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In this work, we address the question whether a sufficiently deep quantum neural network can approximate
a target function as accurate as possible. We start with typical physical situations that the target functions are
physical observables, and then we extend our discussion to situations that the learning targets are not directly
physical observables, but can be expressed as physical observables in an enlarged Hilbert space with multiple
replicas, such as the Loschmidt echo and the Rényi entropy. The main finding is that an accurate approximation
is possible only when all the input wave functions in the dataset do not span the entire Hilbert space that the
quantum circuit acts on, and more precisely, the Hilbert space dimension of the former has to be less than half of
the Hilbert space dimension of the latter. In some cases, this requirement can be satisfied automatically because
of the intrinsic properties of the dataset, for instance, when the input wave function has to be symmetric between
different replicas. And if this requirement cannot be satisfied by the dataset, we show that the expressivity
capabilities can be restored by adding one ancillary qubit at which the wave function is always fixed at input.
Our studies point toward establishing a quantum neural network analogy of the universal approximation theorem
that lays the foundation for expressivity of classical neural networks.
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I. INTRODUCTION

Neural networks lie at the center of the recent third wave
of artificial intelligence. The universal approximation theorem
plays an essential role in the development of neural net-
works, which states that sufficiently wide or sufficiently deep
neural networks can approximate a well-behaved function
on d-dimensional Euclidean space RY with arbitrary accu-
racy [1]. This theorem lays the foundation of the expressive
capability of neural networks and serves as bases for the
successes of neural network applications. Quantum neural
networks (QNNSs) are quantum generalizations of classical
feedforward neural networks on future quantum computers
[2-5], which lie at the center of the recent development of the
quantum machine learning, including quantum unsupervised
learning [6—11], quantum generalization of neural networks
[12-21], quantum circuit structures developed by classical
neural networks [22-29], and information theory in quantum
neural networks [30,31]. However, expressivity of QNNs has
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not been fully explored and there are only few works in this
direction [13,32].

Here we consider the quantum generalizations of fully
connected neural networks, which contain quantum wave
functions of n-qubit states as inputs, parameterized quantum
circuits made of local quantum gates, and measurements on
readout qubits leading to labels. The parameters in the quan-
tum circuit will be optimized during training that yields the
best approximation of the learning target. Since the Hilbert
space dimension of an n-qubit state is 2", the wave function
can encode information of d = 2" complex numbers, up to a
normalization condition and a global phase. In the following,
concerning the effects of the depth and the width on the ex-
pressive capability of a QNN, we address the question whether
a sufficiently deep QNN and a sufficiently wide QNN can
express any well-behaved function in the C? space.

To be concrete, here we consider a number of typical learn-
ing tasks in the quantum physics problem, where the learning
targets include (i) physical observables; (ii) the Loschmidt
echo, and (iii) the Rényi entropy. We point out that, in contrast
to the universal approximation theorem for classical neural
networks, a QNN cannot express a general well-behaved func-
tion with arbitrary accuracy even though the QNN is made
sufficiently deep. However, we show in this work that, by
enlarging the Hilbert space dimension of the input state, this
problem can be solved, and the expressivity can be signifi-
cantly improved or can even be made as accurate as possible.
Enlarging the Hilbert space dimension effectively increases
the width of the QNN. This can be achieved either by adding
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an ancillary qubit in the input and (or) by duplicating replicas
of the input wave functions. These results point toward an
analogy of the universal approximation theorem for QNN.

II. RESULTS

We consider a dataset denoted as {(|¥!),y)}, {l =
1,..., Np}, where [ labels data and Np is the total number
of data in the dataset. Each input quantum state |y') can
be written as |y') = )" ¢! |m), where {|m)} is a complete
set of 2" bases of the n-qubit Hilbert space, and {c,ln} are 2"
normalized complex numbers with a fixed total phase. Usually
the information in the label is much more condensed than the
information of the entire input, therefore, here we consider
that the label is simply a number y' € [—1, 1]. To motivate this
result, let us first start with a simpler situation that the label is
a physical observable y' = (y!|O|y!), where O is a hermitian
operator on n-qubit quantum state [33]. This is equivalent to
say that y' is a quadratic function of these complex numbers as
V= Ommclic!,, where Oy = OF,, = (m|O|m’). The
QNN we considered is shown in Fig. 1(a).

A unitary I/ is made of a number of two-qubit gates. We
use fI;; to denote a two-qubit gate acting on qubit-i and -j.
Each i1;; is parameterized as

kA
ﬁij = eZko‘i,‘gk7 (1)

where g, are SU(4) generators and ozf‘- are parameters. In a
QNN, these parameters need to be determined by training. We
use the brick wall architecture to arrange these #;; to form U.
To make sure that the QNN can realize any kinds of unitary
transformations, we set the circuit depth sufficiently large. The
entire quantum circuit U acts on the input wave function |y
and then we perform a measurement, say oy, on the readout
qubit-r.
The measurement operator is therefore denoted by

M=6/® - -®6/® - -®8), 2)

where the superscription i = 1,..., N denotes the qubits,
and o, denotes the identity matrix. The measurement of the
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FIG. 1. (a) Conventional QNN structure. (b) QNN with one
ancillary qubit. (c) QNN with two duplicated replicas of inputs.
(d) QNN with two duplicated replicas of input and one ancillary
qubit. Here |¢) are input wave function in the dataset, U denotes
the unitary rotation by quantum circuit, and the detector denotes the
readout qubit. The red qubit with label a denotes the ancillary qubit
at which the wave function is always fixed.

quantum circuits leads to
v =Wl 3)
The loss function is taken as £ = NLD > |5 — y'|?, which

enforces ' to be y* for all |1/'). And we use the Adams method
to optimize the coefficient of the generators of each two-qubit
gate during training [31].

Here one thing that should be noticed is whether the input
wave functions span the entire Hilbert space, which requires
Np > 2". Here Np denotes the total number of data in the
training set and 2" is the dimension of the Hilbert space
containing n qubits. If Np < 2", all the input wave functions
in the dataset only occupy a subset of the entire Hilbert space.
In some cases, even when Np > 2", if the wave functions have
certain structures, for instance, if the wave functions are taken
as ground states of certain Hamiltonians [30,31], they also
do not span the entire Hilbert space. However, if Np > 2"
and the input wave functions are general enough, they span
the entire Hilbert space. In this case, in order for all yl to
faithfully represent y', one requires O = UMU. However,
this is not possible for a general operator O. Because M is
a direct product of the &, operator on the read-out qubit-r and
the n — 1 identity operators on the rest qubits, the eigenval-
ues of M consist 2"~! number of —1 and equal number of
+1, and any unitary transformation keeps these eigenvalues
invariant. That is to say, even though one can make the QNN
deep enough to present a generic unitary U in the SU(2")
group, it always cannot satisfy O = {*M{. This argument
can be easily generalized to situations that measurements are
performed in more than one readout qubit.

A. Ancillary qubit

Now we show this problem can be solved by adding one
ancillary qubit. Instead of |y/!), we now add one ancillary
qubit and the input wave function is set as |o) ® [¥!), where
the input state at the ancillary qubit is always fixed as |«).
The unitary I/ now acts on the entire 2! -dimensional Hilbert
space, and the measurement is still performed in the readout
qubit and now

M=6{®6® 06 ® 08, @)
where the superscript a denotes the ancillary qubit. The struc-

ture is shown in Fig. 1(b). Now we will show that for any given

|or), we can always construct an operator O, acting on the 2!
Hilbert space, which satisfies the following two requirements.

The first is that the operator O can generate the observables as
(@] ® (¥!10le) ® [¥!) = (Y!|O]y!) =y, and the second is
that the eigenvalues of the operator O consist of 2" number
of +1 and equal number of —1 and are consistent to that

of the measurement operator M. Without loss of general-
ity, we choose |a) = |1), it can be shown that O chosen as
6 ® O+ 6l @VI— 0? satisfies these two conditions. First,

(M ® @101 ® 19
= (MEA MW 01" + (FeL M) (! VT — Oy
= (' 0ly") =y 5
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FIG. 2. The loss function as a function of the training epoch. The solid lines and the dashed lines are the loss on the training dataset and the
validation dataset, respectively. The target functions are, respectively, the magnetization (a), the Loschmidt echo (b), the second Rényi entropy
(c) and the third Rényi entropy (d). For the input wave function |y in the dataset, the number of qubit n = 3 for (a), and n = 2 for (b), (c) and
(d). [35]. For the Rényi entropy discussed in (c) and (d), one qubit is taken as A and the other qubits are taken as B. In the legends, S, D and
T, respectively, denote single, double, and triple replicas as input for quantum circuit, and +A means that one ancillary qubit is added. Here
we use the brick wall architecture made of two-qubit gate for quantum circuit.

Secondly, suppose {|m)} is a set of eigenbases in the 2"-
dimensional Hilbert space (without the ancillary qubit) that
O|m) = O,,|m), and under these bases, O can be written as
Y (680, + 68/1 — 02)m)(m|. Therefore, its eigenvalue
consists of 2" number of +1 and equal number of —1, which
equal the eigenvalues of operator M. When such an operator
O is found, it is possible to find a unitary ¢/ in the 2"*'-
dimensional space, such that Zfl*]lillfl = 5, and then,

(@ ® (¥'10la) ® [¥') =
(6)

This shows, with the help of one ancillary qubit, the QNN can
accurately express the functional mapping y' = (!|0]y!) for
all generic quantum states |/).

In Fig. 2(a), we show that the loss function for learning
total magnetization of generic wave functions in a three-qubit
quantum state, with O chosen as > azf /n. The red lines and
the purple lines are results for QNN with structures shown
in Figs. 1(a) and 1(b), respectively. The structure shown in
Fig. 1(b) has one more ancillary qubit compared with the
structure shown in Fig. 1(a). One can see that, if without the
ancillary qubit, the loss clearly saturates to a finite value even
for sufficient large training epochs. By adding the ancillary
qubit, the loss is significantly reduced and approaches to zero.

(o @ (W MU|) ® |y') =

B. General rule

The lesson from above example is that the learning accu-
racy can be significantly improved by enlarging the Hilbert
space dimension of the input for the quantum circuit. Here we
generalize this lesson to a general statement. Suppose H is
the total Hilbert space of input for quantum circuit, Dim(H)
denotes its Hilbert space dimension. Let us consider H =
Ho P H1, and suppose all input wave functions in the dataset
only reside in Ho. The statement is that, vyhen Dim(H,) >
Dim(H,), we can always find an operator O acting on entire
Hilbert space ‘H, such that, (i) for any wave function |1//) in
Ho, (1//H|0|1p7{) (|01, (ii) the eigenvalues of O con-
sists of an equal number of +1 and —1, which are the same
as the eigenvalue of the measurement operator. Then, it is

possible to find a proper U such that O = U MU

The construction of O is quite similar as the ancillary
qubit example. Let us first consider the situation Dim(H;) =
Dim(H,y), and suppose {|m)} is a set of eigenbases in Hy with
O|m) = O,,|m). We can then define a set of bases {|m)} in
H, that have one-to-one correspondence with the bases in
set {|m)}, say, each |m) corresponds to a |m). Then, we can

construct O as

0= Opn(im)(ml -

1 — O3 (Im)(m| + |m)(ml).

|7 (1)

@)

It is easy to see that O constructed as Eq. (7) satisfies the
above two requirements. This can be extended to situations
Dim(#;) > Dim(H,). In this case, H, is larger than the space

spanned by {|%)}, and we choose O to be diagonal with equal
number of +1 and —1 eigenvalues in the residual Hilbert
space. The ancillary qubit is a specific example of this gen-
eral statement, where H, consists states |1) ® |v) and H,
consists states ||) ® |¢), where |¢) denotes the input wave
functions in the dataset. We have proved that if the condition
Dim(H)/2 > Dim(#H,) is fulfilled, then a learnable observ-
able can be constructed. However, we shall also note that this
condition is sufficient but not necessary. For certain special
cases, if a specific target observable O happens to share the
same set of eigenvalues as the measurement operator M, the
measurement operator can be rotated to the target observable,
such that UTMU = O even without requiring Dim(#)/2 >
Dim(H,) condition.

C. Replica

Now we move to consider the learning tasks such as the
Loschmidt echo and the Rényi entropy. The Loschmidt echo
is an interference between two wave functions, starting from
the same input wave function [y!) and evolved by two dif-
ferent Hamiltonians H, and H, for time duration ¢, that is,
y! = (¢! |eHet =Bt |11y |2, Here we denote W = eiflal =it
and for most Hamiltonians, W is a sufficiently chaotic oper-
ator for long enough ¢ [34]. In Fig. 2(b), adopting the QNN
in Figs. 1(a) and 1(b) as before, we show the loss function
for learning the Loschmidt echo. We can see that even with
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an ancillary qubit, the loss still saturates to a finite nonzero
value even with sufficient long training epochs. The reason is
also quite obvious. It is because for the Loschmidt echo, the
label y is a quartic function of {c,,}, while y given the QNN
through Eq. (3) is only a quadratic function of {c,,}. Thus, to
accurately capture the learning target such as the Loschmidt
echo, nonlinearity is necessary.

There are also various discussions on adding nonlinearity
in QNN. Here we show that duplicating replica of the input
states is another way to incorporate the nonlinearity. In fact, it
is a quite efficient way in this case, which can be easily seen
from

Y= [ WD 1P = W e (W Wiy @ |y
=Wl W' W oWy v
='W W oW +WeoWHiy) ey )

Suppose the input wave function is a n-qubit state, and when
we double the input to a 2n-qubit state, the Loschmidt echo
returns to a quadratic function in the enlarged Hilbert space.
In the doubled space, the Loschmidt echo becomes a phys-
ical observable with O = (W@ W +W @ W)/2 being a
Hermitian operator. The fact that a mth-degree polynomial
function of the elements of the density matrix o can be written
as the expectation value of an observable on m copies of p has
also been discussed in Ref. [36].

We can also consider another example of the Rényi en-
tropy. For an input wave function |i/!), by partially tracing
out a subsystem 3, the reduced density matrix for remaining
subsystem A is given by p 4 = Trz|¥') (¥'|. The output of the
QNN is in the range [—1, 1], while the mth order Rényi en-
tropy is defined as Sf{”) = (log Trp"})/(1 — m). Consequently,
we choose the label y as y' = exp((1 —m)SY") = Trp;. We
show in Fig. 2(c) the loss function for learning the second
Rényi entropy. Here we consider the two-qubit system, one
qubit is taken as .A and the other qubits are taken as B. Similar
as the Loschmidt echo case, without replica the loss still
saturates to a finite nonzero value at sufficient long training
epochs even with an ancillary qubit. Similarly, for considering
the second Rényi entropy, let us first study

Y =Trpy = W WX Isly) @ '), (9

where X4 is the swap operator acting on subsystem A be-
tween two replicas, and Zp is the identity operator acting on
subsystem 5 between two replicas. Then, the second Rényi
entropy, defined as — log y’, can be related to physical observ-
able in the doubled Hilbert space. This can also be generalized
to the higher order Rényi entropy, and in general, for consid-
ering the mth order Rényi entropy, we study

Y =Trp% = (Y 1®" X4 ® Iply')®", (10)

for which we need m replicas, and the mth order Rényi entropy
is defined as (logy')/(1 — m).

Hence, we double the size of the input for the quantum
circuit and duplicate two replicas of the input wave functions
as the input. The unitary ¢/ then acts on the total Hilbert
space with Dim(H) = 22" with the same measurement on the
readout qubit as discussed above. The structure is shown in
Fig. 1(c). Now the question is that, with the enlarged Hilbert

space, whether we still need an ancillary qubit, as shown in
Fig. 1(d). Note that the input wave functions are all subjected
to a constraint that they have to be symmetric between two
replicas, therefore, these wave functions do not span all 22n
dimensional Hilbert space. Let us denote such symmetric
Hilbert space as Hy, and with the general statement we dis-
cussed above, it is important to analyze whether Dim() is
larger than the half of Dim(). It can be shown that

2M(2n — 1)
2

where the first term in the middle counts the dimension of
the sub-Hilbert space spanned by |m) ® |m), and the second
term counts the dimension of the sub-Hilbert space spanned
by (Im) ® |m') + |m') ® |m))/~/2. It is obvious that Dim(#)
is larger than Dim(H)/2. In other word, because Dim(H,;) <
Dim(#H,), one st}ll needs the ancillary qubit in order to con-

struct a proper O. This can be seen from Figs. 2(b) and 2(c)
for the cases of learning the Loschmidt echo and the sec-
ond Rényi entropy, respectively. Especially, for learning the
second Rényi entropy, one can see that the loss can still be
reduced by adding an ancillary qubit even with doubled input.

The situation becomes different when one considers the
tripled Hilbert space, for instance, when considering the third
Rényi entropy. For the tripled Hilbert space, if we still require
the wave functions to be symmetric between three replicas,
similar as the analyzation that leads to Eq. (11), we obtain
that the Hilbert space dimension Dim(7) is given by

L 2@ - D -2)

Dim(H) = 2" + =2t

Dim(Ho) = 2" +2"(2" — 1) - (12)
— 1(23n71 43 x 22/171 4 2n) < 123n
3 )
1
= 5 Dim(#). (13)

Therefore, in this case, the requirement for finding a proper

O can be satisfied without adding an ancila qubit. This can
be seen in Fig. 2(d). One can see with two replicas, the
loss cannot be reduced to a sufficient small value, for both
cases without and with the ancila qubit. However, when there
are three replicas, even without an ancila qubit, the loss can
already drop to be sufficiently close to zero. And for a suf-
ficiently long training epoch, the losses for QNN with or
without ancila qubit approach the same value. This shows that
the ancila qubit is not necessary in this case when there are
three replicas. And the same conclusion can be generalized to
situations with more than three replicas.

III. DISCUSSION

In this work, we consider the expressivity of QNN for
learning targets that are observables (i.e., expectations of a
hermitian operator) of input wave functions. These also in-
clude the situations that the learning targets are not observable
of input wave functions, but can be expressed as observables
in the enlarged Hilbert space with multiple replicas of input
wave functions, such as the Loschmidt echo and the Rényi
entropy. The main finding of this work is that such target can
be expressed accurately only when the input wave functions in
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all dataset only occupy a subset H of the entire Hilbert space
‘H that the quantum circuit acts on, especially, we require
the condition Dim(#y) < Dim(?{)/2. An accurate approx-
imation of the learning target is possible for a sufficiently
deep QNN either when this condition is satisfied naturally by
the dataset, or when the condition is enforced by artificially
adding an ancillary qubit.

Our discussions also provide a general recipe for improv-
ing the learning accuracy, provided that no prior knowledge of
such learning task is known. First, one can first try to add an
ancillary quibit. If not satisfactory, then one can duplicate two
replicas with an ancillary qubit. Finally, if still not satisfied,
one can add more replicas, and when the number of replica
equals or is greater than three, the ancillary qubit is no longer
needed. However, we shall also note that increasing the num-
ber of replicas cause serious computational resources and this
method cannot be extended to a large number of replicase.
This limits this way of adding nonlinearity and for situations
that the nonlinearity is too strong, this method should be
combined with other ways of adding nonlinearity.

In the future, we can consider a number of generalizations
of such studies. First, here we focus on learning targets that are
observables or generalized observables, and we can consider
more sophisticated learning targets. Secondly, here we focus
on regression tasks, and we can consider classification tasks.
Thirdly, here we focus on the fully connected architectures,
and we can consider other architectures of QNN, such as the
convolutional QNN [25-27] and the recurrent QNN [28,29].
We hope such studies can lead to analogy of the universal
approximation theorem for QNN and lay the foundation of
the expressive power of QNN.
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