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Power fluctuations in a finite-time quantum Carnot engine
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Stability is an important property of small thermal machines with fluctuating power output. We here consider
a finite-time quantum Carnot engine based on a degenerate multilevel system and study the influence of its finite
Hilbert space structure on its stability. We optimize in particular its relative work fluctuations with respect to level
degeneracy and level number. We find that its optimal performance may surpass those of nondegenerate two-level
engines or harmonic oscillator motors. Our results show how to realize high-performance, high-stability cyclic
quantum heat engines.
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The Carnot engine is one of the most emblematic exam-
ples of a thermal machine. Since its introduction in 1824, it
has become a representative model for all heat engines. The
Carnot cycle simply consists of two isothermal (expansion
and compression) steps and of two adiabatic (expansion and
compression) processes [1]. In its ideal reversible limit of infi-
nite cycle duration, the Carnot motor is the most efficient heat
engine. The corresponding Carnot efficiency, ηC = 1 − Tc/Th,
where Tc,h are the respective temperatures of the cold and
hot heat baths, is regarded as the first formulation of the
second law of thermodynamics [1]. The first experimental
realization of a Carnot engine using a colloidal particle in an
optical harmonic trap has been reported lately [2]. In addition,
the finite-time properties of the Carnot cycle have been well
investigated theoretically both in the classical [3–10] and in
the quantum [11–19] regimes. Strong emphasis has been put
on the optimization of the performance of the engine for finite
cycle durations, in particular on its average power output at
the expense of its efficiency.

For classical microscopic heat engines, such as the one im-
plemented in the experiment of Ref. [2], thermal fluctuations
are no longer negligible as is the case for macroscopic motors
[20]. As a result, key performance measures, such as effi-
ciency [21–24] and power [25–28], are stochastic variables.
In that context, attention has recently been drawn to power
fluctuations as a limiting factor for the practical usefulness of
thermal machines: Heat engines should indeed ideally have
high-efficiency, large power output but small power fluctua-
tions [25–28]. A new figure of merit, the constancy, defined
as the product of the variance of the power and time, has
been introduced to characterize the stability of heat engines
[25–28]. While a strict trade-off between efficiency, power,
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and constancy has been established for steady-state heat en-
gines, implying that power fluctuations diverge at maximum
efficiency and finite power [27], they may remain finite for
quasistatic cyclic thermal machines [28]. On the other hand,
quantum motors are not only dominated by thermal fluctua-
tions but also by quantum fluctuations.

In this Letter, we investigate the generic features of the
power fluctuations in a finite-time quantum Carnot engine
in the quasistatic limit. We specifically study the inter-
play between power fluctuations, the finite dimensionality of
the Hilbert space of the working medium, and the degree
of degeneracy of its levels. Degenerate finite level struc-
tures commonly appear in atomic [29], molecular [30], and
condensed-matter physics [31]. An understanding of their in-
fluence on the stability of quantum heat engines is therefore
essential for future experimental realizations of thermal de-
vices in these systems [32]. An important illustration of the
effect of the finiteness of quantum systems on thermodynamic
fluctuations is provided by the Schottky anomaly [33]: The
corresponding increase of the heat capacity at low tempera-
tures does not occur in infinite-dimensional systems such as
the harmonic oscillator, in which the energy is not bounded;
it is, furthermore, strongly affected by level degeneracy and
level number [34]. We mention, however, that our results are
not directly related to the Schottky anomaly.

In the following, we compute the inverse coefficient of
variation for work, defined as the ratio of the mean work and
its standard deviation [35], for a quasistatic quantum Carnot
engine whose working medium is described by a homoge-
neous Hamiltonian of degree −2, H(br) = b−2H(r). Such
Hamiltonians characterize a large class of single-particle,
many-body, and nonlinear systems that exhibit equidistant
spectra [36–40]. We obtain a general formula that only de-
pends on the heat capacity and on the entropy variation during
the hot isotherm. We use this expression to maximize the
inverse coefficient of variation for work, with respect to the
degree of degeneracy and the number of levels of the sys-
tem, in order to attain optimal cyclic quantum engines that
operate close to the Carnot efficiency with large power output
and small power fluctuations. We illustrate our results by
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analyzing (i) a two-level system with arbitrary degeneracy, (ii)
a nondegenerate system with an arbitrary level number, and
(iii) a three-level system with a generic degree of degeneracy.
In all cases the optimal inverse coefficient of variation for
work may be numerically determined by solving a transcen-
dental equation.

Finite-time quantum Carnot cycle. We consider a general
quantum system with a time-dependent Hamiltonian, Ht =
ωtH, as the working fluid of a finite-time quantum Carnot
engine, with driving parameter ωt . The quantum Carnot cycle
consists of the following four steps [11–19]: (1) hot isothermal
expansion from ω1 to ω2, at temperature Th in time τ1, during
which work W1 is produced by the system and heat Qh is
absorbed; (2) adiabatic expansion from ω2 to ω3, in time τ2,
during which work W2 is performed and the entropy remains
constant. The system is here decoupled from the baths and its
Hamiltonian commutes with itself at all times, [Ht , Ht ′ ] = 0.
As a result, nonadiabatic transitions do not occur for all driv-
ing times τ2; (3) cold isothermal compression from ω3 to ω4,
at temperature Tc in time τ3, during which work W3 is done on
the system and heat Qc is released; (4) adiabatic compression
from ω4 to ω1, in time τ4, during which work W4 is unitarily
performed on the system. The total cycle time is τ = ∑

i τi.
Work and heat are taken positive when added to the system.

In order to evaluate the finite-time performance of the
quantum Carnot engine, we will determine the mean and the
variance of the stochastic work output w. The average total
work, W = 〈w〉 = ∑

i Wi, directly follows from the combina-
tion of the first and second law [1],

W = −Qh − Qc = (Tc − Th)�S, (1)

where �S denotes the entropy change during the hot isotherm.
Meanwhile, the total work fluctuations are characterized by
the probability distribution P(w),

P(w) =
〈
δ

(
w −

∑
i

wi

)〉
, (2)

where the average is taken over the joint probability dis-
tribution of the work of the four branches of the cycle,
P(w1,w2,w3,w4) [28]. The two isotherms (1) and (3) are
assumed to be slower than the (fast) relaxation induced by
the baths. The system thus remains in a thermal state and
the two finite-time processes are quasistatic. In this case, the
work distributions are sharp (with no fluctuations) and work
is deterministic [41],

P1,3(w1,3) = δ(w1,3 − W1,3). (3)

On the other hand, since no heat is exchanged during the two
unitary adiabats (2) and (4), the corresponding work distri-
butions can be obtained via the usual two-point-measurement
scheme by projectively measuring the energy at the beginning
and at the end of each step [42]. Without level transitions, we
obtain for process (2),

P2(w2) =
∑

n

δ
[
w2 − (

En
3 − En

2

)]
pn

2, (4)

where En
2 and En

3 denote the respective eigenvalues of the
Hamiltonians H2 = Hτ1 and H3 = Hτ1+τ2 . The initial thermal

distribution reads pn
2 = exp(−βhEn

2 )/z2 with inverse hot tem-
perature βh and partition function z2. We have similarly for
transformation (4),

P4(w4) =
∑

m

δ
[
w4 − (

Em
1 − Em

4

)]
pm

4 , (5)

with pm
4 = exp(−βcEm

4 )/z4. In order to ensure that the system
is in a thermal state at the end of each adiabat, and thus at the
beginning of each isotherm, we adjust the adiabatic driving
such that ω3/ω2 = ω4/ω1 = βh/βc [18]. The whole Carnot
cycle is hence quasistatic.

Combining the contributions of all the four branches of the
cycle, we find the work output distribution,

P(w) = 〈δ[w − (W − �̃H2 − �̃H4)]〉, (6)

where W is given by Eq. (1). We have furthermore defined the
(stochastic) difference from the mean �̃Hi = 〈�Hi〉 − �Hi,
where �Hi is the energy change during adiabat i, and used the
cycle condition

∑
i〈�Hi〉 = 0. The average in Eq. (6) may be

computed using the Boltzmann distributions at the beginning
of each adiabat [41].

Coefficient of variation for work. In statistics, the Fano
factor (the ratio of the variance σ 2 and the mean) and the
coefficient of variation (the ratio of the standard deviation
σ and the mean) are two measures of the dispersion of a
probability distribution [35]. For heat engines, the Fano factor
for work, σ 2

w/W , is equal to the quotient of the constancy σ 2
Pτ

and the average power P = W/τ (defined over one cycle time)
[28], while the corresponding coefficient of variation for work
describes the relative work fluctuations. All the moments of
the total work can be evaluated from Eq. (6) by integration
〈wn〉 = ∫

dw P(w)wn. The variance then reads [41]

σ 2
w = (Tc − Th)2[C(βh, ω2) + C(βc, ω4)], (7)

where we have introduced the heat capacity of the system,
C(β j, ωi ) = d〈Hi〉/dTj , at the beginning of each adiabat [41].
We accordingly obtain the Fano factor,

σ 2
w

|W | = (Th − Tc)[C(βh, ω2) + C(βc, ω4)]

�S
, (8)

and the corresponding coefficient of variation,

σw

|W | =
√

C(βh, ω2) + C(βc, ω4)

�S
. (9)

Equations (8) and (9) describe similar physics. However, in
contrast to the Fano factor (8), the coefficient of variation (9)
has the advantage that (i) it is a dimensionless quantity that
(ii) depends solely on the heat capacities of the system (since
the entropy variation can be written as an integral of the heat
capacities [41]). We shall therefore focus on that quantity in
the following.

A finite-time quantum Carnot engine with large work out-
put and small work output fluctuations is characterized by a
large inverse coefficient of variation |W |/σw. We will thus
next optimize the inverse of Eq. (9) with respect to the degree
of degeneracy and with respect to the number of levels of the
working medium.

Degenerate two-level system. We begin by considering a
degenerate qubit with Hamiltonian Ht = ωt g1 |1〉 〈1|, where
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FIG. 1. Average work output |W |, Eq. (1) (blue dashed-dotted),
its variance σ 2

w , Eq. (7) (red), and inverse coefficient of variation
(COV), |W |/σw , Eq. (9) (green, inset), for a degenerate two-level
quantum Carnot engine, as a function of the degeneracy ratio γ .
The maximum COV (green arrow) outperforms its nondegenerate
counterpart (orange dashed line). The blue (red) arrow indicates
the maximum value of the average (variance) of the work output.
The vertical black dotted lines mark the respective maxima of the
heat capacity (Schottky anomaly), Eq. (10), at the hot and cold bath
temperatures. Parameters are βc = 1, βh = 0.1, ω2 = 2, and ω4 = 1.

g0 and g1 are the respective degeneracies of the ground |0〉
and excited |1〉 states. The partition function at inverse tem-
perature β and frequency ω is Z2 = g0 + g1 exp(−βω) [33].
The heat capacity then follows as

C2(β, ω) = γ (βω)2

(eβω/2 + γ e−βω/2)2 , (10)

with the degeneracy ratio γ = g1/g0. The entropy difference
during the hot isotherm further reads

�S2 = βcω4

γ −1eβcω4 + 1
− βhω2

γ −1eβhω2 + 1
+ ln

[
1 + γ e−βhω2

1 + γ e−βcω4

]
.

(11)
The average of the work output (1) (blue dashed-dotted), its
variance (7) (red), and the corresponding inverse coefficient
of variation (9) (green, inset) are shown in Fig. 1 as a func-
tion of the degeneracy ratio γ . We observe that, for given
frequencies and bath temperatures, both mean and variance
first increase with increasing values of γ , before they both
decrease as a result of the finiteness of the Hilbert space of
the qubit. However, the mean augments and decays faster
than the variance. As a consequence, the inverse coefficient of
variation for work exhibits a clear maximum (green arrow) for
an optimal degeneracy value γ̄ . Remarkably, the degenerate
quantum Carnot engine here outperforms its nondegenerate
counterpart (γ = 1) (orange dashed). The optimal value of
the degeneracy of the working medium may be determined
by numerically solving the transcendental equation,(

1

2
∂γ − 1

)
[C2(βc, ω4) + C2(βh, ω2)]

+
(

1

2
− ∂γ

)
�S2 = 0. (12)

The existence of such an optimal solution is guaranteed by
continuity and the limiting behaviors at γ → 0 and γ → ∞,
where the inverse coefficient of variation vanishes.

Two additional features are worth emphasizing. First, the
conditions of minimal relative work fluctuations and of maxi-
mum work output (blue arrow) corresponding to

γ̄work = 2(e2x+y − ex+2y − ex+2yx + e2x+yy)

e2x − e2y + 2ex+y(x − y) + (ex − ey) f (x, y)
, (13)

with the variables x = βcω4 and y = βhω2, and f (x, y) =√
e2x + e2y − 2ex+y + 4xyex+y, lead to two different solutions.

While level degeneracy may be used to boost the work output
[43–48], this enhancement is accompanied by an increase of
work fluctuations, that is, of the instability of the machine.
This property might be detrimental for practical implemen-
tations of quantum heat engines. On the other hand, the point
of the maximum inverse coefficient of variation for work leads
to an overall smaller work output but to a more stable engine.
In addition, we note that the optimal value γ̄ is bounded by
the degeneracies associated with the respective maxima of
the heat capacities (Schottky anomaly) at the hot and cold
temperatures (vertical black dotted lines in Fig. 1),

eβhω2 � γ̄ � eβcω4 . (14)

These bounds get tight when the limiting engine condition
ω4βc � ω2βh is approached.

Nondegenerate N-level system. In order to investigate
the influence of the level number of the working fluid
on the relative work fluctuations, we next examine a non-
degenerate N-level system with equidistant spacing, Ht =
ωt

∑N−1
n=0 n|n〉〈n|, as appearing in homogeneous Hamilto-

nians of degree −2 [36–40]. The partition function at
inverse temperature β and frequency ω is given by ZN =
[1 − exp(−Nβω)]/[1 − exp(−βω)] [33]. The explicit (and
lengthy) expressions for the heat capacity CN (β, ω) and the
entropy difference �SN are given in the Supplemental Mate-
rial [41]. Compact expressions for the inverse coefficient of
variation for work may be obtained in the limit of a harmonic
oscillator (N → ∞),( |W |

σw

)
∞

= �S∞√
[sech(y/2)y]2 + [sech(x/2)x]2

, (15)

and for the case a (nondegenerate) qubit (N = 2),( |W |
σw

)
2

= �S2√
y2[1 − tanh(y)2] + x2[1 − tanh(x)2]

. (16)

In the high-temperature limit, βc,hω4,2 � 1, Eq. (15) reduces
to the result obtained for the classical harmonic Carnot heat
engine in Ref. [28], ( |W |

σw

)cl

∞
= �S∞√

2
. (17)

On the other hand, the high-temperature limit of Eq. (16) ex-
hibits a completely different (x, y) dependence, which reflects
the finite Hilbert space of the qubit,( |W |

σw

)cl

2

= �S2√
x2[1 − x2] + y2[1 − y2]

. (18)
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FIG. 2. Average work output |W |, Eq. (1) (blue dashed-dotted),
its variance σ 2

w , Eq. (7) (red), and inverse coefficient of variation
(COV), |W |/σw , Eq. (9) (green, inset), for a nondegenerate N-level
quantum Carnot engine, as a function of the level number N . The
maximum COV outperforms both that of the two-level engine and
that of the harmonic oscillator motor (violet dashed line). Same
parameters as in Fig. 1.

Such behavior can be traced back to the properties of
the heat capacity in Eq. (9): While it reaches a constant
value for the (infinite-dimensional) harmonic oscillator in the
classical limit (Dulong-Petit law), it vanishes for the (finite-
dimensional) two-level system [33].

Figure 2 displays the mean work output |W | (blue dashed-
dotted), the corresponding variance σ 2

w (red), as well as the
inverse coefficient of variation (9) (green, inset) as a func-
tion of the level number N . Mean and variance increase
monotonously with N , reaching the respective values of the
harmonic oscillator in the limit N → ∞. However, the mean
saturates faster than the variance. The inverse relative work
fluctuations therefore present a maximum that outperforms
both that of the two-level engine and of the harmonic oscil-
lator motor. Contrary to naive expectation, the N-level Carnot
engine does thus not simply interpolate between these two ex-
treme situations. The point of maximum inverse coefficient of
variation is again different from the point of maximum work
output because of increased work fluctuations. The optimal
level number N̄ satisfies the transcendental equation,(

1

2
∂N − 1

)
[CN (βc, ω4) + CN (βh, ω2)]

+
(

1

2
− ∂N

)
�SN = 0, (19)

which may be solved numerically.
Degenerate three-level system. We finally illustrate the

usefulness of Eq. (9) for determining the maximum inverse
coefficient of variation for work for degenerate multilevel
quantum Carnot engines by treating the case of a degener-
ate three-level system with Hamiltonian Ht = ωt (g1 |1〉 〈1| +
2g2 |2〉 〈2|) and arbitrary level degeneracies gn (n = 0, 1, 2).
The partition function at inverse temperature β and frequency
ω is here Z3 = g0 + g1e−βω + g2e−2βω. The corresponding
inverse coefficient of variation for work (9) is represented
as a function of the two degeneracy ratios γ1 = g1/g0 and

FIG. 3. Inverse coefficient of variation for work, |W |/σw , Eq. (9),
for a degenerate three-level quantum Carnot engine, as a function
of the degeneracy ratios γ1 and γ2. We notice a region of high
inverse coefficient of variation for small γ1 and 1 � γ2 � 4, where
nondegenerate two-level (black arrow) and three-level heat engines
(gray arrow) are outperformed. Same parameters as in Fig. 1.

γ2 = g2/g0 in Fig. 3. We identify a region of high inverse
coefficient of variation for small γ1 and 1 � γ2 � 4, where
the quantum Carnot engine outperforms the respective nonde-
generate two-level (black arrow) and three-level engines (gray
arrow). We moreover notice that large ratios γ1, that is, high
degeneracy of the first level, is generally detrimental to the
performance of the heat engine.

Conclusions. Two-level systems and harmonic oscillators
have been the models of choice for the investigations of
quantum heat engines in the past decades due to their sim-
plicity [11–19]. Such finite-time engines have been mostly
optimized by maximizing averaged performance measures,
such as mean power, with respect to cycle duration, frequency,
or temperature [11–19]. We have here extended these studies
to include the effects of work fluctuations and of finite Hilbert
space of the working medium, two essential features of small
quantum machines. To this end, we have derived a compact
expression of the relative work fluctuations of a finite-time
quantum Carnot engine, as given by Eq. (9), in terms of the
heat capacity of the system. We have shown that the quantum
motor can outperform its nondegenerate counterparts, when
optimized with respect to level degeneracy or level number.
We have additionally found that optimizing the average work
output, while ignoring work output fluctuations, generally
leads to machines with larger instability. Our findings hence
enable the analysis and future experimental realization of both
high-performance and high-stability quantum engines.

We acknowledge financial support from the Volkswagen
Foundation under project “Quantum coins and nano sensors”
and the German Science Foundation (DFG) under Project No.
FOR 2724.
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