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The transition metal dichalcogenide 1T -TaS2 is attracting growing attention because of the formation of rich
density wave (DW) and superconducting transitions. However, the origin of the incommensurate DW state at the
highest temperature (∼550 K), which is “the parent state” of the rich physical phenomena, is still uncovered.
Here, we present a natural explanation for the triple-q incommensurate DW in 1T -TaS2 based on the first-
principles Hubbard model with on-site U . We apply the paramagnon interference mechanism that gives the
nematic order in Fe-based superconductors. The derived order parameter has very unique characters: (i) an
orbital-selective nature, and (ii) an unconventional sign reversal in both momentum and energy spaces. The
present Letter will be useful for understanding the rich physics in 1T -TaS2, 1T -VSe2, and other transition metal
dichalcogenides.
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Transition metal dichalcogenides (TMDs) provide a
promising platform for exotic low-dimensional electronic
states with strong electron correlation. Among the TMDs, 1T -
Ta(S, Se)2 exhibits very interesting electronic properties, such
as a metal-insulator transition with a star-of-David formation
as well as exotic superconductivity. The electronic states are
easily controlled by gate electric field carrier doping [1–3], by
changing the dimensionality [4–6], and by applying pressure
[7,8] and picosecond laser pulses [9].

In 1T -TaS2, at ambient pressure, an incommensurate
charge density wave (IC-CDW) appears as the highest tran-
sition temperature at T = TIC ≈ 550 K [10]. With decreasing
T , the IC-CDW changes to a nearly commensurate (NC)
CDW at TNC ≈ 350 K, and finally a star-of-David commen-
surate (C) CDW appears at TC ≈ 200 K successively. This
rich multistage CDW transition is suppressed under pressure,
and superconductivity emerges at TSC � 10 K. These exotic
ordered states emerge under the IC-CDW state. That is, the
IC-CDW is the parent electronic state of the rich physics in
1T -Ta(S, Se)2 [11–19]. Nonetheless, the understanding of the
origin and nature of the IC-CDW is very limited at present.

Although phonon-driven CDW inevitably causes a siz-
able lattice distortion (LD) in proportion to the transition
temperature, the LD below TIC is much smaller than that
below TC in 1T -TaS2 [20,21]. Considering the importance of
the electron correlation in 1T -TaS2, it is important to inves-
tigate the electron-correlation-driven IC-CDW mechanism,
although the derivation of “nonmagnetic IC-CDW order” is
a very difficult theoretical problem. In fact, magnetic order
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is always obtained based on Hubbard models with on-site
U within mean-field theories. Thus, one may consider the
existence of large off-site bare interactions [such as the
off-site Coulomb interaction and Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [22]] comparable to U . Therefore,
the study of IC-CDW is very important to uncover the real
Hamiltonian for 1T -TaS2, based on which multistage CDW
transition and superconductivity should be studied.

Recently, in various strongly correlated metals, electronic
nematic states have been actively studied by using beyond-
mean-field theories [23–39], especially the paramagnon-
interference mechanism of density wave orders [26–39].
Although the IC-CDW state in 1T -TaS2 is not nematic, it is
a promising challenge to apply the paramagnon-interference
mechanism to this long-standing problem.

In this Letter, we present a natural explanation for high-
TIC IC-CDW, which is “the parent electronic states” of the
exotic multistage CDW and superconductivity in 1T -TaS2.
The predicted IC-CDW is the correlation-driven “unconven-
tional CDW,” in which the CDW order parameter possesses
strange orbital momentum energy dependences, in analogy to
the unconventional superconductivity. The wave vectors of the
IC-CDW state coincide with the Fermi surface (FS) nesting
vectors q = q1, q2, q3 in Fig. 1(a) [40,41]. In addition, with
the aid of the Ginzburg-Landau (GL) theory, we reveal that
the triple-q CDW state is stabilized. This Letter provides the
necessary knowledge to resolve the mysterious C-CDW state
[42–49]. This theory will be useful for understanding rich
CDW states in 1T -TaS2, 1T -VSe2, and other TMDs.

First, we construct the first-principles 11-orbital tight-
binding model of 1T -TaS2, H0, composed of five 5d1 orbitals
of Ta ions and six 3p orbitals of S ions, using the WIEN2K and
WANNIER90 software. The d-electron eigenfunctions in the S6

octahedron under the trigonal distortion are composed of one
a1g orbital, two e′

g orbitals, and two eg orbitals. In this Letter,
we assign a1g, e′

g, and eg orbitals as orbitals 1, (2, 3), and
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FIG. 1. (a) Three electron-type FSs and the intra-FS nesting
vectors qn (n = 1, 2, 3). Here, q1 = (0.56π, 0). (b) Paramagnon in-
terference mechanism of charge/orbital order at wave vector q1.
(c) Momentum conservation law in the interference mechanism.

(4, 5) in order. The FSs are mainly composed of orbitals 1–3.
The wave functions of orbitals 1–5 and the model Hamiltonian
based on an experimental crystal structure [50] are given in the
Supplemental Material (SM) A [51].

We also introduce the on-site Coulomb interaction Hamil-
tonian HU . It is composed of the intraorbital (interorbital)
interaction U (U ′), and the exchange interaction J = (U −
U ′)/2. Below, we fix the ratio J/U = 0.1. (The obtained
results are similar for J/U < 0.2.) These interactions are in-
cluded into the spin (charge) channel interaction matrix �̂s(c);
see SM A [51] for details.

Here, we calculate the spin susceptibility using the random
phase approximation (RPA), χ̂ s(q) = χ̂0(q)[1̂ − �̂sχ̂0(q)]−1,
where q ≡ (q, ωl = 2πT l ). Here, χ̂0(q) is the irreducible sus-
ceptibility matrix in SM B [51]. The spin Stoner factor αS is
the maximum eigenvalue of �̂sχ̂0(q). The relation χ̂ s(q) ∝
(1 − αS )−1 is satisfied when q is the nesting vector, and the
magnetic order appears when αS = 1. The total spin suscep-
tibility χ s

tot (q) = ∑5
l,m=1 χ s

l,l;m,m(q) exhibits broad peaks at
q ≈ qi (i = 1–3), as we show in Fig. S2(a) in SM B [51]. The
components χ s

l,m;l,m(q) with 1 � l, m � 3 are large as shown
in Fig. S2, because the orbitals 1–3 are heavily entangled on
the FSs, as shown in Fig. S1.

However, the IC-CDW without magnetization cannot be
explained by the RPA because the charge Stoner factor is al-
ways smaller than αS in the RPA [26]. To explain the IC-CDW
state, we study the charge-channel susceptibility χDW(q) due
to the higher-order vertex corrections (VCs), based on the
density wave (DW) equation method [27,33]. (The VCs are
dropped in the RPA.) Figure 1(b) is an Aslamazov-Larkin
(AL) type VC for χDW(q), which is proportional to the con-
volution of paramagnons Cq ∼ ∑

p χ s(q1 + p)χ s(p). We will
show that the AL type VC induces the IC-CDW order at
q = qi (i = 1, 2, 3), since Cq is large at q = qi due to the
momentum conservation in Fig. 1(c).

Here, we introduce the linearized charge-channel DW
equation [27,33],

λq f L
q (k) = −T

N

∑

p,M1,M2

IL,M1
q (k, p)

×{G(p−)G(p+)}M1,M2 f M2
q (p), (1)

where k± ≡ k ± q/2, k ≡ (k, εn), and p ≡ (p, εm) (εn, εm

are fermion Matsubara frequencies). L ≡ (l, l ′) and Mi

FIG. 2. (a) Diagrammatic expression of the DW equation.
(b) Obtained eigenvalue of the DW equation λq for T = 40 meV and
αS = 0.85. λq shows the peaks at the intra-FS nesting vectors q = qn

(n = 1, 2, 3), consistently with experiments. Here, q1 = (0.56π, 0).
(c) Eigenvalue λqn

as a function of αS . It reaches unity for αS � 0.90.

represents the pair of d-orbital indices. λq is the eigenvalue
and f L

q (k) is the Hermite form factor. The former represents
the instability of the DW fluctuations at wave vector q, which
reaches unity when long-range order is established. The lat-
ter is the general charge-channel order parameter: f l,l ′

q (k) =∑
σ 〈c†

k+,l,σ ck−,l ′,σ 〉 − 〈c†
k+,l,σ ck−,l ′,σ 〉0. The DW equation (1)

is interpreted as the “charge-channel electron-hole pairing
equation” with the pairing interaction IL,M

q (k, p).
IL,M
q at q = 0 is given by the Ward identity

−δ�L(k)/δGM (k′) that is composed of one single-magnon
exchange Maki-Thompson (MT) term and two double-
magnon interference AL terms; see Fig. 2(a). Here, we
set T = 0.04 eV and U = 3.87 eV (αS = 0.85). [Since
d-electron weight in the density of states (DOS) at the
Fermi level is about 70%, U is reduced to ∼2.9 eV in
the d-orbital Hubbard model.] The analytic expressions of
the MT and AL terms are explained in SM C [51]. The AL
terms are proportional to the convolution of paramagnons Cq

so they become important when αS approaches unity [26,33].
Their essential role has been revealed by the functional
renormalization group (fRG) study in which higher-order
VCs are produced in an unbiased way [30,32]. In contrast, the
MT term is important for the superconducting gap equation
and for the transport phenomena [52].

Figure 2(b) shows the obtained eigenvalue of the DW
equation λq for T = 0.04 eV and αS = 0.85; we see that λq

has six peaks at the nesting vector (q = ±qn, n = 1, 2, 3). As
shown in Fig. 2(c), the eigenvalue λq1

increases with U , and
it exceeds αS and reaches unity for αS � 0.90. The suscep-
tibility of the DW is given as χDW(q) ∝ 1/(1 − λq). Thus,
the obtained results are consistent with the IC-CDW order at
q = ±qn without magnetization in 1T -TaS2.

We stress that TIC is enlarged by phonons in the case
where the form factor of the electron-phonon interaction is
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FIG. 3. (a) Real part of obtained form factor f 1,2
q1

(k), which is the
most significant component for the IC-CDW at q = q1. (b) Fourier
transformation of the form factor f 1,2

q1
(r). The signal at r = 0 repre-

sents the local orbital+charge order with respect to orbitals 1 and
2, and the signal at r 	= 0 exhibits the nonlocal bond order. The
strongest bond order is at r = (0, ±2) marked by pink dashed circles.

equal to the DW form factor in symmetry [53]. As dis-
cussed in Ref. [53], the “total DW susceptibility” is given
as χDW

tot (q) = χDW(q)/[1 − 2gχDW(q)], where g (>0) is the
phonon-induced attraction. In fact, in Fe-based superconduc-
tors, the nematic transition temperature is raised by ∼50 K
due to the B1g phonon mode. A similar phonon-assisted incre-
ment of TIC is expected in 1T -TaS2.

Here, we discuss the nature of the form factor at q = qi.
In Fig. 3(a), we show the obtained real parts of f 1,2

q1
(k) at

the lowest Matsubara frequency. It is the largest intraorbital
component of the form factor f̂q1

(k). The largest intraorbital
component is f 1,1

q1
(k), which is exhibited in Fig. S3(a) in SM B

[51]. Other important form factors f l,m
q1

(k) with 1 � l, m � 3
are shown in Figs. S3(b)–S3(e). The parity of the obtained
order (k ↔ −k) is even. The off-diagonal component f 1,2

q1
in-

duces the orbital polarization; (|1〉, E1) → (|1〉 + c|2〉, E1 +
�E ) and (|2〉, E2) → (|2〉 − c|1〉, E2 − �E ) with |c| � 1. It
also induces the finite charge order (δn) since E1 	= E2 in the
present model, as shown Fig. S1(b) in SM A [51]. Interest-
ingly, Fig. 3(a) has sign reversal, which is very different from
the conventional CDW with a nearly constant form factor. A
similar “sign reversing form factor” is observed in the nematic
phase in FeSe by angle-resolved photoemission spectroscopy
(ARPES) measurement [54], and it is satisfactorily explained
as the paramagnon interference mechanism [27].

Next, we examine the real-space DW structure with q =
qn. For this purpose, we perform the Fourier transformation
of the form factor,

f̃ l,m(ri, r j ) = Re
{

f l,m
qn

(ri − r j )e
iqn·(ri+r j )/2+iθ

}
, (2)

f l,m
qn

(r) = 1

N

∑

k

f l,m
qn

(k)eir·k, (3)

where ri is the real-space position of site i, and θ is the
arbitrary phase factor. Here, f̃ l,m(ri, ri ) represents the local
charge and/or orbital order at ri, and f̃ l,m(ri, r j ) with i 	= j is
the bond order (i.e., the modulation of the hopping integral)
between ri and r j . Figure 3(b) is the obtained f 1,2

q1
(r): Its

large magnitude at r = 0 represents the orbital order with
respect to |1〉 ± |2〉. In addition, f 1,2

q1
(r) shows large values

for r 	= 0. Thus, both orbital order and bond order coexist

FIG. 4. (a) Re f 1,2
q1

(k, εn) as a function of εn at k = (0, 0.5π ).
(b) Diagrammatic expression of the fourth-order term in the GL
equation. (c) Triple-q IC-CDW state in real space.

in the obtained IC-CDW state. The trace of the form factor,
f tr
q1

(r) ≡ ∑
l f l,l

q1
(r), is shown in Fig. S3(f) in SM B. The

large value of f tr
q1

(r) at r = 0 means the emergence of the
local charge order. To summarize, the IC-CDW in 1T -TaS2 is
identified as a combination of the charge/orbital/bond order
in the present study.

In the obtained IC-CDW state, essentially all elements of
the form factor f l,m

qn
in the a1g + e′

g orbital space (l, m = 1–3)
are large. This fact indicates that all a1g + e′

g orbital states
cooperatively magnify the eigenvalue. In order to identify the
major order parameter, we solve the DW equation (1) for
q = q1 by considering only f 1,2

q1
and f 2,1

q1
, by setting other

elements zero. In this case, the obtained form factor f 1,2
q1

(k)
is very similar to Fig. S3(a), and λq1

is reduced just to 86%
from Fig. 2(b). In contrast, the eigenvalue becomes very small
if only diagonal elements f l,l

q1
are considered. Therefore, the

off-diagonal form factor f 1,2
q1

is the main order parameter of
the IC-CDW state.

In the present mechanism, the orbital+charge DW order
due to f 1,2

q1
	= 0 originates from the interference among spin

fluctuations at q = q2 and q = q3, as depicted in Fig. 1(c).
Mathematically, f 1,2

q1
is derived from the kernel IL,M

q1
. How-

ever, local net charge order (δn) is energetically unfavorable
due to the mean-field term (∼Uδn) in the first term of
Fig. 2(a). In fact, in Fe-based and cuprate superconductors,
the bond and orbital orders with δn = 0 appear since they are
not prohibited by on-site U [27,32]. To understand why net
charge order is obtained in the 1T -TaS2 model, we examine
the energy dependence of the form factor. Figure 4(a) shows
the frequency (εn) dependence of Re f 1,2

q1
(k, εn) near the van

Hove singular point k = (0, 0.5π ). A similar sign reversal
appears in other elements of the form factor. This sign re-
versing form factor is very similar to the sign reversing gap
function in the s-wave superconductors with U 	= 0, known as
the “retardation effect” that drastically reduces the depairing
by U . Thus, net charge order in the IC-CDW state in 1T -TaS2,
which is very unusual in metals with large U , is stabilized
by the retardation effect. To summarize, the predicted “un-

L032053-3



HIRATA, YAMAKAWA, ONARI, AND KONTANI PHYSICAL REVIEW RESEARCH 3, L032053 (2021)

conventional CDW state” in 1T -TaS2 is characterized by the
orbital selective form factor with strange sign reversals in the
momentum and energy spaces.

Finally, we explain the “triple-q CDW state” in 1T -TaS2,
which is the uniform coexisting state of the three order
parameters with q = q1, q2, q3. For this purpose, we
construct a simple Ginzburg-Landau free energy for
the CDW order ��(k) = [η1 fq1

(k), η2 fq2
(k), η2 fq2

(k)],
where ηi is the real order parameter and fqi

(k) is the
normalized form factor. Then, the free energy is given by
F = a0(|η1|2 + |η2|2 + |η3|2) + b0(|η1|4 + |η2|4 + |η3|4) +
c0(|η1η2|2 + |η2η3|2 + |η3η1|2), where a0 ∝ T − TIC. The
fourth-order coefficients b0 and c0 can be calculated
by using the Green’s functions and form factors; see
Fig. 4(b). The derivation of a0, b0, and c0 in addition to
the third-order term F (3) = d0η1η2η3 is given in SM D [51].
Here, the single-q state and the triple-q state correspond
to (η1, η2, η3) = (η, 0, 0) and (η, η, η), respectively. It is
easy to show that the triple-q condition is c0/b0 < 2 if d0 is
negligible. As we show in SM D [51], the ratio c0/b0 = 1.1 is
obtained by using the form factors in the present study. [ f lm

q1

is given in Figs. 3(a) and S3.] Thus, the present IC-CDW state
satisfies the triple-q condition. In contrast, in the case of a
conventional CDW form factor with f l,m

qn
= δl,m, the obtained

ratio c0/b0 = 3.2 does not satisfy the triple-q condition; see
SM D [51]. Thus, the obtained unconventional form factor
due to the AL processes is indispensable to explain the
triple-q IC-CDW state in 1T -TaS2, which is schematically
shown in Fig. 4(c).

Here, we calculate the electronic states below TIC based
on the 4 × 4 cluster tight-binding model with finite DW or-
der given in Eq. (2). We make the wave vector of the DW
order q1 = (0.5π, 0) by introducing 20% hole doping. Al-
though the folded FS under the CDW state is very complex,
it can be “unfolded” to the original Brillouin zone (BZ) by
restoring the translational symmetry of the spectral function
[55]. Figures 5(a) and 5(b) show the obtained unfolded FS
under the single-q and triple-q CDW states, respectively, by
setting f max ≡ maxl,m,k{ f l,m

q1
(k)} = 88 meV. In the single-q1

case, a sizable Fermi arc appears in FS1,3 due to the band
folding by f̂q1

. In the same way, Fermi arc appears in FS1,2
(FS2,3) by f̂q2

( f̂q3
). The expected charge density modula-

tion by | f tr
q1

(r = 0)| ∼ 0.5 in Fig. S3(f) is δn ∼ [ f max| f tr
q1

(r =
0)|]N (0) ∼ 0.02.

Counterintuitively, the size of the Fermi arc in the triple-
q case in Fig. 5(b) is much reduced, where we set f max =
(88/

√
2) meV because b0 ≈ c0 in the present study; see SM D

[51]. To understand the reason, we consider the hybridization
between Fermi momenta k, k + q1, and k − q2 in Fig. 5(c).
In the FS reconstruction by two form factors f̂q1

and f̂q2
,

the state |k〉 hybridizes with |k + q1〉 and |k − q2〉 at the
same time. Since f̂q1

∼ f̂q2
, one eigenstate |k + q1〉 − |k −

q2〉 is unhybridized and therefore gapless. (For general hy-
bridization potentials, one of the three bands always remains

FIG. 5. (c) Unfolded FS in the single-q1 state and (d) that in the
triple-q state. (c) Reason for the FS recovery in the triple-q CDW,
which occurs when the state |k〉 hybridizes with |k + q1〉 and |k − q2〉
simultaneously. (d) DOS as a function of ε − EF. We introduced a
BCS-type cutoff ωc = 4 f max.

unhybridized.) For this reason, after the unfolding, the Fermi
arc structure around k + q1 and k − q2 in Fig. 5(a) is recov-
ered, as shown in Fig. 5(b). Also, the spectral recovery in
the unfolded band structure is explained in SM B [51]. This
hallmark in the triple-q CDW state could be observed by a
high-resolution ARPES study. Figure 5(d) shows the obtained
density of states (DOS). The pseudogap at EF in the triple-q
CDW is small by reflecting the short Fermi arc in Fig. 5(b).
This result is consistent with the experimental good metallic
state below TIC.

In summary, we succeeded in explaining the triple-q IC-
CDW in 1T -TaS2 in terms of the “unconventional CDW,” in
which the form factor has strange orbital momentum energy
dependences. Owing to the present paramagnon interference
mechanism, the triple-q IC-CDW state is naturally understood
based on a simple Hubbard model with on-site U , without
introducing any nonlocal interactions. The same mechanism
would be applicable for 1T -VSe2 and other TMDs. Based on
the knowledge on the IC-CDW state obtained by this study,
it would be useful to develop a Ginzburg-Landau theory to
understand the NC- and C-CDW states.
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