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Multifractality and self-averaging at the many-body localization transition
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Finite-size effects have been a major and justifiable source of concern for studies of many-body localization,
and several works have been dedicated to the subject. In this Letter, however, we discuss yet another crucial
problem that has received much less attention, that of the lack of self-averaging and the consequent danger
of reducing the number of random realizations as the system size increases. By taking this into account and
considering ensembles with a large number of samples for all system sizes analyzed, we find that the generalized
dimensions of the eigenstates of the disordered Heisenberg spin-1/2 chain close to the transition point to
localization are described remarkably well by an exact analytical expression derived for the noninteracting
Fibonacci lattice, thus providing an additional tool for studies of many-body localization.
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The Anderson localization in noninteracting systems has
been studied for more than 60 years and it is by now mostly
understood [1–3]. Its interacting counterpart, discussed in
Refs. [1,4] and analyzed in Refs. [5–11], still presents open
questions. It has received enormous theoretical [12–15] and
experimental [16–26] attention in the last decade and is often
referred to as many-body localization (MBL). There are some
parallels between the two cases, but there are also differences,
such as the issue of multifractality.

An eigenstate is multifractal when it is extended, but cov-
ers only a finite fraction of the available physical space.
Multifractality is characterized by the so-called generalized
dimension Dq, for fully delocalized states Dq = 1, for multi-
fractal states 1 < Dq < 0, and for localized states Dq = 0. In
the thermodynamic limit, all eigenstates of one-dimensional
(1D) noninteracting systems with uncorrelated random on-site
disorder are exponentially localized in configuration space
for any disorder strength. It is at higher dimensions that
the delocalization-localization transition takes place and this
happens at a single critical point, where the eigenstates are
multifractal. In contrast, if interactions are added to these
systems, the delocalization-localization transition happens al-
ready in 1D, and for finite disorder strengths, fractality exists
even in the MBL phase. For these interacting systems, it is still
under debate whether before the MBL phase there is a single
critical point or an extended phase where the eigenstates are
multifractal [24,27–41]. In fact, even the very existence of
the MBL phase has now gone under debate [42–47]. One
of the reasons why it is so hard to settle these disputes is
the presence of serious finite-size effects. Recent large-scale
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numerical studies [39,41] of the disordered spin-1/2 Heisen-
berg chain, where Hilbert space dimensions of sizes ∼3 × 106

have been reached, did not question the transition to a local-
ized phase, but were not entirely conclusive with respect to the
existence of an extended nonergodic phase or a single critical
point, although the latter is strongly advocated in Ref. [39].

In this Letter, we consider the same Heisenberg model and
emphasize another problem that has not received as much
attention as finite-size effects, but is also crucial for studies
of disordered systems, that of lack of self-averaging. This
issue becomes particularly alarming as the system approaches
the transition to the MBL phase [38,48,49]. If a quantity is
non-self-averaging, the number of samples used in a statisti-
cal analysis cannot be reduced as the system size increases
[48,50–60]. This reduction is a very common procedure due
to the limited computational resources when dealing with
exponentially large Hilbert spaces, but it may lead to wrong
results. We show that when the disorder strength of the spin
model gets larger than the interaction strength and it moves
away from the strong chaotic (thermal) regime, the fluctua-
tions of the moments of the energy eigenstates increase as the
system size grows, exhibiting a strong lack of self-averaging.
Decreasing the number of random realizations in this case
may affect the analysis of the structures of the eigenstates,
including the results for the generalized dimensions.

The various challenges faced by the numerical studies of
the MBL is a great motivator for theoretical works, which,
however, have difficulties of their own. The current trend
is to focus on phenomenological renormalization group ap-
proaches [61–68] that aim at improving our understanding of
the MBL transition in 1D systems with quenched randomness,
without providing microscopic details. Some of these studies
suggest that the transition is characterized by a finite jump
of the inverse localization length. Similarly, numerical studies
indicate that the generalized dimension jumps at the critical
point [39], and a connection between these two jumps was
proposed in Ref. [49].
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Our contribution to those theoretical efforts is to show that
an exact analytical expression for the generalized dimensions
derived for the 1D noninteracting Fibonacci lattice [69,70]
matches surprisingly well our numerical results for the dis-
ordered spin-1/2 Heisenberg chain in the vicinity of the MBL
critical point. This expression provides an additional tool in
the construction of effective models for the MBL transition.
Its derivation is based on a renormalization group map of the
transfer matrices used to investigate the wave functions of the
Fibonacci model [69,70].

Our 1D lattice system has L interacting spin-1/2 particles
subjected to on-site magnetic fields. It is described by the
Hamiltonian

H =
L∑

k=1

[
Sx

k Sx
k+1 + Sy

kSy
k+1 + Sz

kSz
k+1

] +
L∑

k=1

hkSz
k, (1)

where Sx,y,z
k are spin-1/2 operators, the coupling strength was

set equal to 1, hk are random numbers from a flat distribu-
tion in [−h, h], h being the disorder strength, and periodic
boundary conditions, Sx,y,z

L+1 = Sx,y,z
1 , are imposed. Since H

(1) conserves the total spin in the z direction, Sz = ∑
Sz

k ,
we work in the largest subspace corresponding to Sz = 0,
which has dimension N = L!/(L/2)!2. The model is inte-
grable when h = 0 and chaotic, that is, it shows level statistics
similar to those from full random matrices [71], when hchaos �
h < hc. The value of hchaos for the transition from integrability
to chaos and of the critical point hc for the transition from
delocalization to the MBL phase are not yet known exactly.
Our focus here is on the second transition, and for that, some
works estimate that 3 < hc < 4 [10,29,72–74] and others that
hc > 4 [75–77].

Multifractality and ensemble size. To obtain the gener-
alized dimensions Dq, we perform scaling analysis of the
generalized inverse participation ratios, which are defined as
IPRα

q := ∑N
k=1 |〈φk|ψα〉|2q, where q can take, in principle, any

real value, |ψα〉 is an eigenstate of the Hamiltonian (1), and
|φk〉 represents a physically relevant basis. Since we study lo-
calization in the configuration space, |φk〉 is a state where the
spins point up or down in the z direction, such as | ↑↓↑↓ · · · 〉
[78]. We average the generalized inverse participation ratios
〈IPRq〉 over ensembles with n samples that include 0.02N
eigenstates with energy close to the middle of the spectrum
and n/(0.02N ) random realizations, and then extract the gen-
eralized dimensions using

〈IPRq〉 ∝ N−(q−1)Dq . (2)

Multifractality holds when Dq is a nonlinear function of q.
In practice, Dq is obtained from the slope of the linear fit

of ln〈IPRq〉 vs lnN . In Fig. 1, we show some representative
examples of the scaling analysis for different values of h and
q, and also for ensembles of different sizes n, varying from
n = 102 to n = 3 × 104. The symbols are numerical data and
the solid lines are the corresponding fitting curves.

In the chaotic region, for example when h = 1, the scaling
of ln〈IPRq〉 with lnN is independent of the size of the en-
semble, with all points and lines for a given L coinciding and
leading to Dq ∼ 1. This is shown in Fig. 1(a) for q = 1.2 and
it holds for all other values of q that we studied, 0.1 � q � 3.

FIG. 1. Scaling of ln〈IPRq〉 with respect to the natural logarithm
of the Hilbert space dimension N for various values of h and q, as
indicated in the panels. Different numbers of samples are considered
for the average of IPRq: 102 (black squares), 5 × 102 (turquoise dia-
monds), 1 × 103 (blue up triangles), 5 × 103 (green down triangles),
1 × 104 (maroon left triangles), 2 × 104 (magenta right triangles),
and 3 × 104 (red circles). The solid lines are the linear fittings for
the numerical points and have the same colors as their corresponding
points.

In contrast, when h > 1, the numerical points strongly
depend on the number of samples used, as seen from
Figs. 1(b)–1(f). Notice that this dependence becomes more
evident for the larger system sizes. In the particular cases of
Figs. 1(b)–1(e), where 1 < h � hc, the fittings lead to larger
slopes when the ensemble sizes are smaller. For these smaller
n’s, the values of Dq would get even larger if we would ne-
glect the smallest system sizes when doing the fittings. These
results illustrate the danger of reducing the number of samples
as the system size increases. By doing so, we can affect the
values of Dq and therefore the conclusions about the presence
or absence of multifractality.

We verify in Figs. 1(b)–1(f) that the convergence of our
numerical points happens for ensembles with n � 2 × 104.
Indeed, the points for n = 2 × 104 and n = 3 × 104 are nearly
indistinguishable, so in all of our subsequent studies, we use
n = 3 × 104 for all L’s. It may be, however, that for system
sizes larger than the ones considered here, convergence would
require even larger ensembles.

Self-averaging. The fluctuations of the values of IPRq bring
us to the discussion of self-averaging. A given quantity O is
self-averaging when its relative variance

RO = σ 2
O/〈O〉2, (3)

where σ 2
O = 〈O2〉 − 〈O〉2 decreases as the system size in-

creases [50–58]. This implies that in the thermodynamic limit,
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FIG. 2. Relative variance RIPRq vs disorder strength h for dif-
ferent q’s, as specified in the panels, 3 × 104 statistical data, N =
70 (black), N = 256,(maroon), N = 924 (blue), N = 3432 (dark
green), N = 12 870 (light green), and N = 48 620 (red). Insets:
Exponent ν [Eq. (4)] vs disorder strength h. The dashed line marks
ν = 0. Error bars are standard errors from a linear fitting.

the result for a single sample agrees with the average over the
whole ensemble of samples.

In quantum many-body systems, the eigenstates can spread
over the many-body Hilbert space, which is exponentially
large in L, so we study the scaling of RIPRq with N [48,59],

RIPRq ∝ N ν . (4)

If ν < 0, then IPRq is self-averaging and one can reduce
the number of samples for the average as the system size
increases. This cannot be done when ν ∼ 0, and it is even
worse in the extreme scenario where ν > 0 and the relative
fluctuations increase as the system size grows.

In the main panels of Fig. 2, we show the dependence
of RIPRq on the disorder strength h for different values of q
and each line represents one system size. It is clear that deep
in the chaotic region, the relative variance decreases as the
system size grows, implying self-averaging of IPRq. This is
also illustrated in the insets, where ν < 0 for hchaos � h � 1,
which is consistent with Fig. 1(a), where the scaling of IPRq

does not depend on the number of samples.
There is, however, a turning point at h � 1, where ν sud-

denly jumps above zero and RIPRq grows significantly with
system size. As seen in Figs. 2(a)–2(d), this is particularly
bad in the region preceding the MBL phase, 1 � h � 4. For
this range of disorder strength, as the insets indicate, ν > 0
and it reaches large values when q � 2 [Figs. 2(c) and 2(d)].

For h � 4, where the system should already be in the MBL
phase, the relative variance RIPRq continues to grow with sys-
tem size, but ν is close to zero and the curves for L = 16 and
L = 18 are not far from each other.

The results in Figs. 1 and 2 show that extra care needs to be
taken when performing scaling analysis away from the chaotic
region, not only due to finite-size effects, but also due to the
lack of self-averaging. No matter how large the system size is,

large numbers of samples are required and may even need to
be increased as L grows.

One can reduce the fluctuations of the generalized inverse
participation ratios by using their logarithm, known as par-
ticipation Rényi entropies. In fact, using a toy model, it was
shown in Ref. [48] that in the MBL phase, RIPR2 grows with
system size, while R− ln IPR2 decreases with L. However, for
1 � h � 4, even though we observe a reduction of the fluctu-
ations, ln IPRq remains non-self-averaging and we still have
ν ∼ 0 [79]. We indeed verified that the plots shown in Fig. 1
remain similar if instead of ln〈IPRq〉, we use 〈ln IPRq〉.

Multifractality and analytical expression for Dq. After
taking the necessary precautions for performing the scaling
analysis of the generalized inverse participation ratios, as dis-
cussed in Fig. 1, we now proceed with the study of how Dq

depends on q and h.
In Refs. [69,70], an exact analytical expression was derived

for the structure of the eigenstate at the center of the spectrum
of the off-diagonal version of the Fibonacci model in the
thermodynamic limit, leading to the generalized dimensions

DFibonacci
q = 1

3(q − 1) ln σ
{q ln[λ(h2)] − ln[λ(h2q)]}, (5)

where σ = (
√

5 + 1)/2 is the golden mean and λ(h) = {(h +
1)2 + [(h + 1)4 + 4h2]1/2}/(2h) is the maximum eigenvalue
of the transfer matrix [69,70]. For the Fibonacci model, h
denotes the ratio between its two hopping constants, which
are arranged in a Fibonacci sequence.

In the case of our interacting spin model, we use Eq. (5) as
an ansatz. Since in this case, the eigenstates are extended for
hchaos � h � 1, while Eq. (5) predicts a monotonic decrease
of DFibonacci

q for h < 1, we compare our results with the ex-
pression for �(h − 1)DFibonacci

q + �(1 − h), where � is the
Heaviside step function. We find that this expression matches
the numerical values of Dq for the spin chain extremely well
for disorder strengths in the vicinity of the critical value,
3 < hc < 5.

The inverse participation ratio IPR2 is the most commonly
used quantity in studies of localization, so we start by analyz-
ing D2.0 and D2.4 as a function of the disorder strength. They
are shown in Figs. 3(b) and 3(c), respectively. The numeri-
cal results agree very well with the analytical expression for
DFibonacci

q for all h’s. However, for smaller q’s, the agreement
is not as good, as illustrated in Fig. 3(a), with the same hap-
pening for larger q’s, as seen in Fig. 3(d).

We cannot say whether the agreement of the curves for Dq

vs h with DFibonacci
q for q away from 2 would improve or get

even worse if larger system sizes were considered. If it would
improve, that would point to the existence of an extended
phase of multifractal eigenstates before the MBL phase and
described by the analytical expression of the Fibonacci lattice.
Large-scale numerical studies [39,41] indicate that if such a
phase exists, it should appear for h > 2 [41], and it may as
well be a single point [39].

We stress, however, that the most relevant and less contro-
versial information provided by Figs. 3(a) and 3(d) is that the
numerical points for different values of q’s cross the curve of
the analytical expression of DFibonacci

q at h ∼ hc [shaded area in
Figs. 3(a) and 3(d)]. This indicates that at least in the vicinity
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FIG. 3. Top: Dq vs disorder strength h for different values of q, as indicated in the panels. Bottom: Dq vs q for different disorder strengths
h, as indicated in the panels. Points are numerical results obtained through scaling analysis, averages over an ensemble of 3 × 104 samples. The
solid curve gives �(h − 1)DFibonacci

q + �(1 − h). Error bars are standard errors from linear fittings. The numerical results in (a) and (d) cross
the analytical curve within the shaded vertical area where the critical point should lie.

of (or right at) the critical point, the generalized dimensions of
the disordered spin model is indeed extremely well described
by Eq. (5).

The bottom panels of Fig. 3 give further support for this
observation. There, we plot Dq as a function of q for different
values of the disorder strength. For 1 < h < hc, as illustrated
by Fig. 3(e), there is no good agreement between the numer-
ical points and DFibonacci

q . The same happens for h > hc, as
seen in Fig. 3(h), although the mismatch in this case is not
as large. However, for h ∼ hc, as shown in Figs. 3(f) and 3(g),
the agreement is extremely good.

Conclusions. Our analysis of the disordered spin-1/2
Heisenberg chain calls attention to the strong lack of self-
averaging of the generalized inverse participation ratios for
a range of disorder strengths that precedes the critical point
of the MBL transition. This implies that in theoretical and ex-
perimental studies of this region, one should not decrease the
number of samples as the system size increases. As shown in
this Letter, the reduction of the number of random realizations
may lead, for example, to inaccurate conclusions regarding
multifractality.

We notice also that the logarithm of the generalized inverse
participation ratios can be used to reduce fluctuations, but

it still does not lead to self-averaging in the vicinity of the
critical point.

Our studies indicate a strong relationship between multi-
fractality, 0 < Dq < 1, and the lack of self-averaging of the
generalized inverse participation ratios, ν � 0. Multifractality
reflects the fragmentation of the Hilbert space [80], and this
fragmentation, in turn, leads to the sample-to-sample fluctua-
tions associated with the absence of self-averaging of IPRq.
The latter should then hint at the existence of multifractal
states.

The comparison between our numerical results for the frac-
tal dimensions of the disordered spin chain and the analytical
expression for Dq derived for the off-diagonal version of the
Fibonacci model shows remarkable agreement in the vicinity
of the MBL transition. This connection is useful for theoret-
ical efforts seeking to adequately describe the critical point
and may serve as a reference for studies of transport behavior.
It should also motivate additional numerical studies to verify
whether the agreement holds in a finite region or only at a
single critical point.
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