
PHYSICAL REVIEW RESEARCH 3, L032042 (2021)
Letter

Jamming of bidisperse frictional spheres

Ishan Srivastava ,1,2,* Scott A. Roberts ,2 Joel T. Clemmer ,2 Leonardo E. Silbert ,3

Jeremy B. Lechman,2 and Gary S. Grest2
1Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

2Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
3School of Math, Science, and Engineering, Central New Mexico Community College, Albuquerque, New Mexico 87106, USA

(Received 3 May 2021; accepted 28 July 2021; published 13 August 2021)

By generalizing a geometric argument for frictionless spheres, a model is proposed for the jamming density
φJ of mechanically stable packings of bidisperse, frictional spheres. The monodisperse, μs-dependent jamming
density φmono

J (μs ) is the only input required in the model, where μs is the coefficient of friction. The predictions
of the model are validated by robust estimates of φJ obtained from computer simulations of up to 107 particles
for a wide range of μs, and size ratios up to 40:1. Although φJ varies nonmonotonically with the volume fraction
of small spheres f s for all μs, its maximum value φJ,max at an optimal f s

max are both μs dependent. The optimal
f s
max is characterized by a sharp transition in the fraction of small rattler particles.
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Granular materials jam at a range of densities φJ depending
on particle shape [1–3], size dispersity [4–12] and interparticle
interactions [13,14]. In the simplest case of monodisperse
spheres, φmono

J �0.64 is the random closed packed density for
a mechanically stable packing of frictionless particles [1,15].
However, particle surface roughness introduces friction upon
their contact and jamming can occur at a density as low as
φmono

J �0.55 [14,16,17]. Conversely, bidispersity in particle
sizes can increase φJ to a theoretical maximum φJ �0.87 for
frictionless spheres [4–6,9,11,12,18]. However, only limited
studies [19] have explored the combined role of friction and
dispersity on the jamming of spheres. A key impediment
is the difficulty of simulating large-scale, mechanically sta-
ble, jammed packings of frictional particles in the limit of
marginal rigidity [20] using previously established methods
that render such packings prone to instabilities at low con-
fining pressures near φJ [13]. Additional challenges include
inefficient-neighbor finding algorithms for large particle size
ratio systems [21,22].

Dispersity in particle sizes results in a rich structural diver-
sity in particulate materials such as granular materials [11,23–
25], colloids [26,27], emulsions [28], and geophysical ma-
terials [29]. Maximizing φJ in such materials through size
dispersity is important in various applications such as battery
electrodes [30], cement [31], and chocolate [32]. The mechan-
ics of such materials strongly correlates with φJ [12,33,34],
and size dispersity provides a powerful knob to optimize their
mechanical properties. Furthermore, φJ also critically governs
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the equilibrium [24,35,36] and nonequilibrium [37] rheology
of dense, bidisperse particulate materials. Therefore, beyond
their fundamental jamming characteristics, a robust estima-
tion of φJ for bidisperse particulate materials with realistic
interparticle interactions is important towards advancing our
knowledge of their mechanics and rheology.

Here, we use pressure-controlled simulations to simulate
mechanically stable jammed packings of frictional, bidisperse
spheres for a wide range of particle size ratios 2�α�40 and
volume fraction of small particles 0� f s <1. Here, α=dl/ds

and f s =Nsd3
s /(Nsd3

s + Nld3
l ), where ds and dl are the diame-

ters, and Ns and Nl are the numbers of small and large spheres,
respectively. The effect of μs on φJ is demonstrated through
μs-dependent state diagrams on (φJ , f s) axes by varying the
coefficient of friction over several orders of magnitude 0�
μs �0.5, where μs =0 corresponds to frictionless particles.
Similar to previous findings [9,11,12], we find that φJ varies
nonmonotonically with f s and attains a maximum φJ,max at
f s
max. At large α, this variation exhibits a sharp transition at

f s
max. Although φJ varies similarly with f s for all μs, the

optimal φJ,max and f s
max depend significantly on μs. The opti-

mal φJ,max decreases systematically with μs, while requiring a
larger f s

max to attain its optimal value. Through these findings,
we propose a generalized Furnas model [38]—originally pro-
posed for notionally placing small particles in the available
volume left by large particles without reference to mechan-
ical constraints or particle properties other than infinite size
ratio—that accurately predicts μs-dependent φJ for large α,
although small deviations from the model are observed for
frictional packings at f s < f s

max and very large α. Remarkably,
the generalized model only requires μs-dependent monodis-
perse jamming density φmono

J (μs) as an input to accurately
predict φJ ; thus φmono

J (μs) appears to encode the mechanical
stability constraint of the packing in such a way that the avail-
able volume for small frictional particles within the space left
over by large frictional particles is correspondingly adjusted.
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FIG. 1. (a) Snapshot of a jammed packing containing bidisperse
particles with α=40, f s =0.32, and μs =0.3. This system contains
Nl = 103 large particles (grey) and Ns � 2.6 × 107 small particles
(gold). (b) The transient evolution of φ and p as a function of
simulation time t .

Lastly, we find that for f s < f s
max all the small particles rattle

in the void space of the jammed network of large particles,
and the fraction of such rattlers drops sharply at f s

max. Unlike
frictionless particles, the rattler fraction does not drop to zero
for frictional particles.

Three key features distinguish the present simulations from
similar previous works: (i) We use pressure-controlled simu-
lations that guarantee mechanical stability, unlike commonly
used volume controlled methods [2,39]; (ii) we create pack-
ings up to an unprecedentedly high α=40 in order to probe
the large size ratio limit; as a result, we have created the
densest known bidisperse jammed packings for frictionless
and frictional spheres; (iii) we provide statistically robust
estimates of φJ by fixing a large value of Nl =1000 in
all simulations. This constraint resulted in a large number
of small particles up to Ns �3×107, which were simulated
through large-scale discrete element method using the soft-
ware LAMMPS [40].

A typical jamming simulation starts with a dilute nonover-
lapping collection of spheres of material density ρ =1 at
φ=0.05 containing Nl large particles and Ns small parti-
cles determined from the chosen values of α and f s. The
initial simulation cell is periodic and cubic; however, its tri-
clinic nature allows shear distortions in addition to volume
deformation. At t =0, a pressure pa is applied such that
the total stress on the system is σa = paI, where I is the
identity matrix. Particles interact with damped Hookean and
the tangential frictional forces. The tangential spring stiff-
ness kn is set equal to the normal spring stiffness kt , and
a Coulomb coefficient of interparticle friction μs sets the
sliding frictional force [41,42]. The damping at contacts is
set by normal and tangential velocity damping coefficients
γn,t = 0.5. Time is normalized by the characteristic timescale
of collision tc =π (2kn/ms−γ 2

n /4)−1/2, where ms is the mass
of the small particle. The simulation time step is set to 0.02tc.
The stress in this setup is scaled by kn/ds and energy is scaled
by knd2

s .
Under the action of pa, the system steadily compacts and

its internal pressure p steadily increases towards pa, as shown
in Fig. 1(b). The applied pressure is fixed at a low value pa =
10−4 in all simulations to model jamming in the asymptotic
hard-particle regime [43]. The inertial equations of motion

for the particles and the simulation cell are described in detail
in Ref. [41]. After transient evolution, the system eventually
achieves a jamming density φJ when p balances pa, as shown
in Fig. 1(b). We set a criterion to terminate a simulation when
the average kinetic energy per particle falls below 10−11 or
if the simulation has proceeded for at least 5×106 and up
to 107 steps, which were found sufficient to achieve a sta-
ble jammed packing within a reasonable computational time.
Beyond pressure, the pressure-controlled simulation method
also ensures that the deviatoric internal stress is equal to its
externally applied value upon jamming, i.e., zero [2,14]. This
is achieved by allowing shear distortions of the simulation cell
[14,41]. As a result, mechanically stable jammed packings are
created at a specified pressure pa, similar to soft particle jam-
ming using the variable-cell structural optimization method
[2,44], and strictly-jammed hard particle packings using the
adaptive shrinking cell method [6].

Traditional neighbor finding and interprocessor communi-
cation algorithms in particle-based simulations are inefficient
for modeling systems with large size dispersity [21,22]. Here,
we adapt and implement an algorithm originally developed
for colloidal mixtures [21] to simulate bidisperse granular
systems for large size ratios up to α=20. We also include
results from jamming simulations at very large α=40 by
adapting a recently developed neighbor finding algorithm that
efficiently simulates granular systems of large size ratios [45].
An example of a α=40 packing that would have been com-
putationally prohibitive to simulate using traditional neighbor
finding methods is shown in Fig. 1(a).

About a century ago, Furnas predicted a nonmonotonic
relationship φJ ( f s) in the limit α→∞ based on a simple
geometric model [38]. At low f s up to a critical f s

max, φJ =
φmono

J /(1− f s) is an increasing function of f s resulting from
unjammed small particles occupying the void space in the net-
work of large particles jammed at φmono

J , which is the jamming
density for monodisperse frictionless spheres. At f s

max, small
particles are also jammed at φmono

J , and the system achieves
it highest packing density φJ,max. For f s > f s

max, the small
particles form a percolating jammed network in which large
particles are suspended (and jammed), and the φJ decreases
monotonically with f s as φJ =φmono

J /[ f s+φmono
J (1− f s)]. For

the jamming density φmono
J �0.64, the model predicts f s

max �
0.26 and φJ,max �0.87.

The predictions of this model have been tested in simu-
lations of bidisperse, frictionless spheres up to α=12 [9,11].
Using large scale simulations, we created jammed, bidisperse,
frictionless packings up to α=40. Figure 2(a) shows the vari-
ation of φJ with f s for various α along with the predictions
from the Furnas model. At low α, φJ varies continuously
and nonmonotonically with f s, and this variation exhibits a
sharp transition at high α, similar to previous observations
[9,11]. For α=20, φJ follows the predictions of the Furnas
model and closely approaches φJ,max =0.869 at f s

max =0.265,
which were estimated by the Furnas model using φmono

J �
0.638 obtained at f s =0. We also simulated a packing for
α=40 containing Ns �2.3×107 particles at the purported op-
timal f s =0.265, as shown in Fig. 2(a). The value φJ =0.857
obtained in this large simulation is, to our knowledge, the
densest bidisperse jammed packing created using computer
simulations.
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(a)

(b)

FIG. 2. Variation of φJ with f s for (a) frictionless particles and
(b) particles with friction μs =0.3 at various α [see legend in (b)].
The green dashed and the black dot-dashed lines represent the model
predictions for φJ for μs =0 and μs =0.3, respectively.

A similar variation of φJ with f s is observed for fric-
tional particles, as shown in Fig. 2(b) for μs =0.3. Similar to
frictionless particles, φJ varies continuously at low α, whereas
the variation exhibits a sharp transition at higher α. How-
ever, φJ at all α and f s is substantially lower than φJ for
frictionless particles. For monodisperse spheres ( f s =0), we
obtained φmono

J �0.588. In addition to lower φJ compared to
frictionless particles, the maxima in φJ occurs at a higher f s.
Following the data for α=20 in Fig. 2(b), we find that the
maximum φJ =0.823 occurs at f s =0.29, which is higher than
f s required to maximize φJ for frictionless particles.

Such differences in φJ ( f s) based on μs are explained by
generalizing the Furnas model to include μs dependence of
φmono

J . At low f s, large particles form a jammed network,
but at a reduced φmono

J (μs) [13]. Upon increasing f s, small
particles fill the voids of the jammed network, but only up to
the same reduced φmono

J (μs), at which point φJ,max is obtained
at f s

max. Using φmono
J = 0.588 for μs = 0.3 in the generalized

Furnas model, f s
max = 0.292 and φJ,max = 0.83 are predicted,

which are remarkably close to the values obtained from sim-
ulations shown in Fig. 2(b) for α = 20. A large jamming
simulation for α = 40 containing Ns � 2.6 × 107 particles for
f s = 0.292 results in φJ = 0.83, as shown in Fig. 2(b), which
confirms these predictions.

(a)

(b)

mono

FIG. 3. Variation of (a) φJ,max and (b) f s
max with μs for various

α [see legend in (b)]. The arrow shows the direction of increasing α.
The green filled “x” in (a) and (b) denote model predictions, and “+”
in (a) denote φmono

J .

For the largest simulated frictional packings at α=40, φJ

is slightly greater than the model prediction for f s < f s
max, and

the deviation from the model increases with f s, as shown in
Fig. 2(b). A similar but reduced deviation from the model is
also observed for α=20 packings. This is caused by the large
particles packing at a density greater than φmono

J (μs), but still
bounded by the frictionless φmono

J . This effect vanishes for
f s > f s

max when small particles also participate in jamming,
and φJ agrees well with the model. As monodisperse particles
can jam at a range of densities depending on the protocol
[17,46,47], we expect that in the region near f s

max, the same
would be true for bidisperse packings.

To test the predictions of the generalized Furnas model
for φJ,max as a function of μs, we first obtain monodisperse
φmono

J (μs) shown in Fig. 3(a). These values are consistent with
previous studies [13,14,42]. Upon substituting φmono

J in the
generalized Furnas model, theoretical estimates for φJ,max are
obtained, as depicted in Fig. 3(a). The theoretical predictions
are tested against φJ,max obtained from simulations for various
α, as shown in Fig. 3(a). At lowest α=2, the calculated
φJ,max are much lower than the theoretical maxima, but still
substantially higher than φmono

J . As α increases, the calculated
φJ,max steadily increases towards its theoretical maxima and is
within 2% of its maximum value for α = 20. For high friction,
α = 20 appears to be sufficient to nearly attain the theoretical
maxima φJ,max. Jamming at low friction requires much longer
simulations to completely remove the kinetic energy of the
particles. The presence of friction between particles provides
additional constraints to the particle motion [14], thus en-
abling a quicker approach to jamming.
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FIG. 4. Variation of the fraction of small rattler particles Nr
s /Ns

with f s for four μs (see legend) and α = 20.

Similar to φJ,max, the theoretical predictions for μs-
dependent f s

max compare well with simulations for α = 20, as
shown in Fig. 3(b). As μs increases, a larger fraction of small
particles is required to achieve the highest packing density,
with the highest friction case requiring 3% higher volume of
small particles than the frictionless case.

Previous studies on jammed bidisperse frictionless parti-
cles have demonstrated a sharp transition in the structural
properties across f s

max [9,11]. Upon increasing f s at high α,
the fraction of small particles that are rattlers drops rapidly
at f s

max [9]. We analyze the fraction of small rattler parti-
cles to highlight a similar structural transition for frictional
bidisperse packings. A particle is a rattler if it has too few
contacts to contribute to the mechanical stability of the pack-
ing, i.e., the particle is locally unjammed [48]. We follow
a recursive method [48] to identify if a particle i is a rat-
tler based on the criteria: Zi < 3 for frictionless particles
and Zi < 2 for frictional particles, which emerges from con-
straint counting arguments [14]. In Fig. 4, the fraction of
small rattler particles Nr

s /Ns is plotted as a function of f s

for four values of μs, where Nr
s is the total number of small

rattler particles. Below a critical μs-dependent f s that cor-
responds well with f s

max shown in Fig. 3(b), almost all of
the small particles are rattlers within a jammed network of
large particles. As f s is increased beyond f s

max, the fraction of
small rattlers rapidly drops, and the majority of small parti-
cles participate in the mechanical backbone of the packing.
Nearly all small particles are locally jammed for friction-
less packings, whereas up to 22% small particles are rattlers
at high friction. These findings are consistent with previous
studies on rattlers in monodisperse frictional packings near
the jamming point [14,49]. The fraction of rattlers at high

friction is similar to its value for monodisperse packings
[14], thus indicating that small particles form a percolating
jammed network with suspended (and locally jammed) large
particles.

We have demonstrated that φJ for bidisperse frictional par-
ticles is well-predicted by a simple μs-dependent model for
large size ratios. The model compares well with simulations
that were used to create large mechanically stable bidisperse
frictional packings at unprecedentedly high φJ . For frictional
packings at f s < f s

max and α�20, φJ is slightly larger than
the model prediction, possibly due to the lubricating effect of
the small particles. Friction is found to reduce φJ for all f s.
At large α, φJ varies nonmonotonically with f s and exhibits
a sharp transition at f s

max, where its value is maximized. The
f s
max that maximizes φJ increases with μs, with frictional con-

tacts requiring up to 3% more small particles to achieve φJ,max.
The sharp transition in φJ is also observed structurally, where
the fraction of small rattler particles rapidly drops across f s

max.
The results presented here open avenues to extend our

understanding of the physics of jamming—particularly the
structure and mechanical stability of frictional packings
[50,51]—to bidisperse frictional packings at large size ratios.
Our ongoing work on including additional modes of friction,
such as rolling and twisting, support an extended general-
ization of the Furnas model that takes into account φmono

J in
the presence of these additional frictional modes [14]. This
suggests that a century-old model may be a valuable predictor
of φJ in mechanically-stable bidisperse particulate packings
spanning a wide variety of interparticle interactions. Lastly,
a recent study has discovered an additional jamming transi-
tion at low f s for large α in bidisperse frictionless particles
[11]. Although such a transition was not observed in our
pressure-controlled jamming simulations, we can not preclude
its presence without a careful analysis of the path dependence
of jamming in our systems.
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