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Thermodynamic uncertainty relation for first-passage times on Markov chains
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We derive a thermodynamic uncertainty relation (TUR) for first-passage times (FPTs) on continuous time
Markov chains. The TUR utilizes the entropy production coming from bidirectional transitions, and the net flux
coming from unidirectional transitions, to provide a lower bound on FPT fluctuations. As every bidirectional
transition can also be seen as a pair of separate unidirectional ones, our approach typically yields an ensemble
of TURs. The tightest bound on FPT fluctuations can then be obtained from this ensemble by a simple
and physically motivated optimization procedure. The results presented herein are valid for arbitrary initial
conditions, out-of-equilibrium dynamics, and are therefore well suited to describe the inherently irreversible
first-passage event. They can thus be readily applied to a myriad of first-passage problems that arise across a
wide range of disciplines.
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Many interesting phenomena occurring at the molecular
scale can be viewed as first-passage processes [1]. From
chemical reactions [2–6] to enzyme catalysis [7–13] and
molecular search processes [14–18]—one is interested in the
exact moment at which a distinguished event occurs: the first-
passage time (FPT) [1,19–21]. Thermal agitations make FPTs
random and much effort has been directed to determining their
governing statistics in theory and experiment [22–27]. Of par-
ticular interest in that regard is the relative magnitude of FPT
fluctuations around their mean value. This central gauge of
randomness has found numerous uses and applications [6,11–
13,18,23–26,28–38]. Yet, owing to conceptual and technical
challenges, its relation with the underlying thermodynamics
remains poorly understood.

The first-passage event is often described as a completely
irreversible step, and as a result such processes are inherently
out-of-equilibrium. The theory of stochastic thermodynamics
was developed to describe the nonequilibrium thermodynam-
ics of small stochastic systems, such as molecular motors,
enzymes, and nanomachines [39–45]. One of the celebrated
results in the field is the thermodynamic uncertainty relation
(TUR) [46,47]. First conjectured by Barato and Seifert, the
TUR states that the normalized fluctuations of currents are
bounded from below by the inverse entropy production. The
fundamental nature of the TUR has spurred an intensive re-
search effort [48–61].
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There has only been a handful of attempts to extend the
TUR to FPTs. Garrahan [62], whose work was later on gen-
eralized by Gingrich and Horowitz [63], derived a TUR for
a fluctuating current that crosses a predetermined threshold
for the first time. More recently, Falasco and Esposito have
derived a dissipation based speed limit on the mean arrival
time to a target [64]. Notably all the above-mentioned works
focus on systems in steady state. In contrast, in first-passage
processes, such as the one depicted in Fig. 1, one is primarily
interested in the transient dynamics. Moreover, the transition
to the absorbing state is irreversible and therefore its entropy
production is ill defined. These conceptual issues make an
extension of the TUR to FPT processes both interesting and
challenging.

In this letter we derive a TUR for the first-passage time
to a site on a Markov chain. The result is derived from a
more general setup that we have recently introduced to study
systems with unidirectional transitions [59]. Like other TURs,
the TUR derived herein bounds the relative fluctuations of
the first-passage time, but its validity is not limited by the
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FIG. 1. Schematic description of a Markov jump process on a
network with an absorbing state A. We develop a thermodynamic un-
certainty relation that bounds relative fluctuations in the first-passage
time to A.
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steady-state assumption and it can moreover be applied di-
rectly to systems with absorbing states.

First passage on a continuous time Markov chain. On a
Markov network, the probability to find the system in different
states evolves according to the master equation

dP

dt
= �P , (1)

where � is the transition rates matrix. Its off-diagonal ele-
ments satisfy �i j = Ki j , where Ki j is the rate of transitions
from site j to site i. The diagonal entries to � are given by
� j j = −∑

i �= j Ki j , namely the escape rates out of state j. For
physical reasons one often assumes microreversibility, namely
that if Ki j > 0, then the reversed transition is also possible
and Kji > 0. This principle is essential for the thermodynam-
ical consistency of the model. However, when studying the
kinetics of first-passage processes one cannot apply this prin-
ciple to transitions that lead to the absorbing state. Thus the
challenge is to extend existing frameworks so as to take into
account unidirectional transitions [59].

In what follows, we consider models with N regular sites
and one absorbing site labeled N + 1. We also assume that all
the transitions between the regular sites satisfy the principle
of microreversibility. As a result, the transition rate matrix has
the block structure

� =
[

�̄ 0
Kout 0

]
, (2)

where �̄ accounts for the transitions between the regular
states. Kout = (KN+1,1, KN+1,2, . . . , KN+1,N ) is a row vector
containing the transition rates to the absorbing state. For this
class of models the distribution of first-passage times is given
by

fT (t ) = Koute
�̄t P̃ (0), (3)

where P̃ (0) is a vector containing the initial probabilities
to reside in the N regular sites. Once fT (t ) is known one
can calculate and study its moments. In the following we
will focus on the mean and variance, and derive a bound on
CV2 = Var(T )/〈T 〉2, which is known as the coefficient of
variation (CV) or randomness parameter of the first-passage
time.

TUR for first-passage time. A description of first passage
that is in the spirit of stochastic thermodynamics can be ob-
tained by directly considering stochastic realizations of the
Markovian jump process discussed above. In each such re-
alization the system starts at some initial site i0, then jumps to
a site i1 at time t1, etc. An ensemble of all the realizations of
duration T is obtained by assigning to each such realization
its probability density. Now, let us define the functional

T [ω] =
∑
i �=A

τi[ω], (4)

where τi[ω] is the total time the realization ω spent in site
i throughout the observation time T . One notices that if the
absorbing state is reached in a realization ω, then T [ω] is sim-
ply the first-passage time. Alternatively T [ω] = T . The latter
occurs with the survival probability S (T ). In finite and con-
nected networks S (T ) decays exponentially as T → ∞ [65].

In this limit the statistics of T [ω] is precisely that of the
first-passage time.

A TUR for the first-passage time can be obtained with the
help of a more general inequality that we recently derived
for Markovian jump processes in systems with unidirectional
transitions [59]. For the functional (4) it takes the form

Varω[T (ω)] �
[
T S (T ) − ∫ T

0 dt S (t )
]2

∫ T
0 dt

[
1
2σrev(t ) + Juni(t )

] , (5)

where the survival probability can also be understood as
the ensemble averaged rate of change of the functional (4):
S (t ) = d

dt 〈T [ω]〉t . Notably, the bound in [59] also holds for
functionals that count transitions between states, and for mod-
els with more general transitions than the ones considered
here.

To understand the denominator of Eq. (4) we first note that
transitions in our model can be divided into two sets. The set
of unidirectional transitions E1 and the set of bidirectional
transitions E2. Importantly, every transition in the bidirec-
tional set must have a reversed counterpart which is also in E2.
So if (i → j) ∈ E2, then also ( j → i) ∈ E2. There is no such
restriction on transitions in E1. In stochastic thermodynamics
all the transitions are often considered to be bidirectional due
to microreversibility. One can then interpret

σrev(t ) =
∑

( j→i)∈E2

1

2
[KjiPi(t ) − Ki jPj (t )] ln

KjiPi(t )

Ki jPj (t )
(6)

as the rate of entropy production from bidirectional transi-
tions. In contrast, the contribution of unidirectional transitions
is

Juni(t ) =
∑

( j→i)∈E1

Ki jPj (t ), (7)

which expresses their flux.
A crucial aspect of Eq. (5) is that it holds for arbitrary

partitions of the model’s transitions into groups E1 and E2.
For the first-passage models we study here, the transitions to
the absorbing state must belong to the unidirectional set E1 as
they have no reverse counterpart. All other pairs of transitions
that satisfy microreversibility can be placed in either E1 or E2.
Thus, a reversible transition that would usually be placed in E2

can be treated as a pair of irreversible transitions and put in E1

instead. This freedom of choice gives rise to a set of bounds
that emanate from Eq. (5). We emphasize that all these bounds
are equally valid, and which one should be used is discussed
at the end of this derivation.

To complete the derivation of a bound for the
first-passage time we consider the T → ∞ limit of Eq. (5).
Using

∫ T
0 dt S(t ) = T S(T ) + ∫ T

0 dt t fT (t ) and 〈T 〉 =
limT →∞

∫ T
0 dt t fT (t ), we recast Eq. (5) as

CV2 � 1∫ ∞
0 dt

[
1
2σrev(t ) + Juni(t )

] . (8)

Equation (8) is the central result of this paper. It shows that
the coefficient of variation of the first-passage time is bounded
from below by an expression that combines the entropy pro-
duction from the transitions in E2 and the fluxes from the
transitions in E1. We now discuss different representations of
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the bound that arise from the freedom to place transitions in
either of these groups.

Entropic bound. This form of the bound is obtained when
all the bidirectional transitions are treated as such and put in
group E2. The remaining transitions are thus those that lead to
the absorbing site A. In this case, the unidirectional flux Juni(t )
from Eq. (7) reduces to the first-passage time density fT (t )
[given by Eq. (3)] whose integral over time is unity. Thus,∫ ∞

0 dtJuni(t ) = 1. Crucially, the entropy production

�all
rev =

∫ ∞

0
dt σrev(t ), (9)

given by the time integral of Eq. (6), is now summed over
all the bidirectional transitions. The entropic version of the
bound is then given by

CV2 � 1
1
2�all

rev + 1
. (10)

Kinetic bound. The kinetic bound is obtained when all
the reversible transitions, that were placed in E2 in the en-
tropic form of the bound, are treated as pairs of irreversible
transitions and put in E1. As a result, the reversible entropy
production vanishes. In contrast, �all

uni is the integrated flux
from all transitions

�all
uni =

∫ ∞

0
dtJuni(t ) =

∑
( j→i)

∫ ∞

0
dtKi jPj (t ), (11)

which is equivalent to the expected number of transitions. In
this case one obtains the bound

CV2 � 1

�all
uni

. (12)

As this paper was being prepared, Hiura and Sasa derived
a kinetic TUR that is closely related to the one presented
in Eq. (12) [66]. We discuss the relation between these two
results at the end of this letter.

Mixed bounds. Clearly Eqs. (10) and (12) follow extreme
cases in which one considers the maximally possible number
of transitions to be either bidirectional or unidirectional. Yet,
one may also utilize the freedom to place some bidirectional
transitions in E2, while treating others as pairs of unidirec-
tional transitions to be placed in E1. This leads to a bound of
the form

CV2 � 1
1
2�mixed

rev + �mixed
uni

. (13)

Here �mixed
rev and �mixed

uni are similar to (9) and (11), but with the
summation restricted to the appropriate subset of transitions.

The optimal bound. The validity of several bounds raises
a natural question: which bound should one use? A simple
algorithm allows us to obtain the tightest bound from the
family of bounds considered here. One has to scan over
all pairs of sites i, j. For every pair of transitions i → j
and j → i that can belong either to E1 or to E2 one cal-
culates the quantities �1 = ∫ ∞

0 dt[Ki jPj (t ) + KjiPi(t )] and

�2 = ∫ ∞
0 dt[Ki jPj (t ) − KjiPi(t )] ln[ Ki j Pj (t )

KjiPi (t ) ]. If �1 < �2 one
includes a contribution of �1 in �uni. Alternatively, one in-
cludes a contribution of �2 in �rev.

We call this bound the optimal bound, where the term
optimal refers to the optimal partition of transitions into E1

and E2. Finding this optimal partition is relatively easy since
each transition can be treated separately. Moreover, in many
cases one can use physical intuition to figure out what to do
with a given transition. For example, if a transition is expected
to be almost detailed balanced, Ki jPj (t ) � KjiPi(t ), then it is
highly likely that �2 < �1 as illustrated below.

An illustrative example. A simple model of a one-
dimensional random walker is used to elucidate our approach
and to connect to related results. The model consists of a
linear chain of six sites, where the leftmost site is reflecting
and the rightmost is absorbing [Fig. 2(a)]. The walker starts
at the leftmost site, and jumps from site to site. All forward
transitions in the model occur with rate k+, except the 3 → 4
and 5 → 6 transitions that occur with rates kr and k f , respec-
tively. All backward transitions in the model occur with rate
k−, except the 4 → 3 transition that occurs with rate kl . This
parametrization of rates is flexible enough to exhibit several
types of physically interesting behavior.

In Fig. 2(b) we demonstrate that the optimal bound transi-
tions from the entropic form of Eq. (10) to the kinetic form
of Eq. (12). To do so, we set k+ = kr = k f = 1, and k− =
kl = e−ε ; and observe that all transitions are approximately
unidirectional when ε is large. In this limit entropy production
is very high. It is thus no surprise that replacing entropic with
kinetic terms results in a tighter bound. On the other extreme,
for small values of ε, there is almost no bias which results
in a quasiequilibrium on the bulk of the lattice as probability
gradually leaks to the absorbing site. In this limit, entropy
production is much lower and the inclusion of entropic terms
leads to a tighter bound. (We use the term quasiequilibrium
loosely, as the flux to the absorbing site is not small.) For
intermediate values of ε, there is a crossover region where the
behavior is more complex leading to a mixed optimal bound
that includes both entropic and kinetic terms [Fig. 2(b) inset].

To show that a mixed bound can be optimal in large regions
of the phase space, we make a different choice for the rates
in Fig. 2(a): k+ = k− = 1, kr = k f = 1/5, and kl = e−ε/5.
The lattice is then approximately divided into two blocks:
that of sites {1,2,3} and that of sites {4,5}, with less frequent
transitions between the blocks. When ε = 0, a lattice spanning
quasiequilibrium is formed and one expects the optimal bound
to be entropic. In contrast, when ε is large the transition
between lattice blocks is almost irreversible. In this case, a
quasiequilibrium is formed in each block separately, and one
expects that the tightest bound will be achieved by taking
entropy production terms for transitions within blocks and
flux terms for transitions between blocks. Fig. 2(c) shows that
this is indeed the case. For all parameters in this panel the
kinetic bound performs poorly.

Applications to Fokker-Planck dynamics. We observe
that the results presented here also apply directly to dis-
crete approximations of continuous Fokker-Planck dynamics
(see [67,68] for such discretization schemes). This suggests
that the methods described above can be used to obtain useful
bounds for fluctuations of first-passage times coming from
the solution of Fokker-Planck equations. Indeed, the approach
developed herein ensures that one can replace the infinite
contribution of the irreversible transition by a finite value.
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FIG. 2. (a) A model of a random walk on a finite 1D lattice. (b) The optimal bound on the CV of the FPT transitions from entropic to
kinetic as motion on the lattice becomes heavily biased to the right (larger ε, see main text for details). The inset focuses on the crossover
region. The crossover from entropic to kinetic propagates from the edges of the system to its center. (c) The optimal bound on the CV of the
FPT transitions from entropic to mixed, as the transition from the {1,2,3} block to the {4,5} block become more unidirectional (larger ε, see
main text for details).

However, it turns out that an additional level of regularization
is required when dealing with Fokker-Planck dynamics.

The difficulty is due to the finite current and vanish-
ing probability density near an absorbing boundary. Setting
ρ(x, t ) as the propagator and J (x, t ) ∝ −∂xρ(x, t ) as the cur-
rent, the continuous entropy production, which is proportional
to the integral

∫
dt

∫
dx J2(x,t )

ρ(x,t ) [40], diverges. Employing a
discrete approximation of the Fokker-Planck dynamics allows
one to avoid this divergence, by regularizing the contribution
of the unidirectional transition at the boundary region. How-
ever, one is still left with the reversible entropy production
from the rest of the system. For thermodynamically consis-
tent discretization schemes the reversible entropy production
essentially entails computing the integral given above over a
domain that ends one lattice site away from the boundary.
As the probability density vanishes there, the integral will
diverge logarithmically when finer and finer lattices are used,
resulting in a trivial bound CV2 � 0. Ways to deal with this
issue, which arises when taking the continuum limit, require
further research and will be discussed elsewhere.

Summary and discussion. The thermodynamics of first-
passage time (FPT) processes was poorly understood owing
to two fundamental challenges: transient dynamics and irre-
versible transitions which render the entropy production ill
defined. In this letter we showed how these issues can be
overcome to derive a thermodynamic uncertainty relation that
poses a lower bound on FPT fluctuations. The bound reveals
that fluctuations can only be reduced at the expense of higher
fluxes and/or entropy production; which has immediate appli-
cations to chemical and enzymatic reactions, and to molecular
search processes, where FPT fluctuations are of central impor-
tance.

Our approach allows one to consider models with com-
pletely irreversible transitions which are commonly used
to study first-passage problems. Crucially, we derive mixed
bounds that combine kinetic and thermodynamic contribu-
tions from different transitions on the Markov network at
hand. While the paper was being prepared, a different but
related approach was used in [66] to derive an uncertainty
relation for first-passage times of integrated currents (see
also [69,70] for other kinetic uncertainty relations). When
applied for first-passage problems of the type studied here, the

bound derived there is equivalent to the fully kinetic version
of our bound and is therefore restricted to a specific partition
of transitions. The results presented in Fig. 2, as well as the
considerations below, suggest that the ability to also consider
mixed bounds is important.

Our results show an interesting connection to another well
known bound

CV2 � 1

N
, (14)

where N is again the number of kinetic states in the model
(excluding the absorbing state). The bound (14) was proven
by Aldous and Shepp (AS) [71], and is often used in the field
of statistical kinetics [24–26]. Barato and Seifert [72] have
shown that higher moments of first-passage times also satisfy
inequalities that depend on the number of states of the model.

We now discuss the relation between the TUR and the AS
bound, with the help of the example depicted in Fig. 2. If all
the transitions are irreversible, meaning k− = kl = 0, then one
is forced to use the kinetic bound. In this case �uni = N =
5 since the walker moves sequentially from the first site to
the second, and continues moving right in this manner until it
reaches the last site which is absorbing. We therefore recover
the bound (14).

Using the kinetic bound when k− or kl are nonvanishing
will give �uni > N , and thus a bound which is looser than
the AS bound. Yet, a mixed TUR bound can significantly
improve on the AS result. Consider, for example, a scenario
with kl = 0 and kr, k f 
 k−, k+. These dynamics consist of
fast local equilibration in two blocks of states: {1,2,3} and
{4,5}, and rare transitions between the blocks. Here, a mixed
bound, which uses the entropy production from the blocks and
the fluxes of the unidirectional transitions, is tightest. In such a
configuration, one expects �uni = 2 and �rev < 1: The mixed
TUR behaves as if it is an AS bound of a coarse-grained model
with two effective kinetic states. This is consistent with the
results depicted in Fig. 2(c).

Importantly, Markovian models are coarse-grained approx-
imations of underlying microscopic dynamics. When several
states of a model are almost always in local equilibrium with
each other, thermodynamic consistency demands that we can
coarse-grain them into one effective state, to obtain an even
simpler model. The considerations above show how to get a
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TUR for coarse-grained models by appropriately partitioning
transitions into two groups: uni- and bidirectional.

Finally, we note that some of the restrictions imposed on
the model above can be relaxed without many difficulties. The
approach works for models with several physically distinct
transitions between the same states. One simply needs to
view these as separate transitions. It is also possible to study
models where irreversible transitions are part of the Markov
chain [59,73–75]. Importantly, these transition do not need to
lead to an absorbing state. One can also study models with

several absorbing states. The derivation given in Ref. [59]
generically shows how to handle such models.
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[38] A. Pal, Ł. Kuśmierz, and S. Reuveni, Search with home returns
provides advantage under high uncertainty, Phys. Rev. Res. 2,
043174 (2020).

[39] K. Sekimoto, Stochastic Energetics (Springer, Berlin, 2010),
Vol. 799.

[40] U. Seifert, Stochastic thermodynamics, fluctuation theorems
and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).

[41] C. Jarzynski, Equalities and inequalities: Irreversibility and the
second law of thermodynamics at the nanoscale, Annu. Rev.
Condens. Matter Phys. 2, 329 (2011).

[42] R. Klages, W. Just, and C. Jarzynski, Eds., Nonequilibrium
Statistical Physics of Small Systems (Wiley-VCH, Berlin, 2013).

[43] C. Van den Broeck and M. Esposito, Ensemble and trajectory
thermodynamics: A brief introduction, Physica A 418, 6 (2015).

[44] S. Ciliberto, Experiments in Stochastic Thermodynamics: Short
History and Perspectives, Phys. Rev. X 7, 021051 (2017).

[45] C. Pezzato, C. Cheng, J. F. Stoddart, and R. D. Astumian, Mas-
tering the non-equilibrium assembly and operation of molecular
machines, Chem. Soc. Rev. 46, 5491 (2017).

[46] A. C. Barato and U. Seifert, Thermodynamic Uncertainty Rela-
tion for Biomolecular Processes, Phys. Rev. Lett. 114, 158101
(2015).

[47] T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L. England,
Dissipation Bounds All Steady-State Current Fluctuations,
Phys. Rev. Lett. 116, 120601 (2016).

[48] J. M. Horowitz and T. R. Gingrich, Thermodynamic uncertainty
relations constrain non-equilibrium fluctuations, Nat. Phys. 16,
15 (2020).

[49] U. Seifert, From stochastic thermodynamics to thermodynamic
inference, Annu. Rev. Condens. Matter Phys. 10, 171 (2019).

[50] J. M. Horowitz and T. R. Gingrich, Proof of the finite-time
thermodynamic uncertainty relation for steady-state currents,
Phys. Rev. E 96, 020103 (2017).

[51] P. Pietzonka, F. Ritort, and U. Seifert, Finite-time generalization
of the thermodynamic uncertainty relation, Phys. Rev. E 96,
012101 (2017).

[52] K. Proesmans and C. Van den Broeck, Discrete-time thermody-
namic uncertainty relation, Europhys. Lett. 119, 20001 (2017).

[53] A. C. Barato, R. Chetrite, A. Faggionato, and D. Gabrielli,
Bounds on current fluctuations in periodically driven systems,
New J. Phys. 20, 103023 (2018).

[54] A. Dechant and S. I. Sasa, Current fluctuations and transport
efficiency for general Langevin systems, J. Stat. Mech. (2018)
063209.

[55] Y. Hasegawa and T. Van Vu, Uncertainty relations in stochastic
processes: An information inequality approach, Phys. Rev. E
99, 062126 (2019).

[56] S. Ito and A. Dechant, Stochastic Time Evolution, Informa-
tion Geometry, and the Cramér-Rao Bound, Phys. Rev. X 10,
021056 (2020).

[57] Y. Hasegawa and T. Van Vu, Fluctuation Theorem Uncertainty
Relation, Phys. Rev. Lett. 123, 110602 (2019).

[58] G. Falasco, M. Esposito, and J. C. Delvenne, Unifying ther-
modynamic uncertainty relations, New J. Phys. 22, 053046
(2020).

[59] A. Pal, S. Reuveni, and S. Rahav, Thermodynamic uncertainty
relation for systems with unidirectional transitions, Phys. Rev.
Res. 3, 013273 (2021).

[60] K. Liu, Z. Gong, and M. Ueda, Thermodynamic Uncertainty
Relation for Arbitrary Initial States, Phys. Rev. Lett. 125,
140602 (2020).

[61] T. Koyuk and U. Seifert, Thermodynamic Uncertainty Relation
for Time-Dependent Driving, Phys. Rev. Lett. 125, 260604
(2020).

[62] J. P. Garrahan, Simple bounds on fluctuations and uncertainty
relations for first-passage times of counting observables, Phys.
Rev. E 95, 032134 (2017).

[63] T. R. Gingrich and J. M. Horowitz, Fundamental Bounds on
First Passage Time Fluctuations for Currents, Phys. Rev. Lett.
119, 170601 (2017).

[64] G. Falasco and M. Esposito, Dissipation-Time Uncertainty Re-
lation, Phys. Rev. Lett. 125, 120604 (2020).

[65] D. T. Gillespie, Markov Processes: An Introduction for Physical
Scientists (Elsevier, Amsterdam, 1991).

[66] K. Hiura and S. I. Sasa, Kinetic uncertainty relation on first-
passage time for accumulated current, Phys. Rev. E 103,
L050103 (2021).

[67] V. Holubec, K. Kroy, and S. Steffenoni, Physically consistent
numerical solver for time-dependent Fokker-Planck equations,
Phys. Rev. E 99, 032117 (2019).

[68] J. S. Chang and G. Cooper, A practical difference scheme for
Fokker-Planck equations, J. Comput. Phys. 6, 1 (1970).

[69] I. Di Terlizzi and M. Baiesi, Kinetic uncertainty relation,
J. Phys. A: Math. Theor. 52, 02LT03 (2018).

[70] A. Dechant and S. I. Sasa, Fluctuation-response inequality out
of equilibrium, Proc. Natl. Acad. Sci. USA 117, 6430 (2020).

[71] A. David and S. Larry, The least variable phase type distribution
is Erlang, Stochastic Models 3, 467 (1987).

[72] A. C. Barato and U. Seifert, Skewness and Kurtosis in Statistical
Kinetics, Phys. Rev. Lett. 115, 188103 (2015).

[73] S. Rahav and U. Harbola, An integral fluctuation theorem for
systems with unidirectional transitions, J. Stat. Mech. (2014)
P10044.

[74] A. Pal and S. Rahav, Integral fluctuation theorems for stochastic
resetting systems, Phys. Rev. E 96, 062135 (2017).

[75] D. Gupta, C. A. Plata, and A. Pal, Work Fluctuations and
Jarzynski Equality in Stochastic Resetting, Phys. Rev. Lett. 124,
110608 (2020).

L032034-6

https://doi.org/10.1016/j.bpj.2011.06.022
https://doi.org/10.1021/jp506141v
https://doi.org/10.1103/PhysRevLett.116.170601
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1002/cbic.201700695
https://doi.org/10.1103/PhysRevLett.122.020602
https://doi.org/10.1103/PhysRevResearch.2.043174
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/10.1016/j.physa.2014.04.035
https://doi.org/10.1103/PhysRevX.7.021051
https://doi.org/10.1039/C7CS00068E
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1038/s41567-019-0702-6
https://doi.org/10.1146/annurev-conmatphys-031218-013554
https://doi.org/10.1103/PhysRevE.96.020103
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1209/0295-5075/119/20001
https://doi.org/10.1088/1367-2630/aae512
https://doi.org/10.1088/1742-5468/aac91a
https://doi.org/10.1103/PhysRevE.99.062126
https://doi.org/10.1103/PhysRevX.10.021056
https://doi.org/10.1103/PhysRevLett.123.110602
https://doi.org/10.1088/1367-2630/ab8679
https://doi.org/10.1103/PhysRevResearch.3.013273
https://doi.org/10.1103/PhysRevLett.125.140602
https://doi.org/10.1103/PhysRevLett.125.260604
https://doi.org/10.1103/PhysRevE.95.032134
https://doi.org/10.1103/PhysRevLett.119.170601
https://doi.org/10.1103/PhysRevLett.125.120604
https://doi.org/10.1103/PhysRevE.103.L050103
https://doi.org/10.1103/PhysRevE.99.032117
https://doi.org/10.1016/0021-9991(70)90001-X
https://doi.org/10.1088/1751-8121/aaee34
https://doi.org/10.1073/pnas.1918386117
https://doi.org/10.1080/15326348708807067
https://doi.org/10.1103/PhysRevLett.115.188103
https://doi.org/10.1088/1742-5468/2014/10/P10044
https://doi.org/10.1103/PhysRevE.96.062135
https://doi.org/10.1103/PhysRevLett.124.110608

