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Exact closed-form analytic wave functions in two dimensions: Contact-interacting fermionic spinful
ultracold atoms in a rapidly rotating trap
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Exact two-dimensional analytic wave functions for an arbitrary number N of contact-interacting lowest-
Landau-level (LLL) spinful fermions are derived with the use of combined numerical and symbolic
computational approaches via analysis of exact Hamiltonian numerical diagonalization data. Closed-form
analytic expressions are presented for two families of zero-interaction-energy states at given total angular
momentum and total spin 0 � S � N/2 in the neighborhood of the ν = 1 filling, covering the range from
the maximum density droplet to the first quasihole. Our theoretical predictions for higher-order spatial and
momentum correlations reveal intrinsic polygonal, multi-ring crystalline-type structures, which can be tested
with ultracold-atom experiments in rapidly rotating traps, simulating quantum Hall physics (including quantum
LLL skyrmions).
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I. INTRODUCTION

Exact analytic solutions for the quantum many-body prob-
lem, whether in a closed-form algebraic expression or in the
form of the Bethe ansatz, are highly coveted and sought-
after; however, they are available only for a few cases.
Among this select group (for early pioneering studies see
Refs. [1–7]), one-dimensional (1D) assemblies of strongly
contact-interacting ultracold atoms have attracted much at-
tention in the last few years [8–17], motivated by rapid
experimental advances in the field of trapped ultracold atoms
that allow direct verification of theoretical results. In this
context, in-situ and time-of-flight single-atom measurements
of real-space and momentum-space higher-order correlations,
respectively, hold a great promise [18–31].

Here we derive closed-form exact analytic wave func-
tions (EAWFs) for two-dimensional (2D) systems of spinful
contact-interacting lowest-Landau-level (LLL) fermions that
simulate fractional quantum Hall (FQH) physics [32–39] with
trapped ultracold atoms. We first introduce an approach for the
extraction of EAWFs from the digital information provided
via numerical exact-diagonalization (i.e., the configuration in-
teraction, CI [29,38–40]) of the many-body LLL Hamiltonian.
Subsequently, we present illustrative examples, showing that
such EAWFs exhibit intrinsic geometric structures [ultracold
Wigner molecules (UCWMs)] in their higher-order correla-
tions, in line with earlier findings using numerical CI solutions
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(see, e.g., Ref. [38]). The compact EAWFs enable consid-
eration of larger assemblies compared to the CI-computed
UCWMs [38].

Starting with the Laughlin trial wave function [41],
compact algebraic forms have been extensively considered
[33,42–48] as approximations to the exact diagonalization
solutions, both for electrons in semiconductors [42–46] and
for ultracold bosons in rotating traps [33,47,48]. In several
instances, like the Laughlin wave functions, it was shown
that the variational trial functions [33,44,46] may be exact
solutions, with zero-interaction energy (0IE states), of spe-
cific short-range pseudopotential-type parent Hamiltonians
[33,44].

Because of the fermionic statistics, this paper relates to
electronic 2D quantum LLL skyrmions [45,49–53], multi-
component quantum Hall systems [53], 2D anyons [37],
and rotating electronic [54–57] and ultracold-atom [29,38,58]
Wigner molecules. Experimental realization of such 2D sys-
tems (including bosonic analogs [34–37]) with a few ultracold
fermionic atoms (e.g., 6Li) in rapidly rotating harmonic traps
is currently pursued [39]. Importantly, unlike the skyrmion
wave functions used in the literature [45,49–52], which are
not eigenstates of the total spin (see particularly Ref. [51],
the Appendix, and the Supplemental Material (SM) [59]), the
EAWFs introduced here provide total-spin preserving sym-
metric polynomials for the quantum LLL skyrmions; for other
spin-preserving polynomials (restricted to the spin-singlet
state), see Ref. [60].

II. METHODOLOGY

Extensions of Girardeau’s mapping between impenetrable
bosons and noninteracting spinless fermions [1], and similar
mappings [8,10] applied to spinful and spin-parallel fermions,
led to the formulation of a hard-core boundary condition for
strongly repelling 1D fermions [11,12]. This entails vanishing
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FIG. 1. CI-calculated, relative-ground-state LLL energy spectra
for N = 9 fermions associated with the contact-interaction term only;
see third term of HLLL in Eq. (1). Spectra in a given spin sector S =
1/2, 3/2, 5/2, 7/2 and S = 9/2 are explicitly denoted. The spectra
were calculated for Sz = 1/2; however, they are independent of the
precise value of Sz. The 0IE states of family A are colored in red;
those of family B are colored in white. The first quasihole state is
also explicitly denoted. L is the total angular momentum.

of the many-body wave functions when two fermions with
antiparallel spins are at the same position (in addition to the
vanishing for parallel spins due to the Pauli exclusion princi-
ple). Concomitant of this condition is the appearance of 0IE
states.

In CI calculations and for a given number N of spinful LLL
fermions, the 0IE states emerge in each spin sector (S, Sz );
see Fig. 1 for the case of N = 9 LLL fermions interacting
with a

∑
i< j δ(zi − z j ) two-body potential, where zi = xi + iyi

(with i = 1, 2, . . . , N). Interest in such 0IE states arises from
the following: (i) They can be prepared experimentally [39].
(For bosons, the experimental expectations for 0IE states in-
clude fittingly the ν = 1/2 bosonic Laughlin state [34,35,61].)
(ii) They represent microscopic states that describe quantum
LLL skyrmions [45,50]. (iii) The Laughlin states are 0IE
eigenstates associated with short-range pseudopotential-type
Hamiltonians [44,62]. (iv) For fully polarized fermions, 0IE
states have been associated with the gapless edge excita-
tions of the Laughlin droplet [63] in extended semiconductor
samples.

The many-body Hamiltonian describing ultracold neutral
atoms in a rapidly rotating trap [29,33–35,39,58] is given by

HLLL

h̄ω
= N +

(
1 − �

ω

)
L + 2πRδ

N∑
i< j

δ(zi − z j ), (1)

where ω and � are, respectively, the parabolic trapping and
rotational frequencies of the trap, and L denotes the total
angular momentum, L = ∑N

i=1 li, normal to the rotating-trap
plane; the energies are in units of h̄ω and the lengths in units
of the oscillator length � = √

h̄/(Mω), with M being the
fermion mass. The first and second terms express the LLL
kinetic energy, HK , and the third term represents the contact
interaction, Hint .

Our methodology integrating both numerical (e.g., FOR-
TRAN) and symbolic (algebraic, e.g., MATHEMATICA [64])
languages consists of two steps: (1) numerical diagonalization
of the Hamiltonian matrix problem employing the ARPACK
solver [65,66] of large-scale sparse eigenvalue problems, fol-
lowed by step (2) where the numerically exact CI wave
functions

�CI(z1σ1, . . . , zNσN ) =
∑

I

cCI(I )
I (z1σ1, . . . , zNσN ) (2)

are analyzed and processed using symbolic scripts target-
ing extraction of the corresponding exact analytical wave
functions.

The basis Slater determinants that span the Hilbert space
are


I = Det[ϕ jr (zs)σ jr (s)]/
√

N!, (3)

where r, s = 1, . . . , N , the LLL single-particle orbitals are

ϕ j (z) = zl j e−zz∗/2/
√

π l j!, (4)

and σ signifies an up (α) or a down (β) spin. The mas-
ter index I counts the number of ordered arrangements
(lists) { j1, j2, . . . , jN } under the restriction that 1 � j1 <

j2 < · · · < jN � K ; K ∈ N is chosen large enough to pro-
vide numerical convergence. Below explicit mention of the
Gaussian factor is omitted.

Step (2) starts with the rewriting of the CI wave function
�CI in Eq. (2) as

�alg(z1σ1, . . . , zNσN ) =
∑

I

calg(I )
I (z1σ1, . . . , zNσN ), (5)

where the replacement of the subscript “CI” by “alg” corre-
sponds to the fact that, using the symbolic language code, one
obtains an equivalent multivariate homogeneous polynomial
�alg with algebraic coefficients calg; see the transcription of
coefficients for N = 4 and N = 9 in Tables STI and STII in
the SM [59].

Validation of our closed-form analytic wave functions (see
below) is achieved via direct comparison of the numerical
CI coefficients, cCI, with those in �alg [Eq. (5)], thus cir-
cumventing uncertainties, associated with the common use
of wave function overlap [39,41,43,44,46], due to the van
Vleck-Anderson orthogonality catastrophe [67–73].

Invariably, the symbolic code is able to simplify the derived
multivariate polynomial in Eq. (5) to the compact form of a
product of a Vandermonde determinant (VDdet),

∏N
i< j (zi −

z j ), involving the space coordinates only, with a symmetric
polynomial (under two-particle exchange) with mixed space
and spin coordinates [see Eq. (6) below]. The factoring out
of the VDdet reflects the fact that �alg represents a 0IE LLL
state.

Using symbolic scripts, we verify further that the fully
algebraic �alg [Eq. (6)] is indeed an eigenstate of the total
spin, obeying the Fock condition [74]. The final closed form
expressions [see Eq. (8) below] are derived for N � 9, but
they are valid for any N , thus circumventing the CI numerical
diagonalization of large matrices, which is not feasible for
N �∼ 10.

For the CI diagonalization, a small perturbing term VP (e.g.,
a small trap deformation [38], or a small hard-wall boundary
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[75]) needs to be added to the LLL Hamiltonian in Eq. (1).
This has a negligible influence on the numerical eigenvalues,
but it is instrumental in lifting the degeneracies among the 0IE
states and thus produces CI states whose total spin S is a good
quantum number.

III. TARGETED TOTAL SPINS AND ANGULAR MOMENTA

For each size N , we provide analytic expressions for the
maximum-spin (S = Sz) 0IE ground states with angular mo-
menta L = L0 + �L [with L0 = N (N − 1)/2] from �L = 0
(maximum density droplet) to �L = N (first quasihole, 1QH);
they form two families A and B (see Fig. 1 for an illustration).

Using k to denote the number of spin-up fermions and p
that of spin-down fermions, and focusing on the case with k �
p (or equivalently p � N/2), the states in both families are
associated with the same set of total spins specified as S =
Sz = (k − p)/2 = N/2 − p. Furthermore, given a pair (k, p):

(A) The states in family A have �L = p, with �L varying
from 0 to N/2 for even N , and from 0 to (N − 1)/2 for
odd N .

(B) The states in family B have �L = k, with �L varying
from N/2 to N for even N , and from (N + 1)/2 to N for
odd N .

The states in family A are unique ground states, whereas
those in family B are part of degenerate manifolds. (This
degeneracy is lifted as described above.)

IV. THE EXACT 0IE LLL WAVE FUNCTIONS

1. Mathematical preliminary

The quantity k-subset(list) is a subset containing exactly
k elements out of the set of n elements (named list). The
number of k-subsets on n elements is given by ( n

k ) = n!
k!(n−k)! .

The set represented by list is taken to be a list of cardinally
ordered positive integers. For example, there are 6 2-subsets
when list = {1, 2, 3, 4}, namely, {1,2}, {1,3}, {1,4}, {2,3},
{2,4}, and {3,4}.

2. General form of the 0IE LLL wave functions

The compact algebraic expression has the general form

�alg(z1χ (1), . . . , zNχ (N )) ∝ �V (l1, . . . , lN ; z1, . . . , zN )

× �sym(z1χ (1), . . . , zNχ (N )), (6)

where χ (i) denotes an up spin, α, or down spin, β, and i =
1, . . . , N .

�V is a Vandermonde determinant,

�V ([l]; [z]) = Det
[
z

l j

i

] =
N∏

i< j

(zi − z j ), (7)

where l j = ( j − 1) and i, j = 1, 2, . . . , N . The product of
Jastrow factors above reflects the fact that the wave function
in Eq. (6) is a 0IE eigenstate of the contact-interaction term,
Hint , in Eq. (1).

Due to the fermionic symmetry of the �alg, �sym has to be
symmetric under the exchange of any pair of indices i and j.

Furthermore, �sym can be written as

�sym(z1χ (1), . . . , zNχ (N )) =
K∑

m=1

Po
m[z]Zm, (8)

where Po
m (defined below) are homogeneous multivariate

polynomials of order o = p (family A) or o = k (family B),
and

Zm = α(i1)α(i2) · · · α(ik )β( jk+1) · · · β( jN ) (9)

is one of the K = N!/(k!p!) distinct spin primitives having
k � N up and p = N − k � k down spins. The set of indices
{i1, . . . , ik} is the mth element (m = 1, 2, . . . , K) of the k-
subsets of the cardinal list (top-level list , see below) specified
as list = 1, 2, . . . , N}. The set of indices { jk+1, . . . , jN } is
complementary to the {i1, . . . , ik} set.

The �V [Eq. (7)] corresponds to a filling factor ν = 1,
whereas the filling fraction corresponding to Eq. (6) [with
�sym given in Eq. (8) through polynomials of order o] is near
ν = 1. These fractions are indeed the ones most likely to be
accessed first in upcoming experiments [39].

3. Algebraic expressions for the polynomials Po
m([z])

For each S = Sz = (k − p)/2, except when k = p which
has a single state, there exists a pair of targeted LLL states,
with one state of the pair belonging to family A and the other
to family B (see Fig. 1 for an example).

Family A: First, the following square matrices of rank p
(the number of spin-down fermions) need to be considered:

Mq,m =
⎡
⎣zi1 − z jk+1 . . . zi1 − z jN

...
. . .

...

zip − z jk+1 . . . zip − z jN

⎤
⎦, (10)

where the dummy indices i1, . . . , ip here are associated with
spin-up fermions, and the set {i1, . . . , ip} denotes the qth
subset among the p-subsets on a second-level list-2, with
list-2 being the mth element among the k-subsets on the
{1, 2, . . . , N} top-level list . The number of p-subsets of any
second-level list-2 is K2 = k!/(p!(k − p)!), and thus the q
subscript runs from 1 to K2. The set of indices { jk+1, . . . , jN }
is complementary to the {i1, . . . , ik} set, and thus it re-
mains constant for a given m index in the matrices defined
in Eq. (10). (Recall that k is the total number of spin-up
fermions, and that {i1, . . . , ik} is also referred to as a second-
level list.)

The expression for the polynomial is given by

P p
m([z]) =

K2∑
q=1

Perm[Mq,m], (11)

where the symbol “Perm” denotes a permanent.
The analytic expressions of the states with Sz < S, in a

given spin multiplicity 2S + 1, are obtained by repeated ap-
plication of the spin lowering operator.

Example : We consider the state associated with N = 5,
S = Sz = 1/2, and L = 12. Note that L0 = N (N − 1)/2 = 10
in the corresponding fully polarized case. There are K =
5!/(3!2!) = 10 spin primitives Zm, with m = 1, 2, . . . , 10;
they correspond to the ten 3-subsets on the top-level
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FIG. 2. N th-order spin-unresolved correlations for N LLL fermions. (a)–(c) N = 19 with L = 180, and S = Sz = 1/2. (d) N = 25 with
L = 301, and S = Sz = 23/2. (e) N = 27 with L = 378, and S = Sz = 27/2 (1QH state). Fixed fermions are marked by red dots for the outer
ring, yellow dots for the middle ring, and green dots for the inner ring. The white dot for the 1QH state denotes the additional zero at the origin.
Vertical axes: arbitrary units. See text for details. In the LLL, momentum correlations coincide with the spatial ones [38].

list = {1, 2, 3, 4, 5}, i.e., {1, 2, 3} (m = 1), {1, 2, 4} (m = 2),
{1, 2, 5} (m = 3), {1, 3, 4} (m = 4), {1, 3, 5} (m = 5), {1, 4, 5}
(m = 6), {2, 3, 4} (m = 7), {2, 3, 5} (m = 8), {2, 4, 5} (m =
9), {3, 4, 5} (m = 10).

Here k = 3, p = 2, and there are K2 = 3 2-subsets for
each (mth) 3-subset listed above. K2 = 3 is also the number
of permanents entering in expression (11), i.e., q = 1, . . . , 3.
Choosing m = 10 as an example, the three 2-subsets are
{3, 4}, {3, 5}, and {4, 5}, and the three associated matrices
Mq,10 are given by

Mq,10 =
[
η(q, 1) − z1 η(q, 1) − z2

η(q, 2) − z1 η(q, 2) − z2

]
, (12)

with with q = 1, 2, 3; η(1, 1) = z3, η(1, 2) = z4, η(2, 1) =
z3, η(2, 2) = z5, and η(3, 1) = z4, η(3, 2) = z5.

An additional example is presented in the SM [59].
Family B: Similarly, we found that the symmetric polyno-

mials Pk
m([z]) related to the ground states of family B consist

always [for any m in the summation of Eq. (8)] of a single
permanent associated with a matrix of rank k (the number of
spin-up fermions), amely,

Pk
m([z]) = Perm

[
MB

m

]
, (13)

with

MB
m =

⎡
⎣zi1 − z jk+1 . . . zi1 − z jN zi1 − z jN+1 . . . zi1 − z j2k

...
. . .

...
...

. . .
...

zik − z jk+1 . . . zik − z jN zik − z jN+1 . . . zik − z j2k

⎤
⎦. (14)

Above, the set of indices {i1, . . . , ik} is the mth element of the
k-subsets associated with the spin-up fermions [see Eq. (9)].
Because k > p, the complimentary set of the p spin-down
indices { jk+1, . . . , jN } has been expanded to contain exactly k
elements, through the introduction of virtual fermion coordi-
nates such that z js = 0 for all s > N ; see specific matrices MB

m,
as well as a comparison with the wave functions in Ref. [45],
in the Appendix and the SM [59].

Note that the first quasi-hole state (1QH) [41,75] coincides
with the analytic expression associated with family B above
for L = L0 + N .

V. HIGHER-ORDER CORRELATIONS

We used the analytic wave functions above to calculate
spin-unresolved higher-oder correlations for N = 19, 25, and
27 fermions; see Fig. 2 (for completeness, see Fig. SF1 for
N = 9 in the SM [59]). The n-body correlations for spinful
fermions were defined in detail in Sec. II C of Ref. [38]. For
the N-body �alg [Eq. (6)], the spatial n-body correlation is

given in a compact form by

Gn(N ) = (1 − δn,N )
∫

|�alg(z1χ (1), . . . , zNχ (N ))|2

× dzn+1dχ (n + 1) · · · dzN dχ (N ) + δn,N |�alg|2,
(15)

with n = 2, . . . , N . Gn(N ) gives the conditional probability
to find particles n, . . . , N anywhere, for prespecified (fixed)
locations of particles 1, . . . , n − 1 with predetermined (re-
solved) or unspecified (unresolved) spins.

For N = 19, Figs. 2(a), 2(b), and 2(c) display struc-
tured N th-order correlations for the spin state with S =
Sz = 1/2 and total angular momentum L = 180. Extending
Ref. [38], we found similar crystalline structures also in the
N th-order correlations of the associated fully polarized, sin-
gle VDdet state with S = 19/2, Sz = 19/2, and L0 = 171
(Pauli-exclusion-only case, experimentally investigated [28]).
Figure 2(d) displays the structured N th-order correlation for
N = 25 with L = 301 and S = Sz = 23/2, whereas Fig. 2(e)
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presents the structured N th-order correlations for the 1QH
for N = 27 (with L = 378 and S = Sz = 27/2). The implied
intrinsic geometric structure (UCWM) in Fig. 2 is a polyg-
onal triple ring (n1, n2, n3) of localized fermions (with n1 +
n2 + n3 = N); specifically (1,6,12) for Figs. 2(a), 2(b), 2(c),
(3,9,13) for Fig. 2(d), and (4,9,14) for Figs. 2(e). We note that
in the LLL neighborhood of ν = 1 (expected in experiments
with trapped ultracold fermions [39]), the intrinsic ring geom-
etry can be probed only with higher-order correlations. Indeed
in this case, the second-order correlations are structureless;
see the findings for N = 4 [(0,4) single ring] and N = 6 [(1,5)
double ring] in Ref. [38].

VI. CONCLUSION

An approach for deriving exact closed-form analytic ex-
pressions for the wave functions (beyond the Jastrow-factors
paradigm) of an assembly of 2D contact-interacting spinful
LLL fermions (for any N) was introduced and validated.
Such expressions require as input only the three parameters
N (number of particles), L (total angular momentum), and
S (total spin). Examples were presented for two families
of zero-interaction-energy states, from the maximum density
droplet to the first quasihole in the neighborhood of ν = 1.
Ensuing theoretical predictions for higher-order momentum
correlations for N = 19, 25, and 27, revealing intrinsic polyg-
onal, multiring crystalline configurations, could be tested with
ultracold-atom experiments in rotating traps simulating spin-
ful quantum Hall physics, including LLL skyrmions. The
present approach can be extended to the neighborhood of any
ν = 1/m that starts with a Laughlin wave function.
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APPENDIX: COMPARISON WITH THE SYMMETRIC
POLYNOMIALS FOR QUANTUM SKYRMIONS IN REF. [45]

We compare here with the symmetric polynomials for the
seed skyrmions specified in Eq. (6) of Ref. [45] or Eq. (2) in
Ref. [49].

Omitting the trivial Gaussian functions, these polynomials
are given by the single formula

�sk,MFB
p =

K∑
m

zi1 zi2 · · · zikZm, (A1)

where Zm are the spin primitives defined in Eq. (9), and
the superscript MFB stands for MacDonald-Fertig-Brey.
The subscript m runs over the k-subsets {i1, . . . , ik} of the
list = {1, 2, 3, . . . , N}, k = N ↑ being the number of spin-up
fermions, with p = N − k = N ↓ being that of the spin-down
fermions. The number of k-subsets is K = N!/(k!p!). As is
the case in Ref. [45], one can take the index m as running
over the p-subsets associated with the spin-down fermions,
because there is a one-to-one correspondence to the k-subsets
of the spin-up fermions. Note that Ref. [45] (Ref. [49]) uses
the capital letter K (R) in place of our p.

We consider the case N = 5, k = 4, p = 1, S = Sz = 3/2,
and �L = 4, belonging to family B in our exposition.

According to Eq. (A1), the corresponding MFB symmetric
polynomial is

�sk,MFB
p=1 = z1z2z3z4Z1 + z1z2z3z5Z2 + z1z2z4z5Z3

+ z1z3z4z5Z4 + z2z3z4z5Z5. (A2)

The corresponding exact symmetric polynomial derived in
this paper is given by Eqs. (8) and (13), namely,

�exact
sym (N = 5, N ↑= 4,�L = 4) =

5∑
m=1

P4
m[z]Zm, (A3)

Expanding the permanents, one obtains for the space-only
polynomials P4

m[z] above (with m = 1, . . . , 5, in front of the
Zm spin primitives):

P4
m[z] = c1z1z2z3z4 + c2z1z2z3z5 + c3z1z2z4z5

+ c4z1z3z4z5 + c5z2z3z4z5, (A4)

with ci = 4 when i = m and ci = −1 otherwise.
The polynomial in Eq. (A3) is clearly different from the

MFB one [Eq. (A2)]. We verified that the wave functions
derived here are eigenfunctions of the square, Ŝ2, of the total-
spin operator (with eigenvalue 15/4 and S = 3/2 for the case
in this Appendix), whereas the MFB ones are not (see also
Ref. [51]); for details see Ref. [59].
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