) with2 <« <8,
for |j —i| > 1, with n = yj441). This is motivated by the
fact that when U/r > 0, y;; = 0, Vi > j, and when U/t <
1 yij = a, Vij. Following this prescription, we have computed
the ground-state energy for the 40-site Bose-Hubbard model
with 40 bosons. The dimension of the corresponding Hilbert
space, being of the order of 5.3 x 10?2, is out of reach for
exact diagonalization and prohibits performing the exact con-
strained search approach. To solve this problem, we have (i)
chosen for the space G,, the subspace generated by the kets
|®;) = b;| W), by choosing [¥) = |1, ..., 1) (RDMFT1), and
(ii) used the exact functional of the dimer (8), appropriately
rescaled (RDMFT?2). The energy predictions of our machine
learning functionals are quite remarkable, given the subspaces
we have chosen. Indeed, the results presented in Fig. 4(a) indi-
cate that the predicted RDMFT results are in good agreement
with the QMC energies: The errors around U/t = 4 are only
due to the approximation of the space G,. In order to check
the quality of the approximate functionals further, we have
also plotted the relative error in Fig. 4(b). We observe that
this error is below 8% and practically zero for large and weak
interaction. In addition, notice that our implementation is able
to approximate the whole range of energies, not only the
weakly (the sector easily described by Bogoliubov methods)
or the strongly correlated regimes.

Conclusion. We have demonstrated the viability of approx-
imating universal bosonic functionals in a quite efficient way.
The main ingredient of the computation is a simplification of
the constrained search approach that we have introduced in
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FIG. 4. Ground-state energy of the 40-site 1D Bose-Hubbard
model with 40 bosons. In (a) the energy is plotted as a function of
the relative strength U/¢. In blue are the results computed using the
functional (10) (RDMFT1) and the Ansatz |®;) = b;|1, ..., 1). In
black we use as an Ansatz for the functional the exact expression
of the dimer appropriately rescaled (RDMFT2). In red are the results
computed with the QMC method. In the inset in (a) the functionals
Fn.n(n) are plotted as a function of n, the nearest-neighbor oft-
diagonal value of the 1RDM. In (b) the relative errors A/Equmc,
where A = Egpmrr2 — Eqmc, are plotted as a function of U /.

this Research Letter based on the Schmidt decomposition of
the wave function. This formulation of reduced density matrix
functional theory (RDMFT) speeds up the design of reliable
approximations for the universal functionals for systems with
translational symmetry. The quality of the numerical results
obtained in this Research Letter highlights the potential of
RDMEFT to become a competitive tool for computing prop-
erties of bosonic ground states with high-dimensional Hilbert
spaces. Strikingly, since RDMFT takes into account the whole
range of bosonic correlations and does not present dimen-
sional or sign problems, it offers a range of new possibilities.
For instance, frustrated bosonic systems can be studied in a
direct manner [67]. Bosonic systems with impurities, com-
posites of ultracold atoms, or even superconducting systems
[68-71] can also potentially be addressed within this frame-
work. As an outlook of this work, we leave open a new line
of research based on extending our findings to systems with
internal degrees of freedom, finite temperatures, or broken
symmetries. We also expect that previous works in the context
of a two-body reduced density matrix [72,73] will also benefit
from our approach.

All codes to reproduce, examine, and improve our pro-
posed analysis are freely available online [74].
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