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Observation of second- and higher-order electric quadrupole interactions with an atomic ion
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We observe an atomic ion’s response to an electric quadrupole field to second and higher orders; this arises
from the ion’s electric quadrupole polarizability and hyperpolarizabilities. We probe a single 88Sr+ ion which is
confined in the electric fields of a Paul trap and excited to Rydberg states. The quadrupolar trapping fields cause
atomic energy level shifts and give rise to spectral sidebands. The effects on Rydberg S1/2 states are described
well by second-order perturbation calculations. The stronger effects on Rydberg P1/2 states are captured by full
diagonalization of the Hamiltonian.
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I. INTRODUCTION

Second- and higher-order quadrupole responses contribute
to interatomic [1,2] and intermolecular [3] interactions; they
affect crystal structures [4], surface and bulk phonons [5], the
chemistry of solvents [6], and the behavior of nanoantennas
[7]. Quadrupole effects are well known in trapped ion systems,
where strong electric quadrupole fields provide confinement.
First-order quadrupole shifts (due to the relatively weak static
quadrupole field) affect trapped ion atomic clocks and preci-
sion spectroscopy experiments [8]. Second-order shifts (due
to all of the trapping quadrupole fields) may become relevant
in improved trapped ion precision experiments [9], and may
affect transitions involving F > 1

2 states at the 10-18 level [10],
as shown in the Supplemental Material [11]. In addition, the
Sr optical lattice clock is predicted to be sensitive to second-
order ac quadrupole shifts due to the lattice laser fields at the
10-19 level [12].

Rydberg states of atoms, ions, and molecules are highly
excited states which are extremely sensitive to external fields.
Various experiments are emerging which involve Rydberg
states in strong quadrupole trapping fields: hybrid systems
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of neutral Rydberg atoms and trapped ions allow atom-ion
interactions to be studied [13,14], Rydberg molecules can be
sensitively detected using an ion trap [15], trapped Rydberg
ions have recently shown potential for quantum computing
[16], and precision spectroscopy of Rydberg systems could be
used to search for a fifth fundamental force [17]. The ion trap’s
electric fields cause extreme Stark effects in these systems,
which have been extensively studied previously [13,14,18–
22]. In trapped Rydberg ion systems Stark effects can be di-
minished by minimizing the dipole electric field experienced
by the ions (by cooling the ion motion to the ground state
[18,20] and by minimizing ion micromotion [21]), or else by
reducing the Rydberg dipole polarizability using microwave
dressing [23,24].

In this Rapid Communication we study quadrupole effects
on Rydberg ions. Rydberg states in ion traps can display
giant first-order quadrupole effects [18,20]. These effects are
diminished by using J = 1

2 Rydberg states, which do not have
permanent quadrupole moments. However, quadrupole effects
cannot be removed entirely; here we investigate second- and
higher-order quadrupole effects displayed by a trapped ion
in J = 1

2 Rydberg states due to the states’ quadrupole po-
larizabilities and hyperpolarizabilities. We observe that the
quadrupole trapping fields cause energy level shifts, and that
the oscillating energy level shift due to the oscillating trapping
field gives rise to spectral sidebands. These effects will need
to be considered in future experiments involving neutral Ryd-
berg atoms, molecules, or ions in electric quadrupole traps.

II. THEORETICAL BACKGROUND

An external electric potential � perturbs a distribution of
charges by

H ′ =
∑

i

qi� =
∑
ilm

qiφ
m
l rlY m

l (θ, φ) (1)

where qi are the charges, � is expanded in terms of spheri-
cal harmonics Y m

l (θ, φ), φm
l are scalars, and {r, θ, φ} are the

spherical coordinates. The energy shift caused by H ′ on a
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charge distribution may be described perturbatively [25]:

E ′ = −
∑
lm

Qm
l φm

l −
∑

l1l2m1m2

α
m1m2
l1l2

φ
m1
l1

φ
m2
l2

+ O(φ3) (2)

where Qm
l is the lth multipole moment, α

m1m2
l1l2

is the multipole
polarizability, and the O represents higher-order terms. For-
mulas describing Qm

l and α
m1m2
l1l2

are given in the Supplemental
Material [11].

Qm
1 describes the dipole moment, which gives rise to the

linear Stark effect, and α
m1m2
11 describes the dipole polariz-

ability, which gives rise to the second-order (quadratic) Stark
effect. Qm

2 describes the quadrupole moment, which gives rise
to the first-order quadrupole shift, which is well known in
trapped ion precision spectroscopy when states with angular
momentum J > 1

2 are involved [8]. In this Rapid Communica-
tion we present second-order quadrupole effects on an atomic
ion, which arise from the action of a quadrupole field on the
ion’s quadrupole polarizability α

m1m2
22 .

In our experiment the perturbing electric potential is the
trapping potential of a linear Paul trap. The approximate elec-
tric potential close to the trap center is

� = (φrf cos �t + φrad )r2
[
Y 2

2 (θ, φ) + Y −2
2 (θ, φ)

]
+ φaxr2Y 0

2 (θ, φ)
(3)

where � is the frequency of the oscillating quadrupole field,
φrf describes its strength, the φax term provides axial con-
finement, the φrad term causes the radial nondegeneracy, θ

is relative to the trap symmetry axis, and we consider the
case where the trap symmetry axis is collinear with the mag-
netic field axis. When the trap symmetry axis is not collinear
with the magnetic field axis, rotation between the coordinate
systems defined by these axes is achieved using the Wigner
D-matrix, as in [8]. {φrf , φax, φrad} are related to the ion’s
secular frequencies {ωx, ωy, ωz} by

φrf =
√

2π

15

1

q
M�

√
ω2

x + ω2
y + ω2

z ,

φax =
√

π

5

1

q
Mω2

z ,

φrad =
√

π

30

1

q
M

(
ω2

x − ω2
y

)
(4)

where M is the ion mass and q is the elementary charge.
In this potential a J � 1

2 state, which has a quadrupole
polarizability α22 ≡ α00

22 = − 1
2 (α1−1

22 + α−11
00 ) = 1

2 (α2−2
22 +

α−22
22 ) and no quadrupole moment (Qm

2 = 0), is shifted by [26]

E ′ = α22
(
φ2

rf cos 2�t + 4φrfφrad cos �t

+ φ2
rf + 2φ2

rad + φ2
ax

) + O(φ3)

≈ E ′
2 cos 2�t + E ′

1 cos �t + E ′
0

(5)

where the O represents the higher-order response to
quadrupole fields, and we introduce E ′

0, E ′
1, and E ′

2 for clarity.
The static energy shift E ′

0 causes resonance frequency
shifts, which depend on the field strengths, while the oscil-
lating energy shifts E ′

1 and E ′
2 give rise to spectral sidebands.

FIG. 1. Relevant level scheme of 88Sr+. We probe the excitation
spectra of Rydberg S1/2 and P1/2 states. We prepare ions in a Zeeman
sublevel of 4D5/2 using the “qubit” laser field, and we probe Rydberg
S1/2 and P1/2 states using two UV laser fields, as well as a microwave
field. Spectroscopy signals rely on decay from 6P3/2, nS1/2, and nP1/2

to the ground state 5S1/2. Scattering of 422-nm fluorescence light is
used to distinguish whether the ion is in the initial state 4D5/2 or the
ground state 5S1/2.

III. METHODS

We observe both the resonance shifts [due to E ′
0 in Eq. (5)]

and the spectral sidebands [caused by the E ′
1 and E ′

2 terms
in Eq. (5)] in the excitation spectra of Rydberg S1/2 and P1/2

states of a single trapped 88Sr+ ion. We probe a Zeeman sub-
level of a Rydberg S1/2 state using two ultraviolet (UV) laser
fields; a 243-nm field couples the initial state 4D5/2 with the
intermediate state 6P3/2, and a 306-nm field couples 6P3/2 with
nS1/2. We probe a Zeeman sublevel of a Rydberg P1/2 state
using three fields: the two UV fields as well as a microwave
field which couples Rydberg S1/2 states to Rydberg P1/2 states.
Spectroscopy signals rely on the decay of states 6P3/2, nS1/2,
and nP1/2 to the ground state 5S1/2; whether or not the ion
is in the ground state is detected using ion fluorescence [20].
The entire process can be described as optical pumping from
4D5/2 → 5S1/2. The level scheme is shown in Fig. 1.

We use four different spectroscopy techniques. Three of
the techniques are for probing nS1/2 states, and the other one
is for probing nP1/2 states. Methods 2 and 3 offer resistance
to ion loss by double ionization [27], while method 4 is well
suited for probing weak resonances.

(1) Method 1 is for probing nS1/2: the 243-nm field
is detuned from the 4D5/2 ↔ 6P3/2 resonance and the fre-
quency of the 306-nm field is scanned. When a two-photon
4D5/2 ↔ nS1/2 transition is resonant population is pumped
from 4D5/2 → 5S1/2 via nS1/2.

(2) Method 2 is for probing nS1/2: a weak 243-nm field
resonantly couples 4D5/2 ↔ 6P3/2 while the frequency of a
strong 306-nm field is scanned. When the 306-nm field is not
resonant to the 6P3/2 ↔ nS1/2 transition population is pumped
from 4D5/2 → 5S1/2 via 6P3/2. When the 306-nm field is near
resonant it shifts the 6P3/2 level, causing an Autler-Townes
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splitting which detunes the 243-nm field and reduces the rate
of pumping 4D5/2 → 5S1/2 via 6P3/2.

(3) Method 3 is for probing n′P1/2: building on method 2,
the 243- and 306-nm fields are resonant while the frequency
of the microwave field is scanned. When the microwave field
is resonant to a nS1/2 ↔ n′P1/2 transition the 6P3/2 ↔ nS1/2

coupling is weakened and the Autler-Townes splitting in the
4D5/2 ↔ 6P3/2 spectrum is broken, and the rate of pumping
4D5/2 → 5S1/2 via 6P3/2 is increased. Methods 2 and 3 rely on
the opening and closing of the 4D5/2 → 5S1/2 optical pump-
ing path, depending on the frequency shifts due to dressing by
the 306-nm laser field and the microwave field.

(4) Method 4 is for probing the 6P3/2 ↔ nS1/2 coupling
strength: a strong 306-nm field resonantly couples 6P3/2 ↔
nS1/2. The frequency of a weak 243-nm field is scanned; the
resulting spectrum shows an Autler-Townes doublet the split-
ting of which reveals the 6P3/2 ↔ nS1/2 coupling strength.
This method is well suited for probing weak resonances.

Methods 1 and 4 were previously used in [20,28], respec-
tively. We introduce methods 2 and 3, which offer resistance
to losses through double ionization 88Sr+ → 88Sr2+ [27]. This
advantage is described in detail in the Supplemental Material
[11].

Although the initial 4D5/2 state and intermediate 6P3/2

state have permanent quadrupole moments we safely neglect
the effects of the quadrupole fields on these states, since the
effects on the J = 1

2 Rydberg states are around six orders of
magnitude larger.

Drifts of the strengths of the trapping quadrupole fields will
cause quadrupole shifts (E ′

0) and thus resonance frequencies to
drift. We combat this by actively stabilizing the amplitude of
the oscillating electric field in our system [29,30].

So that quadrupole effects dominate the Rydberg-
excitation spectra, we mitigate Stark effects by minimizing
the dipole electric field experienced by the ion. We achieve
this by cooling the ion motion to the ground state [18,20] and
by minimizing ion micromotion [21].

IV. RESULTS

A. Static energy level shift

The static energy level shift due to the quadrupole fields
[E ′

0 in Eq. (5)] means that Rydberg excitation frequencies
depend on the field strengths. We investigate this by mea-
suring the 4D5/2 ↔ 56S1/2 and 4D5/2 ↔ 56P1/2 resonance
frequencies as the amplitude of the oscillating field φrf is
varied; the results are shown in Fig. 2. The energy re-
quired for excitation of 56S1/2 depends quadratically on φrf

[Fig. 2(a)], according to the second-order perturbation de-
scription in Eq. (5); a quadratic fit returns α22 = (1.11 ±
0.03) × 10−44 J m4 V−2. The theory curve uses the theory
value of the 56S1/2 quadrupole polarizability α22 = 1.18 ×
10−44 J m4 V−2. The experimental data in Figs. 2(a) and 2(b)
were obtained using methods 1 and 3, respectively.

Rydberg P1/2 states are generally more sensitive to
quadrupole fields than Rydberg S1/2 states, since the fields
couple P1/2 states to the energetically nearby P3/2 states (as
well as more distant F5/2 states), while the fields only couple
S1/2 states to the more distant D states. The higher sensitivity

FIG. 2. Rydberg state energies depend on the strength of the
oscillating quadrupole field φrf . (a) The response of 56S1/2 to φrf is
described by the second-order perturbative calculation. (b) The re-
sponse of 56P1/2 to φrf is described better by the full diagonalization
calculation than by the second-order perturbative calculation. Error
bars representing uncertainties in resonance frequencies at the 68%
confidence level are visible in (a) while they are smaller than the
markers in (b).

of 56P1/2 relative to 56S1/2 is seen by comparing Fig. 2(b)
with Fig. 2(a). The solid curve shows the response calcu-
lated using second-order perturbation theory, which returns
α22 = 1.05 × 10−43 J m4 V−2 for 56P1/2. The strong response
of 56P1/2 to φrf means that terms in the perturbation expansion
that are higher than second order cannot be neglected. Instead
of using higher-order perturbation calculations, we capture the
higher-order terms by full diagonalization of the Hamiltonian
(details in the Supplemental Material [11]). The full diagonal-
ization calculation (dashed curve) describes the experimental
data better than the second-order perturbation calculation. The
full diagonalization calculation results do not describe the ex-
perimental data perfectly; this could be because Stark effects
are not considered, and Stark effects were not completely
mitigated in the experiment.

B. Oscillating energy level shift

The oscillating quadrupole field φrf causes an oscillat-
ing quadrupole shift [Eq. (5)], which leads to sidebands in
Rydberg-excitation spectra, as shown in Figs. 3(a) and 3(b).
Two sets of sidebands can appear: the modulation with fre-
quency � causes sidebands at multiples of � described by
modulation index β1 = E ′

1
h̄�

while the modulation with fre-
quency 2� causes sidebands at multiples of 2� described by
modulation index β2 = E ′

2
2h̄�

. In a linear Paul trap the oscil-
lating field strength is usually much larger than the strengths
of the static fields φrf � φax, φrad and E ′

0 ≈ E ′
2 � E ′

1 and
β2 � β1. This means the sidebands at multiples of 2� are
much larger than the sidebands at multiples of �. We operate
our trap in this regime. The experimental data in Figs. 3(a) and
3(b) were obtained using methods 2 and 3, respectively.

The 4D5/2 ↔ 56S1/2 spectrum in Fig. 3(a) displays a
saturated carrier peak and weak sidebands due to the 2�

modulation. No sidebands due to the much weaker � mod-
ulation are visible. Good agreement is observed between the
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FIG. 3. The oscillating quadrupole shift introduces sidebands
to Rydberg-excitation spectra. (a) The 56S1/2 excitation spectrum
displays weak 2� sidebands. (b) The 57P1/2 excitation spectrum dis-
plays a forest of sidebands. The inset shows a 10-MHz section of the
spectrum around 10 � detuning. (c) The modulation index β2 (which
describes the sideband amplitudes) increases with the amplitude of
the oscillating quadrupole field φrf ; state 56P1/2 was used. (d) β2 in-
creases with the principal quantum number n of Rydberg P1/2 states.
In (c) and (d) the measured β2 is described better by the full diagonal-
ization calculation than by the second-order perturbative calculation.
Throughout this Rapid Communication � = 2π × 18.1 MHz. Error
bars represent 68% confidence intervals; in (a) and (b) error bars
represent quantum projection noise; in (c) and (d) error bars represent
uncertainties in extracting β2 from spectra.

experimental data and the theory curve: the theory curve uses
the calculated 56S1/2 quadrupole polarizability and experi-
mentally determined parameters (the sole free parameter is the
resonance frequency).

Before we discuss nP1/2 spectra we refine a point made
earlier: Due to the technique we use to probe nP1/2 states
(method 3), the nP1/2 excitation spectra are described by a
modulation index which depends on the difference between

the nS1/2 and nP1/2 modulations β2 = E ′
2,P−E ′

2,S

2h̄�
. This is cor-

roborated by simulations in the Supplemental Material [11].
Note that 57P1/2 is much more sensitive to quadrupole

fields than 56S1/2; using the same trap settings as in Fig. 3(a)
the 4D5/2 ↔ 57P1/2 spectrum appears as a forest of resonance

peaks, shown in Fig. 3(b). The relative strengths of the res-
onances are well described by Bessel functions of the first
kind [Jm(β2)]2 at the mth multiple of 2�, with β2 = 4.62.
This value of β2 was found by full diagonalization of the
Hamiltonian (details in the Supplemental Material [11]). The
experimental data are described well by the theory curve, in
which the relative strengths of the resonances are [Jm(β2)]2

and the positions are 2m�.
The modulation with frequency � is too weak to introduce

significant sidebands in Fig. 3(a) or Fig. 3(b). If the � modula-
tion was stronger, its interplay with the 2� modulation would
introduce a spectral asymmetry.

Note that 56P1/2 excitation spectra were measured as the
amplitude of the oscillating quadrupole field φrf was varied.
The modulation index β2 was extracted from the spectra and
its dependence on φrf is shown in Fig. 3(c). The full diagonal-
ization calculation describes the experimental data better than
the second-order perturbation calculation, as was the case for
the data in Fig. 2(b).

Excitation spectra of Rydberg P1/2 states with principal
quantum numbers n between 50 and 57 were measured; the
quadrupole field strengths were kept fixed. β2 values were
extracted and the dependence of β2 on n is shown in Fig. 3(d).
The response of Rydberg P1/2 states to quadrupole fields is
captured better by the full diagonalization calculation than by
the second-order perturbative approach, just as for the data in
Figs. 2(b) and 3(c). The perturbation theory curve scales with
the effective principal quantum number n∗ as n∗11; this is the
expected scaling of the quadrupole polarizability (this comes
from second-order perturbation theory: quadrupole couplings
grow with n∗4, the square of the couplings contributes to
the second-order perturbation, and energy splittings decay as
n∗−3).

The oscillating energy shift [Eq. (5)] is challenging to
quantitatively investigate when the modulation index β is
small, as is the case for Rydberg S1/2 states. Using spec-
troscopy the first sideband is probed more weakly than the
carrier by the factor [ J1(β )

J0(β ) ]
2 ≈ β2

4 ; this is the case in Fig. 3(a)
where β2 = 0.3. Coherent spectroscopy techniques (such as
method 4) can offer a more favorable approach when β is
small; with some coherent spectroscopy the effect of the first
sideband transition is smaller than the effect of the carrier by
J1(β )
J0(β ) ≈ β

2 .
We use the Autler-Townes effect (method 4) to probe weak

modulations, as shown in Fig. 4.
When the Rydberg S1/2 energy level is not modulated (β =

0) the 306-nm laser field resonantly couples 6P3/2 ↔ nS1/2

with strength �c. When there is a modulation the coupling
strength is J0(β )�c, and the 4D5/2 ↔ 6P3/2 excitation spec-
trum displays two resonance peaks split by J0(β )�c [see
Fig. 4(a)]. If the 306-nm laser field is detuned such that it
couples 6P3/2 and nS1/2 via the first sideband transition, this
coupling then has strength J1(β )�c, and the peaks in the
4D5/2 ↔ 6P3/2 spectrum are split by J1(β )�c [see Fig. 4(b)].
The ratio of the two splittings is J1(β )

J0(β ) ≈ β

2 (the approximation
is valid for β 
 1). From such measurements we determine
the 46S1/2 quadrupole polarizability α22 = (1.08 ± 0.05) ×
10−45 J m4 V−2, which is similar to the calculated value α22 =
1.21 × 10−45 J m4 V−2.
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FIG. 4. The oscillating quadrupole shift is probed using the
Autler-Townes effect. The oscillating quadrupole shift introduces
sidebands ±2� from the 6P3/2 ↔ 46S1/2 resonance. The sideband
coupling strength is compared with the carrier coupling strength by
comparing the Autler-Townes splittings that they each induce on the
weakly probed 4D5/2 ↔ 6P3/2 transition. In (a) the coupling laser is
resonant to the 6P3/2 ↔ 46S1/2 carrier transition; in (b) the coupling
laser is resonant to a sideband transition. Error bars represent quan-
tum projection noise (68% confidence intervals).

V. CONCLUSIONS

Systems of trapped Rydberg ions have recently offered a
new approach to quantum computation and simulation [16].
However, unwanted coupling to quadrupole-field-induced
sidebands may reduce the fidelity of a Rydberg ion quantum
gate [31]. Proposals for reducing or removing this coupling
include tuning φrf such that J±1(β2) = 0 and the first-order
sidebands at ±2� vanish, using a higher value of � to dimin-
ish β2 [32], and modulating the Rydberg-excitation laser fields
and microwave field such that these fields follow the oscil-
lating Rydberg energy levels; alternatively one could confine
ions using a rotating Paul trap [33,34], a Penning trap [35],
or a digital ion trap [36] operating with periods of zero field
strength and excite Rydberg ions during these periods [14].

In this Rapid Communication we investigate higher-order
effects of electric quadrupole fields on a single ion. Effects
on Rydberg S1/2 states are described well in terms of the
electric quadrupole polarizability. Rydberg P1/2 states are
more sensitive to quadrupole fields, and full diagonalization

calculations describe the response of P1/2 states better than the
second-order perturbation calculations. The resonance shifts
and spectral sidebands we observe will need to be consid-
ered in future experiments involving highly sensitive Rydberg
atoms, molecules, or ions in ion traps. Additionally the res-
onance shifts may become important in future trapped ion
precision experiments and clocks [9,10], as shown in the Sup-
plemental Material [11].

The huge dipole polarizabilities of trapped Rydberg ions
offer a range of applications [21,37–41]. We hope that this
Rapid Communication will stimulate new research avenues
which take advantage of the extreme quadrupole polarizabil-
ities of trapped Rydberg ions; for instance, the sensitivity of
Rydberg ions to oscillating quadrupole fields may allow for
Floquet engineering [42].
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