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Coherent forward scattering peak and multifractality
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It has recently been shown that interference effects in disordered systems give rise to two nontrivial structures:
the coherent backscattering (CBS) peak, a well-known signature of interference effects in the presence of
disorder, and the coherent forward scattering (CFS) peak, which emerges when Anderson localization sets in. We
study here the CFS effect in the presence of quantum multifractality, a fundamental property of several systems,
such as the Anderson model at the metal-insulator transition. We focus on Floquet systems, and find that the
CFS peak shape and its peak height dynamics are generically controlled by the multifractal dimensions D1 and
D2, and by the spectral form factor. We check our results using a one-dimensional Floquet system whose states
have multifractal properties controlled by a single parameter. Our predictions are fully confirmed by numerical
simulations and analytic perturbation expansions on this model. Our results, which we believe to be generic,
provide an original and direct way to detect and characterize multifractality in experimental systems.
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Introduction. In the field of quantum transport, the coher-
ent backscattering (CBS) effect is a well-known signature of
interference effects that emerges at a time of the order of
the elastic scattering time, and survives configuration average
in time-reversal symmetric disordered systems [1–4]. It is
visible as a peak in momentum space for spatially disordered
systems and in position space for the type of Floquet systems
that we consider in the present Letter [5]. Recently, it was
discovered that, in the presence of Anderson localization,
CBS was further accompanied by the emergence of a co-
herent forward scattering (CFS) peak (which actually arises
even without time-reversal symmetry), leading to a twin-peak
structure breaking ergodicity in the long-time limit [6].

The CFS peak is in fact a smoking gun of strong local-
ization [5–12]. In particular, it was shown [11] that it could
be used to monitor the metal-insulator Anderson transition,
as it vanishes in the metallic phase and is fully developed
in the localized regime. It was even suggested [11] that
at the transition, where there exist nonergodic delocalized
states with multifractal properties [13–15] (i.e., scale-invariant
fluctuations characterized by a continuous set of fractal di-
mensions Dq) the CFS peak might embody these multifractal
properties. In this Letter, we consider the particular case of
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Floquet systems where localization and/or multifractality oc-
cur in momentum space. This type of dynamical systems is
extremely convenient for extensive numerical studies and has
been already implemented in several experiments (see, e.g.,
Refs. [16,17]). For these kicked systems, we demonstrate that
the height and shape of the CFS peak (a dynamical observable
in position space) give direct and remarkable access to the
multifractal dimensions D1 and D2 (a static property of the
Floquet eigenstates in momentum space). Our general pre-
dictions are very well corroborated by numerical simulations
and analytical perturbative expansions on the Ruijsenaars-
Schneider model [18], a dynamical system where all states
have multifractal properties controlled by a single parameter.
Since our results are based on a very general theoretical frame-
work and derived using well-supported arguments, we believe
that they should apply to any critical disordered system.

This work paves the way to a robust experimental study of
quantum multifractality, that remains very hard to observe de-
spite huge theoretical interest (see the pioneering experiments
in a quantum setting [19,20] and in a classical setting [21]).
Indeed, the CFS peak is a direct experimental observable that
has recently been observed with cold atom experiments in the
localized regime [22].

The Ruijsenaars-Schneider (RS) model. The RS model
[18] is a variant of the kicked rotor [23,24], a paradigmatic
model of quantum chaos which exhibits Anderson local-
ization in momentum space. It is a one-dimensional (1D)
Floquet system whose corresponding Hamiltonian reads H =
p2/2 − 2πa[x(mod 2π )]

∑∞
n=−∞ δ(t − n), featuring a peri-

odically kicked sawtooth potential with strength 2πa. The
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difference with the kicked rotor comes from the spatial dis-
continuities of the sawtooth potential, inducing long-range
hopping between momentum basis states, which breaks stan-
dard exponential localization [13,25–29]. Saliently, the RS
model displays multifractal eigenstates [30–33]. The dynam-
ics of such periodically kicked systems is captured by the
Floquet operator U over one period, whose eigenvectors
|ϕα〉 are associated with quasienergies ωα ∈ [−π, π [, so that
Ut |ϕα〉 = eiωαt |ϕα〉. For the RS model, U can be written ex-
plicitly in the momentum basis |p〉 (with integer p, 0 � p �
N − 1) as

〈p|U |p′〉 = Upp′ = eiφp

N

1 − e2π ia

1 − e2π i(p′−p+a)/N
, (1)

where the dynamical phases φp can be taken as randomly
distributed over [0, 2π [. In the following, we will denote dis-
order average by bracketed terms 〈(· · · )〉. This random matrix
ensemble has been intensively studied in many branches of
theoretical physics and mathematics [18,34–42]. In particular,
it breaks time-reversal symmetry, so that the usual CBS effect
is destroyed [5,22], and its spectrum displays intermediate
statistics [34].

It is important to recall that the eigenstates of RS are
multifractal in momentum space [31,32]. This is characterized
by the anomalous scaling of the disorder-averaged moments
of the wave functions, 〈∑p |ϕα (p)|2q〉 ∼ N−Dq (q−1), where
ϕα (p) ≡ 〈p|ϕα〉 and Dq are the multifractal dimensions. In the
RS model, the parameter a controls the nature of the eigen-
states [31]: When a goes from 0 to 1, the system goes from
the regime of strong multifractality (Dq 	 1) to the regime of
weak multifractality (Dq ∼ 1), making it an ideal test bed for
our theory.

The CFS contrast. The RS model above is only an example
of a more general class of systems which can be described
by an evolution operator U with Floquet states localized or
multifractal in momentum space. For such systems, the CFS
interference phenomenon takes place in position space [5]. We
introduce the position basis |x〉 (x = 2πn/N , 0 � n � N − 1)
which is related to the momentum basis |p〉 defined above by
the Fourier transform 〈x|p〉 = exp(ipx)/

√
N .

In the following, we thus consider the time evolution of the
system starting from some initial state |x0〉 in position space
and analyze the disorder-averaged position distribution after t
iterations of the map U , namely 〈|〈x|Ut |x0〉|2〉. After an initial
transient regime, it features a peak around the initial value
x = x0, the CFS peak. To single out this interference effect re-
sisting disorder average, we introduce the contrast �(x, x0, t )
as the relative difference between the quantum probability
distribution 〈|〈x|Ut |x0〉|2 and the classical, interference-free,
long-time limit 1/N :

�(x, x0, t ) = 〈|〈x|Ut |x0〉|2〉 − 1/N

1/N
. (2)

The time behavior of the contrast is illustrated in Fig. 1 in the
case of the RS model. A peak emerges at short times around
x = x0, its height oscillates (left projection in Fig. 1), and
eventually stabilizes (right projection).

FIG. 1. Contrast of the CFS peak, Eq. (2), with scaled time
τ = 2πt/N , for the RS model with N = 4096 and a = 0.322. Left
projection: Height of the CFS peak. The theoretical prediction (red
solid line) [see text below Eq. (17)] matches perfectly the numerical
data (black solid line). Right projection: Shape of the CFS peak at
τ = 150. The black solid line represents the numerical data and the
blue solid line is Eq. (9) rescaled (see text).

Expanding over eigenstates of U , the contrast (2) writes

�(x, x0, t ) = N
∑
αβ

〈eiωαβ tϕ∗
α (x)ϕα (x0)ϕ∗

β (x0)ϕβ (x)〉 − 1,

(3)
where ϕα (x) ≡ 〈x|ϕα〉 and ωαβ = [ωα − ωβ](mod 2π ) ∈
[−π, π ]. Note that in Eq. (3), t can be considered a continuous
variable: In the following we shall therefore resort to the usual
Fourier transform rather than the discrete one.

At long times, only the diagonal part α = β in Eq. (3)
survives, giving, for fixed system size N , the stationary limit

�∞(x, x0) = N
∑

α

〈|ϕα (x)|2|ϕα (x0)|2〉 − 1. (4)

The time dependence of �(x, x0, t ) is fully encapsulated
in the off-diagonal terms α �= β. The function F (x, x0, t ) =
�(x, x0, t ) − �∞(x, x0) that governs the time dynamics of the
contrast is given by the inverse Fourier transform of

F̂ (x, x0, ω) = 2πN
∑
α �=β

〈δ(ω− ωαβ )ϕ∗
α (x)ϕα (x0)ϕ∗

β (x0)ϕβ (x)〉.

(5)
In what follows, we will first analyze the stationary (i.e.,
t → ∞) contrast �∞(x, x0) for finite N , and discuss its peak
value at x = x0 and its shape around x0. Then, we will discuss
the time dynamics of the peak at x = x0, given by F (x0, x0, t ),
and show that the limits of large times t and large system sizes
N do not commute. These stationary distribution and time
dynamics are illustrated in Fig. 1 for the RS model.

At this point, our strategy is to connect these dynamical
quantities expressed in x space to the known multifractal
properties of the Floquet eigenstates in p space. For this, we
use the spatial Fourier transform and introduce the four-point
correlator in momentum space:

Cαβ (p1, p′
1, p2, p′

2) = 〈ϕα (p1)ϕ∗
α (p′

1)ϕβ (p2)ϕ∗
β (p′

2)〉. (6)
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FIG. 2. Contrast of the CFS peak at infinite time. (a) Finite-size scaling of �∞ for different values of a. The dashed lines correspond to the
nonlinear fit 1 − �∞ = αN−D�∞

2 with parameters α and D�∞
2 . (b) Comparison between the values of D2 extracted from a finite-size scaling of

�∞ in (a) and from the inverse participation ratio (IPR) defined by the right-hand side of Eq. (8). The two coincide very well. When not visible,
error bars are smaller than the symbol size. (c) CFS peak contrast for the values of a used in (a), with N = 4096. Solid lines are numerical
data, black dashed lines are Eq. (9) rescaled to minimize the difference with numerics on a spatial range �x = 0.5 around x = x0 (excluding
the point at x0), and the black dotted line is Eq. (10). (d) Zoom-in of (c) around x0 and smoothed over δx = 0.007.

As is well known, the scaling properties of the correlator
(6) encapsulate the multifractal dimensions [13]. Additionally,
following the rationale behind random matrix theory (RMT),
we assume that phases and norms of each wave function in the
correlator Cαβ are independent random variables, so that only
terms where phase factors cancel survive the disorder average.

Stationary contrast and D2. The stationary contrast
�∞(x, x0) defined in Eq. (4) can be expanded in the mo-
mentum basis as 1

N

∑
α

∑
p1 p′

1 p2 p′
2
Cαα ei[(p1−p′

1 )x+(p2−p′
2 )x0] −

1. Under the RMT assumption, the only nonvanishing terms
left after disorder average are those with p1 = p′

1, p2 =
p′

2 and p1 = p′
2, p2 = p′

1. Taking care of double count-
ing (p1 = p′

2 = p2 = p′
1) and making use of normalization

[
∑

p |ϕα (p)|2 = 1], we find

�∞(x, x0) = 1

N

∑
α

∑
p1 �=p2

〈|ϕα (p1)|2|ϕα (p2)|2〉ei(p1−p2 )(x−x0 ).

(7)
The contrast at the tip of the peak, �∞ ≡ �∞(x0, x0), can be
evaluated by rewriting Eq. (7) for x = x0 as a sum over p1, p2

and subtracting its diagonal part. In contrast with systems with
a mobility edge such as the Anderson model, all eigenvectors
here have the same multifractal properties. The sum over α,
which is an average over eigenvectors, is then easily taken
care of and we find

�∞ − 1 = −
∑

p

〈|ϕα (p)|4〉 ∝ N−D2 , (8)

where ϕα (p) is an arbitrary eigenvector. The right-hand side
of (8) is then obtained using the well-known multifractal
scaling of the inverse participation ratio (IPR) [13]. Thus,
remarkably, the CFS contrast is directly related to the mul-
tifractal dimension D2. The prediction Eq. (8) is very well
verified in our model (see Fig. 2). The contrast around the
peak can be obtained in the same manner from Eq. (7) by
using the multifractal scaling of the correlation function,
〈|ϕα (p1)|2|ϕα (p2)|2〉 ∼ |p1 − p2|D2−1/ND2+1 [43,44], which

yields

�∞(x, x0) ∝ 1

N

N−1∑
p=1

cos[p(x0 − x)]
(

1 − p

N

)( p

N

)D2−1
. (9)

Here again, this general prediction directly links �∞(x, x0) to
the multifractal dimension D2. Note that Eq. (9) can actually
be seen as a power-law decay ∼|x − x0|−D2 for x close to x0

[see Supplemental Material (SM) [45]]. As shown in Fig. 2,
Eq. (9) is also in very good agreement with numerical results
for the RS model and reproduces quite well the spatial profile
of the contrast in the region around x = x0.

Remarkably, the behavior Eq. (8) can even be checked
analytically in the RS model. Indeed, using a perturbation
expansion at finite N in the regime of strong multifractality
a 	 1, we get at first order in a [46] the expressions D2 = a
and

�∞(x, x0) = 2D2

N−1∑
p=1

π
(
1 − p

N

)
N sin pπ

N

sin
[

p
(

x + π

N

)]

× sin
[

p
(

x0 + π

N

)]
, (10)

which for x = x0 leads to �∞ ∼ D2 log N . Since 1 −
γ N−D2 ∼ D2 log N for a 	 1, Eq. (8) is verified analytically
at first order in a for the RS model. Note that the dip at
x = −x0 in Fig. 2(c), which is an idiosyncrasy of our model,
is well described by Eq. (10) (see Ref. [46] for details).

In the stationary limit t → ∞ taken at finite system size N ,
the spatial profile of the CFS peak for a system with multifrac-
tal eigenstates is thus controlled by the multifractal dimension
D2. In particular, Eq. (8) shows that the peak height value
�∞ = 1 that was found in Refs. [7,8,10,11] for disordered
models and in Ref. [5] for the kicked rotor in the localized
regime when N � ξ � 1, is reached here with an algebraic
finite-size correction N−D2 , a signature of multifractality.
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Time dynamics of the CFS peak height and D1. We now
aim at describing the temporal evolution of the CFS peak
height �(x0, x0, t ) = �∞ + F (x0, x0, t ). Starting from Eq. (5)
and assuming eigenvector and eigenvalue decorrelation under
disorder average when x = x0, we get

F̂ (x0, x0, ω) = 2π

N
R̂(ω)

∑
α �=β

〈δ(ω − ωαβ )〉, (11)

where the correlator R̂(ω) = N2〈|ϕα (x0)|2|ϕβ (x0)|2〉ωαβ=ω

only involves eigenfunctions whose quasienergies are exactly
separated by ω and does not depend on the labels α and β

because of disorder averaging. This implies that we can write
the contrast as a convolution product,

�(x0, x0, t ) = �∞ + [(KN − 1) ⊗ R](t ), (12)

where R(t ) is the inverse Fourier transform of R̂(ω) and
KN (t ) = 〈 1

N |tr Ut |2〉 = 1 + 1
N 〈∑α �=β eiωαβ t 〉 is the spectral

form factor.
To compute R(t ) in Eq. (12), we follow the same steps

as in the previous section: We expand the correlator R̂(ω) =∑
p1 p′

1 p2 p′
2
Cαβ (p1, p′

1, p2, p′
2)ei[(p1−p′

1+p2−p′
2 )x0] in momentum

space, where Cαβ in Eq. (6) is computed for eigenfunctions
with ωαβ = ω, and only keep terms surviving disorder aver-
age. We find R̂(ω) = 1 − ∑

p〈|ϕα (p)|2|ϕβ (p)|2〉ωαβ=ω. Writ-
ing

∑
p〈|ϕα (p)|2|ϕβ (p)|2〉ωαβ=ω = ∑

p〈|ϕα (p)|4〉Ĉ(ω), three
regimes can be identified for multifractal wave functions
[13,43]:

Ĉ(ω) = C0

⎧⎨
⎩

1, ω < ω0,

(ω/ω0)D2−1, ω0 � ω � ω1,

ND2−1(ω/ω1)−2, ω1 � ω,

(13)

where ω0 is proportional to the mean level spacing 2π/N ,
ω1 ∝ Nω0, and C0 is some numerical factor. We checked
numerically that such an ω dependence is well verified in the
RS model with ω0 = 2πa/N and the caveat that only the last
two regimes are visible (see Refs. [45,46]) since there are no
eigenstates separated by ω < ω0 for this model [34].

We now note that the form factor at large N is well approx-
imated by the continuum limit KN (t ) = δ(τ ) + Kreg(τ ) [47]
where the underlying N dependence only appears through the
scaled time τ = 2πt/N . For the RS model, Kreg(τ ) can be
obtained analytically [34] and reads

Kreg(τ ) = (1 − a)2(aτ )2

a2(1 − cos aτ )2 + [a sin aτ + (1 − a)aτ ]2
. (14)

The sinusoidal terms in Eq. (14) come from the existence
of a nonzero minimal level spacing in the RS model and
are actually responsible for the temporal oscillations of the
contrast. In the following, we will assume that this continuum
limit holds for the form factor.

Let us now discuss the main result of this section. We
rewrite Eq. (12) as

�(x0, x0, τ ) − Kreg(τ ) = δ(τ ) + (�∞ − 1) f (τ ), (15)

where

f (τ ) = 1 + C(τ ) + [(Kreg − 1) ⊗ C](τ ). (16)

Here, C(t ) is the inverse Fourier transform of Ĉ(ω) . From
Eq. (13), we see that C(τ ) and f (τ ) do not depend on N for
τ > τ1 ∝ 1

N → 0. After a very short fixed time t1 = Nτ1/2π

(∼1/a for the RS model), we thus get

�(x0, x0, τ ) − Kreg(τ ) ∝ N−D2 . (17)

This scaling law can be seen as a generalization of Eq. (8)
at any time, and is very well verified in our model [see
Fig. 3(a)]. At τ � τ0 = 2π/(Nω0), because of the plateau in
Eq. (13), we can even get an explicit approximation for f (τ )
as f�(τ ) = 1 + C0[Kreg(τ ) − 1]; this gives �(x0, x0, τ ) −
(�∞ − 1) f�(τ ) = Kreg(τ ), as illustrated in Fig. 3(b), which
is a further illustration that �(x0, x0, τ ) goes to Kreg(τ ) at
large N .

Noticeably, Eq. (17) actually implies that in the ther-
modynamic limit (N, t → ∞ at fixed τ ) the CFS contrast
�(x0, x0, τ ) is simply given by Kreg(τ ) (which is the same
result as in the localized regime [7,8,11], because multifrac-
tal finite-size effects vanish in this limit). In particular, at
τ → 0+, the CFS contrast converges to the level compress-
ibility χ = Kreg(τ → 0+) when increasing the system size
N [see Fig. 3(c)]. We recover here, and actually demon-
strate in a very general framework, the relation that was
recently conjectured at the Anderson transition [11], with an
infinite system size at any fixed time t (implying τ → 0+).
The link between the level compressibility and the multi-
fractal dimensions Dq has a long and controversial history
[13,48]. However, the simple identity χ = 1 − D1/d pro-
posed in Ref. [49], with d the dimension of the system,
was verified both analytically and numerically in various
systems [31,32], in particular in the RS model. Assuming
this identity, together with the above considerations, demon-
strates that the CFS contrast at any fixed nonzero time (or
equivalently for τ → 0+) goes to χ for N → ∞ and thus
gives direct access to D1, as numerically demonstrated in
Fig. 3(d):

lim
N→∞

�(x0, x0, t ) = 1 − D1. (18)

Conclusion. In this Letter, we have shown that the CFS
peak, a distinctive signature of Anderson localization, is also
a marker of quantum multifractality, a fundamental prop-
erty of several systems, such as the Anderson model at the
metal-insulator transition. Our results are obtained for Floquet
systems, but we believe them to be generic for critical disor-
dered systems. Our work represents another situation which
highlights the importance of studying physical observables
in the space reciprocal to the space where localization, or
multifractality, takes place [50–52]. Our results show that the
multifractal dimensions D1 and D2 can unambiguously be
measured from different dynamical quantities related to the
CFS contrast. More precisely (i) the stationary shape of the
CFS peak gives access to D2 via Eq. (9), (ii) the finite-size
scaling of the CFS contrast at any time gives D2, Eqs. (8)
and (17), and (iii) the limiting value of the CFS contrast at
small τ gives D1, Eq. (18). Remarkably, the CFS contrast is
actually a direct state-of-the-art experimental observable, as
was recently observed in the localized regime with a kicked-
like system, using standard time-of-flight techniques [22]. In
such kicked-like systems, the system size N can be precisely

L032044-4



COHERENT FORWARD SCATTERING PEAK AND … PHYSICAL REVIEW RESEARCH 3, L032044 (2021)

FIG. 3. Dynamics of the CFS peak at x = x0. (a) Finite-size scaling of the difference between the numerically computed contrast and
Kreg, Eq. (14), for a = 0.322 and different τ = 2πt/N . Dashed lines correspond to the nonlinear fit |� − Kreg| = αN−DIPR

2 , where DIPR
2 is

independently determined from a finite-size scaling of the IPR and α is the fitting parameter. (b) Dynamics of the contrast for different N .
Solid lines are numerical data smoothed over �τ = 0.3. C0 = 0.55 in f�(τ ) (see text) is numerically extracted from Ĉ(ω) (see SM [45]). �∞
for large N is extrapolated from Fig. 2(a). The black dashed line is Kreg given by Eq. (14). (c) Finite-size scaling of the difference between
the contrast at τ = 0.5 and the level compressibility χfit for different values of a. χfit is extracted from a nonlinear fit � = χfit + αN−DIPR

2 .
(d) D1 = 1 − χfit vs D1 obtained from a finite-size scaling of the wave-function moments. When not visible, error bars are smaller than the
symbol size.

controlled, which should make it possible to reveal and mon-
itor finite-size effects. Although the model (1) is difficult to
implement directly with cold atoms because of the discon-
tinuity of the potential [41,53], we think a suitably chosen
temporal modulation could reproduce its main properties, as
in Ref. [22]. In addition, it could also be implemented with
photonic crystals [54–56]. Furthermore, we believe our re-
sults are generic enough to be relevant to other experimental
systems where quantum multifractality is predicted to appear.
As is well known, quantum simulation experiments are of-
ten plagued by dephasing mechanisms that destroy quantum
coherence at long times (note that in Ref. [57] it was shown
that wave-packet dynamics in momentum space only reveal
multifractal properties at very long times). Our results suggest
that this complication can be circumvented in our case since
measurements can be done at short times. Our study thus

paves the way to direct and robust measurements of multifrac-
tal properties of a quantum system that are notoriously hard to
access by other means. Since multifractality is also known to
appear in interacting systems [58–61], a possible extension of
this work could be to study the fate of CFS in the presence of
interactions and their impact on our results.
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