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In this Letter, we propose a guiding principle for how to design the architecture of a quantum neural network
in order to achieve a high learning efficiency. This principle is inspired by the equivalence between extracting

information from the input state to the readout qubit and scrambling information from the readout qubit to
input qubits. We characterize the quantum information scrambling by operator size growth. By Haar random
averaging over operator sizes, we propose an averaged operator size to describe the information scrambling
ability of a given quantum neural network architecture. The key conjecture of this Letter is that this quantity

is positively correlated with the learning efficiency of this architecture. To support this conjecture, we consider
several different architectures, and we also consider two typical learning tasks. One is a regression task of a
quantum problem, and the other is a classification task on classical images. In both cases, we find that, for the
architecture with a larger averaged operator size, the loss function decreases faster or the prediction accuracy

increases faster as the training epoch increases, which means higher learning efficiency. Our results can be
generalized to more complicated quantum versions of machine learning algorithms.

DOI: 10.1103/PhysRevResearch.3.1.032057

Classical neural networks can extract information from
the input, usually a high-dimensional vector, and encode the
information into a number or a low-dimensional vector as
output. Classical neural networks have found broad applica-
tions in both technology developments and scientific research.
For these applications, there are studies on how to design
proper architectures of neural networks, such as the num-
ber of layers, the number of neurons in each layer, and the
activation functions such that extracting information can be
made most efficiently [1]. Quantum machine learning algo-
rithms are considered one of the most promising applications
in the near-term noisy intermediate-scale quantum technol-
ogy and have attracted considerable attention recently [2-5],
which include unsupervised learning, such as classification
tasks [6-8], generative models [9,10], information extraction
[11], and quantum generalization of neural networks, which
include quantum state preparation [12—15], combination of
quantum neural network and tensor network [16,17], learning
optimization [18-20], and generalized quantum circuit from
classical neural network [21-31]. Quantum neural networks
(QNNs5) also extract information from the input, usually a
high-dimensional quantum wave function, and encode the
information into one or a few read-out qubits. Usually, QNNs
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are made of local unitary quantum gates, and, in practice, we
should face the same problem of how we design the architec-
tures of the QNN properly.

To be concrete, we consider the QNN as shown in Fig. 1(a).
The dataset is denoted by {(|¥¢), y)} (d labels data), where
[} is a quantum wave function and y¢ is its label. The quan-
tum circuit denoted by a unitary transformation ¥/ is made of
a number of local (say, two-qubit) quantum gates. There are
various ways to construct U with two-qubit gates, and differ-
ent constructions correspond to different architectures. In the
end, one measures the readout qubit r, say, by measuring 67,
and one can introduce the measurement operator M as

M=6® - ®6/® 6, ()
where the superscript i = 1, ..., N labels the qubits. Aside

from the readout qubit r, no measurement is performed at
other qubits, which are described by the identity matrix de-
noted by 64. The measurement yields a readout
¥ = Uy, @
A loss function is designed to measure how close 7 is to
y¢, and one trains the parameters in the two-qubit gates to
minimize the loss function. During training, the QNN can also
make predictions on the dataset. Therefore, for a given task
and dataset, and by averaging over different initializations, the
loss or the accuracy as a function of training epoch mostly
depends on the architecture of the QNN. The issue addressed
in this Letter is whether there is a guiding principle for de-
signing the most efficient architecture in learning, that is, as
the training epoch increases, the decreasing of the loss or the
increasing of the accuracy is the fastest.
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FIG. 1. (a) The global structure of the QNN. Each U is called a
unit in this Letter, which is chosen among one of the building blocks
shown in (b)—(f). (b)—(f) Various typical building blocks for con-
structing the QNN, which are respectively called the “brick wall”(B),
“chain”(C), “lambda” (A), “hyperbolic”’(H) and “supercube”(S) in
this Letter.

In the cases of classical neural networks, there is always
information loss from the input layer to the output layer. How-
ever, for the QNN, the total information is conserved during
unitary transformation through the quantum circuit. Note that
a unitary transformation is reversible, when we say a QNN
encodes the information from the input wave function to the
readout qubit, it is equivalent to say that the QNN scrambles
the information from the readout qubit to all input qubits.
Thus, the efficiency of extracting information is equivalent to
the efficiency of scrambling information. Lots of studies in the
past few years have established several related quantities to
characterize quantum information scrambling, such as the out-
of-time-ordered correlator [32-37], the tripartite information
[38—41], and the operator size growth [42-52]. Recently, the
tripartite information has also been used to reveal universal
features in the training dynamics of the QNN [53]. This Letter
focuses on the architecture and the main results are two folds:

(i) We propose a quantity based on the operator size to
characterize the information scrambling ability of a QNN
architecture.

(i) We show that the scrambling ability quantified in this
way is positively correlated with the learning efficiency of the
QNN architecture.

Architectures. We demonstrate our results using several
different architectures shown in Figs. 1(b)-1(f) as examples.
The entire quantum circuit 7/ is made of a number of units,
ie., U= U,0; - - - Uy, as shown in Fig. 1(a). Each unit 01 con-
tains a number of two-qubit gates #;;, and we require that each
qubit is operated, at least, once. #;; denotes a two-qubit gate
acting on qubits i and j. For universal quantum computing,
each fi;; is parametrized as

flij = exp (Z a,.k_,.gk>, 3)
k

where g, are SU(4) generators and a{‘j are parameters. In a

QNN, these parameters need to be determined by training.
How to arrange these ;; to form U;, and then to form 'l:( is
referred to as the architecture here.

Figures 1(b)-1(f) show architectures considered in this
Letter. For cases shown in Figs. 1(b)-1(d), all qubits are
aligned along a one-dimensional line and all gates operator on
two neighboring qubits. They differ by the ordering of these
gates, and they are called brick wall (B), chain (C), and lambda
(A) as what they look like. For the case shown in Fig. 1(e),
all qubits sit in a one-dimensional circle, and the way they
interact is reminiscent of the hyperbolic geometry for which
it is called hyperbolic (H). Finally, for the case shown in
Fig. 1(f), qubits sit at the corners of a three-dimensional cube.
The two-qubit gates first act on four pairs of neighboring
gates along x, and then four pairs of neighboring gates along
y and finally four pairs of neighboring gates along z. Below
we explicitly show the scrambling ability and its correlation
with learning ability using these architectures, however, we
emphasize that we have tried more generic architectures and
our conclusions below hold for general architectures [54].
We note in certain systems, all-to-all interactions are realized.
However, this is because the intermediate degree of freedoms
mediating the interactions are integrated out, which can be
viewed as a specific architecture with local gates.

Operator size. Now we briefly introduce the operator size
[42-52]. Let us consider a system with N qubit and an opera-
tor O in this system. Generally, we can expand the operator as

é:ana;leaagz-.-@&;V )
o

Al

where 6, with subscript o; = 0-3, respectively, denotes iden-
tity (o; = 0) and three Pauli matrices &y .. Here o denotes a
set {a1, ap, ..., an}, and we use [(e) to denote the number of
nonzero elements in the set «, i.e., the number of operators in
6, ®64 -+~ ®6Y that are not identity. Then, the size of an
operator is defined as

size(0) = Z lcal 1 (). 5)
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In the most general case, there are totally 4N terms in the
expansion Eq. (4). Here we give two examples. If we consider
the measurement operator M defined in Eq. (1), we have
size((j) = 1. If we consider a uniform distribution among all
4N — 1 traceless operators with |cy|> = 1/(4" — 1), then

N

s 1 N' . 3N
sie(0) = 57— ) U O

n=1

Furthermore, if we consider the situation that, among N
qubits, operators on a fraction of «N qubits (¢ < 1) are uni-
formly distributed among &y ... 4 and operators on the rest of
the (1 — a)N qubits are always identity. Then, the operator
size is reduced to 3aN/4.

Now we present an argument to bring out the connection
between the operator size and the learning ability of a QNN.
Let us consider the operator M’ = UM% in Eq. (2). Initially,
the M operator is not identity only at the measurement qubit r,
however, because U does not commute with M , M’ can also
take one of the three Pauli matrices on other qubits and the
operator size increases. When the operator I becomes more
and more complicated as the depth of the QNN increases, the
operator size of M’ increases. However, if size(M’) is not suf-
ficiently large, there is still a large probability that M’ takes the
identity operator on some qubits. Since M’ acts on the input
state, and if the operator M’ is nearly identity on some qubits,
the QNN can hardly extract information from the input wave
function at those qubits. Therefore, a necessary condition for
accurate learning is that size(M’) reaches a sufficiently large
value.

Size(M') depends on both the architecture and the param-
eters of the unitary 74. Since for a QNN, the parameters keep
updating during training but the architecture is fixed as a prior,
we would like to have a quantity that only depends on the
architecture. To this end, we propose to consider an averaged
operator size,

size = f dU size(UMU). (7

Here [ d U means the Haar random average over all two-qubit
gates in Y. Since the parameters in 9/ have been averaged
over, size defined by Eq. (7) only depends on the architecture.
This quantity characterizes that for generic parameters, how
fast the operator size grows in a given QNN architecture.
We propose to use this parameter to quantify the ability of
scrambling quantum information for a given architecture. We
argue that for an architecture with larger size, it is easier to
reach a suitable parameter such that size(T'MTU) is large
enough that ensures efficient information extraction from the
input wave functions.

The Haar random average can also simplify the calculation
of the operator size size. For instance, let us consider a two-
qubit system and an operator 6, ® 6p. Expanding Ué, @
60U as Eq. (4), and after averaging over the Haar random
unitary, the weight ¢, [e = (a1, )] reads [42]

1 - 80{108(120
_. 8
15 ®)

Consequently, the probability of having a nonidentity operator
only on the first or only on the second site is 1/5, and the
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FIG. 2. The Haar-random-averaged operator size size defined
in Eq. (7) for different architectures. For each architecture, all
units share the same structure chosen as one of the cases shown
in Figs. 1(b)-1(f) and labeled by the same label introduced in
Figs. 1(b)-1(f). The horizontal axis is the number of units. Given
the number of units, the numbers of two-qubit gates are the same for
different cases under comparison [55]. Cross markers with different
labels are obtained by numerical simulations of sampling 10° differ-
ent parameters, and the solid lines with empty circles are obtained
by the analytical formula assuming infinite sampling. Here we have
taken the number of qubits N = 8.

probability of having nonidentity operators on both sites is
3/5. Based on Eq. (8), for any QNN with U composited by
two-qubit gates, the operator size growth can be explicitly
deduced as the depth of the QNN increases.

We compute size defined in Eq. (7) for different ar-
chitectures shown in Fig. 1 and the results are shown in
Fig. 2. The results show the ordering of size as (S) > (H) ~
(A) > (C) = (B). Especially, it is clear that the supercube
(S) performs obviously better than others. And the difference
between different architectures is the most significant for an
intermediate QNN depth. When the number of units is too
small (e.g., 2) and the QNN is too shallow, the unitary simple
enough that a local operator is not sufficiently scrambled for
all architectures. On the other hand, when the number of units
is large enough (e.g., ~7) and the QNN is deep enough, the
unitary is sufficiently complicated for all architectures and
size for all cases approach 3N/4 (=6 for N = 8 considered
here) [54], and their differences also become insignificant.
What is more, we also consider the QNN made of three-qubit
gates, and the order of averaged operator size of different
architectures is similar to the results of the two-qubit case
[54].

Learning efficiency. To confirm the relation between the
learning efficiency and the scrambling ability defined above,
we consider two typical training tasks. The first is a regression
task of information recovering in a quantum system. Let us
consider an unknown initial product state |¢“), its total mag-
netization is given by

1 N
MY = (91 ) 6119"). ©)
i=1
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FIG. 3. Performance of different architectures for two different
tasks. (a) and (b) Loss as a function of a training epoch for the
information recovering task on the quantum spin problem. (c) and
(d) Prediction accuracy as a function of training epoch for the second
classification problem of red-green-blue (RGB) images of numbers.
The number of units N,; = 4 for (a) and (¢) and N,,;; = 7 for (b) and
(d). In both cases, the results have been averaged over ten different
initializations. The shaded area indicates the standard deviation of
averaging over ten different initializations.

Now let us consider a chaotic Hamiltonian,

A= 3" Jlsie]+> > Hsi (10
(ij) i

a=x,y,zZ a=x,y,z

where J;/ and hi are a set of randomly chosen parame-
ters. We evolve |¢?) with this Hamiltonian for a sufficiently
long time to ensure a chaotic unitary dynamics, which yields
|4y = e~ |¢?). For the QNN, the training dataset is taken
as {{|v%),y%},d =1, ..., Np}, where y? is taken as the total
magnetization y! = M? and N, is the number of datasets. The
loss function is taken as

1
-£=_ ~d_d’ 11
ND;w | (11)

where §¢ is the readout of the QNN given by Eq. (2) with input
[¥4). In Figs. 3(a) and 3(b) we show how the loss function
decreases as the training epoch increases. The trained QNN
supposedly can recover the magnetization information of the
initial state from the final state after a chaotic evolution.

The second task is a classification task of recognizing
classical images. We take large numbers of RGB images with
either a number 6 or a number 9 embedded in the background.
Each image contains 16 x 16 = 256 pixels. Considering a
system with N = 8 qubits, there are totally 28 = 256 bases in
the Hilbert space. A general wave function can be expanded
in terms of these 256 bases. Each pixel corresponds to a
base, and the information of each pixel is encoded into the
coefficient of its corresponding base [54]. In this way, for each
image, we generate a wave function |1/¢) as input. The label is
taken as y? = 0 if the image contains the number 6 and y¢ = 1
if the image contains the number 9. The readout of the QNN
74 is also given by Eq. (2) with the input |1?). In this case, the
loss function is taken as the cross entropy between y¢ and p?,
and since j)d lies between [—1, 1], we define pd as (1 + yd)/z

such that it lies in the range of [0,1]. Then the loss function is
given by

1

Np
L= =" pf = =yHind = pHl. (12)
D =1

After learning, we let the QNN to make predictions on the
dataset {{|v/?),y?},d =1,..., Np}. For each input |y?), a
trained QNN returns a prediction ¢ given by Eq. (2). Now
we interpret the prediction as the number 9 with p? = 1 if
! > 0, and as the number 6 with p? = 0 if 7 < 0. Then, we
can obtain an accuracy as

L
N—DDP" —yI. (13)
d=1

In Figs. 3(c) and 3(d) we also show how the accuracy in-
creases as the training epoch increases.

The results shown in Fig. 3 have been averaged over a
few runs with different initializations, and, therefore, their
differences mainly reflect the differences in learning effi-
ciency between different architectures. In Figs. 3(a) and 3(b),
we show that in the first task for most training epochs the
loss function is ordered as (S§) < (H) < (A) < (C) < (B). In
Figs. 3(c) and 3(d), we show that in the second task for
most training epochs the accuracy is ordered as (S) > (H) 2
(A) > (C) = (B). Both orders are consistent with the order of
size defined for different architectures. This means that for a
fixed target loss value or prediction accuracy, the architecture
with the largest size can reach this target with the smallest
training epoch. In this sense, we consider this architecture
as the most efficient one. Therefore, these examples support
our argument of the positive correlation between scrambling
ability and learning efficiency. Such a positive correlation also
holds when noises are introduced into the quantum circuits
[54].

We also note that this correlation is most pronounced
for intermediate training epochs and for intermediate depths
of the QNN. This is because size quantifies the scrambling
ability of architectures with generic parameters, but for suffi-
ciently long training, the QNN can always reach the optimal
parameters. Also, for the sufficiently deep QNN, all archi-
tectures with generic parameters can always lead to the most
scrambled operators, whose size reaches the saturation value,
as one can see from Fig. 2. Therefore, their differences in
learning efficiency also become less significant as one can see
by comparing Figs. 3(b) and 3(d) with 3(a) and 3(c).

Outlook. To the best of our knowledge, this Letter is an
attempt to understand how to design the most efficient archi-
tectures in the QNN. Our design principle is based on quantum
information scrambling in a quantum circuit, described by
the operator size growth. We propose a quantity to quantify
the scrambling ability of a QNN architecture, which is based
on how fast the size of a local operator grows under generic
unitary transformations generated by the quantum circuit. We
conjecture the positive correlation between this quantity and
the learning ability of the QNN, and the conjecture is con-
firmed by two typical learning tasks. Our discussion is so
far limited to the quantum version of fully connected neural
networks, and in the future, it can be generalized to other
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quantum versions of neural networks, such as quantum con-
volutional neural networks [24—-26], quantum recurrent neural
networks [27,28], and quantum autoencoders [29-31].
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