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Charge correlations and their photoinduced dynamics in charge-ordered organic ferroelectrics
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By employing THz absorption and emission spectroscopy we were able to disentangle long-range charge order
with a hundreds micrometer scale and short-range charge fluctuations that occur well above the charge-order
phase transition in quasi-one-dimensional organic ferroelectrics, (TMTTF)2X (X = AsF6, PF6, and SbF6). While
long-range charge order melts by photoexcitation irrespective of temperature or chemical pressure, short-range
fluctuations are actually enhanced close to the charge-order phase boundary for X = AsF6 and PF6. Our findings
reveal that short-range fluctuations show various photoresponses depending on both temperature and electronic
parameters, providing a design strategy for nonequilibrium states.
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Short-range electronic correlations have been the key issue
in condensed-matter physics for decades [1,2]. They often
spontaneously emerge as spatially inhomogeneous domains
with nanometer-scale structures around boundaries between
competing electronic phases in strongly correlated systems
[3,4], triggering exotic aspects of high-temperature supercon-
ductivity [5] or colossal magnetoresistance [6]. Sometimes the
short-range correlations themselves govern the electronic state
of solids in the absence of long-range order, showing unique
properties such as relaxor ferroelectricity, spin/dipole liquid,
or charge glass, which are presently the subjects of intensive
discussions [7–11].

Particularly intriguing is the role in photoinduced phase
transitions [12–14]. The short-range correlations or fluctua-
tions not only govern their ultrafast dynamics [15,16], but also
become precursors from where macroscopic metallic states
grow, when introduced into a charge-order (CO) background
[17–19]. Moreover, a photoinduced enhancement of them was
recently found to be feasible exploiting the instability around
the phase boundary [20] or the strong light-field effect [21,22].
Such versatile short-range dynamics offers a promising path-
way to tailor nonequilibrium photoinduced states which might
be thermodynamically inaccessible [23–26]. To this end time-
resolved experiments are now actively conducted to directly
uncover microscopic dynamics [27–30].

Quarter-filled organic conductors (TMTTF)2X (TMTTF:
tetramethyl-tetrathiafulvalene; X : anion) [Fig. 1(a)] offer an
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ideal platform for the research for their competing nature of
electronic phases [31,32]. The dynamics of correlated charges
can be studied as a function of both temperature and chemical
substitution of X , which can tune electronic parameters via a
chemical pressure effect. Therein electronic ferroelectricity is
peculiarly induced by macroscopic CO below the transition
temperature TCO [33–36].

In this Letter, we report the charge dynamics in
(TMTTF)2X investigated by terahertz (THz) spectroscopy.
Short- and long-range charge correlations were distinctively
observed via THz absorption and emission measurements,
respectively [Fig. 1(b)]; intermolecular vibration and macro-
scopic polarization were measured. The short-range correla-
tions, which survive even above TCO, exhibit a photoinduced
enhancement close to the CO phase boundary for X = AsF6

and PF6; its amount depends on temperature. In contrast, the
long-range CO shows a photoinduced suppression irrespective
of temperature or X . Distinct responses indicate that charge
fluctuations play the key role in photoinduced charge dynam-
ics.

Hereafter we abbreviate TMTTF as TM. TM2SbF6,
TM2AsF6, and TM2PF6 were synthesized by the electro-
chemical method [31,37]. Bulk single crystals with triclinic
symmetry [38–41] having typical sizes of 2 × 1 × 0.1 mm3

(ab plane) were mounted on copper plates and placed in an
He exchange gas cryostat (Oxford Optistat-CF). As shown
in Fig. 1(a), TM dimers stack along the a axis (conducting
axis). Below TCO, each dimer undergoes charge disproportion-
ation due to a strong Coulomb repulsion to have (TM)+0.5+δ

and (TM)+0.5−δ (2δ ∼ 0.2 [32]). Consequent local electric
dipoles form long-range order or macroscopic P (electronic
ferroelectricity), which will be inverted upon interchanging
charge-rich/charge-poor sites.

We performed two kinds of THz measurements as shown
in Fig. 1(b): THz absorption (transmission), and THz emis-
sion triggered by 1.55-eV femtosecond pulses, reflecting

2643-1564/2021/3(3)/L032043(8) L032043-1 Published by the American Physical Society

https://orcid.org/0000-0002-3371-9316
https://orcid.org/0000-0001-5711-2095
https://orcid.org/0000-0001-8977-5133
https://orcid.org/0000-0003-1907-052X
https://orcid.org/0000-0002-5713-1859
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.L032043&domain=pdf&date_stamp=2021-08-13
https://doi.org/10.1103/PhysRevResearch.3.L032043
https://creativecommons.org/licenses/by/4.0/


HIROTAKE ITOH et al. PHYSICAL REVIEW RESEARCH 3, L032043 (2021)

FIG. 1. (a) Schematic of TM2X crystal (data taken from
Ref. [42]), with CO and an expected electric dipole (gray ar-
rows). The projected unit cell and stacking direction of TMTTF
molecules (||a) is indicated by dotted and dashed lines, respectively.
(b) Schematics of THz absorption (left) and THz emission (right) ex-
periments. The THz polarization (||b′) is perpendicular to the stack;
b′ denotes the projection of the b axis perpendicular to the a axis, in
the ab plane.

intradimer charge disproportionation and macroscopic polar-
ization, respectively, allowing us to selectively discuss short-
and long-range charge correlations. The polarization of the
light was parallel to the b′ axis (perpendicular to the stack
[Fig. 1(b)]). The time-domain waveform of the THz electric
field was collected by electro-optic sampling (time-domain
spectroscopy). The experimental details are given in the Sup-
plemental Material [43].

Figure 2(a) shows the steady-state absorption (optical den-
sity, OD) spectra of TM2AsF6; the same data are shown in
the waterfall and image plot. Here, we concentrate on a peak
at ∼66 cm−1 which developed with decreasing temperature
down to below TCO = 102 K. This mode has been assigned
to a vibration between a pair of TM molecules having an
antiphase translation along the longitudinal direction (Tc mode
[32]), which becomes infrared active by charge disproportion-
ation yielding intradimer electric dipoles [Fig. 1(a)]. Hence
its oscillator strength is a measure of how short-range charge
correlations develop, as will be shown later. Based on this
assignment, we will refer to this peak as the SR (short-range)
peak.

Figure 2(b) shows optical conductivity spectra for all
compounds. Again, the SR peak of TM2AsF6 at ∼66 cm−1

(triangle) develops with decreasing temperature from above
TCO. At a low temperature T = 20 K, other peaks are also seen
at 54, 75, and 85 cm−1, in agreement with the previous study
[32], where 54- and 85-cm−1 peaks represent Ta and Tb mode

FIG. 2. (a) Absorption spectra of TM2AsF6. The same data, mea-
sured in 1-K steps, are shown every 10 K (except for TCO) in the upper
panel, whereas they are shown in the image plot without interpolation
in the lower panel. (b) Optical conductivity spectra of TM2AsF6,
TM2PF6, and TM2SbF6. Triangles and shaded regions indicate the
SR peaks and their Lorentzian fits, respectively. Spectra at higher
temperatures are vertically offset for clarity (dashed lines indicate
their zeros). (c) Temperature dependences. Top panel: Time-domain
waveforms of THz electric field ETHz emitted from TM2AsF6. Lower
panels: Spectral intensities of ETHz and SR peak intensities, for
TM2AsF6, TM2PF6, and TM2SbF6.
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intermolecular translations, respectively. Among them, the SR
peak is the most useful probe of CO for its largest change
against temperature. Similarly, for the analogous compound
TM2PF6, peaks were observed in the vicinity at 22 K � TCO;
the 70-cm−1 peak should be assigned to the Tc mode or the
SR peak, for its largest increase across TCO as the SR peak
of TM2AsF6. Given that the peak redshifts with increasing
anion size, a lower frequency is expected for TM2SbF6 with
the larger size. Accordingly, the intensity of the 64-cm−1 peak
(20 K � TCO) shows the largest increase against temperature,
hence it is reasonably assigned to the SR peak. The systematic
shift is explicitly shown in Fig. S1 [43].

It is reasonable that the SR peak does not soften around
TCO. In a displacive-type ferroelectrics, a soft mode is an opti-
cal phonon whose motion modulates potential P. In contrast,
the intermolecular vibration causing the SR peak is not in-
frared active until the charge disproportionation sets in around
TCO; hence it cannot be a soft mode, despite its sensitivity
to P.

It should be noted that the SR peaks are evident even
slightly above TCO (130 K for TM2AsF6 and 80 K for
TM2PF6); the continuous change from T � TCO is confirmed
by absorption spectra measured in 1-K steps [Fig. 2(a)]. This
is consistent with the fact that short-range correlations in
general start to develop above the phase transition temperature
in low dimensions [44]; intradimer charge disproportionation
would randomly take place above TCO, and the fluctuations
slower than the peak frequency (∼1/ps) bear their infrared
activity. Such a temperature evolution of the short-range cor-
relations is also clearly seen in the lower three panels of
Fig. 2(c), where we plot the peak intensities estimated by a
Lorentzian fit [shaded regions in Fig. 2(b)] to exclude contri-
butions of adjacent peaks and background.

Although the preceding study on a one-dimensional system
has pointed out a divergent increase of infrared activity near
the transition [45], we could not identify it in the observed
spectra [46].

Unlike diffraction experiments [47,48], the SR peak alone
can hardly disentangle contributions from the short- and long-
range correlations. To resolve this, we also measured the THz
emission triggered by femtosecond pulses [Fig. 1(b)]. The
color map shown in the top panel of Fig. 2(c) represents
the time-domain waveforms of the THz electric field ETHz(t )
emitted from TM2AsF6. ETHz became nonzero below TCO,
where CO accompanies macroscopic P breaking spatial inver-
sion symmetry. Hence the emission process is attributable to
optical rectification via second-order nonlinear susceptibility
χ (2)(ω − ω), which in general becomes nonzero upon losing
centrosymmetry [49–51]. Accordingly the emission intensity
showed the expected quadratic increase with incident light
fluence, as shown in Fig. S2 [43].

Note that the ETHz signal arises from the CO with long-
range space correlations; a THz wave from a bunch of
nanoscaled domains having antiparallel P (antiphase charge
configuration) will destructively interfere and cancel out,
since inversion of P will invert the sign of χ (2) or the resultant
ETHz. This behavior is distinct from the SR peak absorption,
which is activated by intradimer charge disproportionation
irrespective of its phase.

To confirm the long-range correlations, we performed
THz-emission microscopy. By focusing the fundamental

FIG. 3. (a) Reflection image of TM2AsF6 sample at 15 K.
(b) Time-domain THz waveforms observed by irradiating the posi-
tions (i) and (ii) with fundamental light having a 5-μm-diameter spot
focused by an objective lens (numerical aperture NA = 0.13). The
fluence was 5 mJ/cm2. (c) Raster scan of THz emission: 5-μm-step
map of ETHz(0 ps).

beam onto TM2AsF6, THz emission occurs from the irradi-
ated 5-μm spot, e.g. position (i) or (ii) shown in Fig. 3(a). As
shown in Fig. 3(b), the resultant ETHz exhibited a position-
dependent sign reversal. This should be due to the inversion
of χ (2) upon inversion of the order parameter P; hence the
ETHz(0 ps) value works as a measure of the sign of P [52].
As shown in Fig. 3(c), its color map, or raster scan of the
THz emission, clearly evidences antiparallel P domains with
correlations as long as hundreds of microns in the ab plane.
Such large domains can avoid the cancellation effect, and in
fact, the ETHz signal was successfully observed even in nonmi-
croscopy measurements [Fig. 2(c)] reflecting the long-range
CO (see Supplemental Material for a quantitative characteri-
zation [43]).

In the lower three panels of Fig. 2(c), we plot the intensities
of the amplitude spectra ETHz(ω), the Fourier transform of
time-domain waveforms, for all compounds (see Figs. S2–
S4 for spectral shapes). The onsets of ETHz are almost at
TCO, in contrast to those of the SR peak intensity which are
∼50 K above TCO. This unambiguously demonstrates that
the short-range correlations develop above TCO activating the
SR peak, followed by the formation of the long-range CO
triggering THz emission below TCO. Therefore they provide
complementary insight on the charge dynamics.

The development of CO has been quantitatively studied
by midinfrared and Raman spectroscopy via intramolecular
phonon modes showing a charge-sensitive frequency shift or
consequent splitting [32,53–58]. Therein no particular atten-
tion was paid to the behavior above TCO, probably because
it is not easy to identify a weak satellite peak with a small
shift compared to its width. In contrast, the SR peak, which is
intermolecular vibration focused in this work, is not hindered
by such an overlap and hence the development of its intensity
could sensitively be captured [59].
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FIG. 4. (a) and (b) show the schematics of the optical-pump
THz-absorption-probe and THz-emission-probe experiment, respec-
tively, and the results for TM2AsF6. The upper and lower panel show
steady-state THz absorption (emission) spectra and their photoin-
duced change, respectively. OD at 150 K is vertically offset by −2.6
for clarity. (c) Temperature dependence of the photoinduced changes
of the SR peak intensity (left axis) and THz emission (right axis).
The schematics show the photoinduced charge dynamics therein.

Having identified the probes for short- and long-range
charge correlations, we can now study their photoinduced
dynamics. To that end we measured the photoinduced change
of THz absorption and emission as schematically shown in
Figs. 4(a) and 4(b), respectively, without the contribution
of the pump-pulse-induced THz emission [60]. The 0.89-eV
pump light (||a) above the CO gap �CO ∼ 0.1 eV [31] cor-
responds to the charge transfer excitation [61]. The pump
fluence was 0.2 mJ/cm2; the laser heating effect does not
affect the following discussions, wherein the resultant rise
of crystal temperature is as small as ∼5 K [43]. It is known
that the temporal resolution of transient THz time-domain
measurements can be as good as the pump duration, currently
0.1 ps, despite a chirped THz probe pulse with a duration of
several picoseconds [62,63] (see Supplemental Material for
details [43]).

Figure 4(a) shows steady-state absorption spectra of
TM2AsF6 around the SR peak (upper panel), and their
changes at 0.1 ps (pump pulse duration) after photoexci-
tation (lower panel). At 22 K well below TCO, the SR
peak was suppressed upon photoexcitation (red line). Since
such suppression was absent in the adjacent phonon peak at
∼76 cm−1, the result cannot be accounted for by laser heat-
ing or by screening due to photocarriers which presumably

caused broad photoabsorption of �OD ∼ 0.02. Therefore the
suppression should be due to a photoinduced dissolution of
intradimer charge disproportionation hosting the infrared ac-
tivity of the SR peak. In striking contrast, at 150 K > TCO

where charges only have short-range correlations without
long-range CO, the SR peak was enhanced within 0.1 ps after
photoexcitation (blue dashed-dotted line). Since the change
is contrary to the suppression, it is reasonable to assign the
result to a photoinduced enhancement of the short-range cor-
relations. The electronic response should be dominant in these
instantaneous changes, since the timescale is much shorter
than a period of the SR mode, (∼70 cm−1)−1 ∼ 0.5 ps, which
is the minimum duration required to define the peak fre-
quency. Time evolutions of �OD are shown in Fig. S6 [43].

Since the peak at higher frequency (∼76 cm−1 at 22 K)
has not yet been assigned, its photoinduced change remains
unresolved at present; however, it is likely insensitive to
the photoinduced charge dynamics, since it does not show
a noticeable change around TCO in the steady-state spectra
[Fig. 2(a)].

Figure 4(b) shows, in the same manner as Fig. 4(a), the
ETHz spectra and their changes at 0.1 ps after photoexci-
tation. At T = 22 K, ETHz was suppressed over the whole
spectral range, indicating that macroscopic P vanishes upon
photoexcitation; the result is consistent with the dissolution of
short-range correlations [Fig. 4(a)] which inevitably collapses
long-range CO. Although such a collapse is known to ac-
company a photoinduced insulator-metal transition in another
system [50,64,65], we currently cannot judge whether or not
the photoinduced state is metallic before observing the THz
dynamics along the conducting a axis.

Figure 4(c) summarizes the temperature dependences.
With T increasing from 15 K, the photoinduced change of the
SR peak turns from suppression to enhancement near 40 K
below TCO, and the enhancement is also observed around
and above TCO. This reveals that the photoinduced change
of the short-range CO undergoes a crossover; the crossing
temperature ∼40 K reflecting the competition between the
suppression and enhancement is characteristic of the pho-
toinduced states, and accordingly equilibrium data show no
anomaly around the temperature (Fig. 2). Although CO in
the higher-temperature side is closer to its thermal melting
point at TCO, the short-range fluctuations therein are actually
enhanced upon photoexcitation. Its amount tends to become
smaller at higher temperature; to resolve the detail, a fur-
ther study including sample dependence is required. On the
other hand, THz emission or long-range CO was suppressed
irrespective of temperature. Note that the signs of �OD and
�ETHz are opposite above 40 K, for example, at 50 K as seen
in Figs. 4(a) and 4(b) (yellow dashed lines). This is explained
by the difference in spatial scale; upon photoexcitation the
charge distribution was randomized to have a larger intradimer
disproportionation than before, while long-range (∼μm) co-
herence was lost, canceling macroscopic P.

The amount of photoinduced change is closely related to
the volume fraction of the photoexcited surface. It is estimated
as ∼0.4% for a typical sample thickness of 100 μm, using
a penetration depth d ∼ 0.4 μm at 0.89 eV calculated from
the result of a Kramers-Kronig analysis [66]. Hence the ∼2%
decrease of the SR peak intensity [Fig. 4(c)] suggests that
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FIG. 5. (a) and (b) show results of the optical-pump THz-
absorption-probe experiments for TM2PF6 and TM2SbF6, respec-
tively, shown in the same way as Fig. 4(a). (c) Left: Steady-state
temperature-pressure phase diagram of TM2X (reproduced from
Ref. [32]). AFM: antiferromagnet; SP: Spin Peierls. Right: Photoin-
duced change of the SR peak superimposed on the diagram. Red
spheres: suppressed; blue cones: Enhanced; brown boxes: no change.

CO was almost completely dissolved. Therein the photon
number was estimated as small as ∼0.005 per TM molecule,
implying that cooperative phenomena took place as in other
photoinduced phase transition processes [17], although a
fluence-dependent study is required for a detailed discussion.
For THz emission, the volume fraction of the photoinduced
area is effectively ∼100% because d for 1.55-eV fundamental
light is comparable to that for the pump light [66], hence a
larger photoinduced change is expected, as observed (∼20%).
A quantitative comparison of the photoinduced changes re-
quires an analysis of domain structures, which is beyond the
scope of this Letter.

To gain deeper insight into the characteristic enhancement
of the short-range correlations, we performed the same exper-
iments on other compounds. As shown in Fig. 5(a), the SR
peak of TM2PF6 at 22 K was enhanced within 0.1 ps after
photoexcitation; on changing the anion from AsF6 to PF6, i.e.,

applying chemical pressure, the peak suppression [Fig. 4(a)]
turns into the enhancement. This inversion resembles that
observed for TM2AsF6 during heating [Fig. 4(c)], both of
which correspond to approaching the CO transition line in
the phase diagram [left panel of Fig. 5(c), reproduced from
Ref. [32]]. The magnetic contribution should be absent in the
inversion, since the result was invariant at a lower temperature
below the spin-Peierls transition (Fig. S7 [43]). For TM2SbF6

located in the lower-pressure region, no change was identified
in the SR peak [Figs. 5(b) and 5(c)]. THz emission of these
compounds, on the other hand, was suppressed as in TM2AsF6

(Fig. S6 [43]), indicating that long-range CO is always col-
lapsed upon photoexcitation irrespective of chemical pressure
or temperature. The collapse without the SR peak suppres-
sion is attributable to the randomization of the short-range
correlations [Fig. 4(c)], although the correlations in TM2SbF6

do not appear to be enhanced. The photoinduced change had
a timescale of several picoseconds and was insensitive to
temperature nor anion (Fig. S6 [43]).

In Fig. 5(c) we show on the left-hand side the steady-
state temperature-pressure phase diagram reproduced from
Ref. [32], while on the right-hand side we superimposed the
results of the photoinduced changes of the SR peak on the
diagram (original data are shown in Fig. S7 [43]). The sup-
pression was observed only for TM2AsF6 at low temperatures
in the CO phase (red spheres), where intradimer charge dis-
proportionation is dissolved. With increasing temperature or
pressure toward the CO phase boundary, it turned into the
enhancement (blue cones). Meanwhile, when the pressure is
small, no change was identified even near TCO (brown boxes).

The various photoresponses of the short-range CO were
found to be sensitive not only to temperature but also to
pressure or the resultant electronic parameters, showing the
distinctive distribution from the steady-state phase diagram.
This opens up an extra route toward tailoring unprece-
dented nonequilibrium states, which is based on another idea
rather than the suppression of competing phases as seen in
the photoinduced superconductivity [67]. Although recent
theoretical studies have succeeded in showing that the pho-
toinduced modulation of short-range charge correlations is
feasible [61,68,69], further investigations are indispensable
to quantitatively understand the observed crossover against
temperature and chemical pressure.
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