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Linear and nonlinear optical responses in Kitaev spin liquids
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We theoretically study THz-light-driven high-harmonic generation (HHG) in the spin-liquid states of the
Kitaev honeycomb model with a magnetostriction coupling between spin and electric polarization. To compute
the HHG spectra, we numerically solve the Lindblad equation, taking account of the dissipation effect. We find
that isotropic Kitaev models possess a dynamical symmetry, which is broken by a static electric field, analogous
to HHG in electron systems. We show that the HHG spectra exhibit characteristic continua of Majorana fermion
excitations, and their broad peaks can be controlled by applying static electric or magnetic fields. In particular,
the magnetic-field dependence of the HHG spectra drastically differs from those of usual ordered magnets. These
results indicate that an intense THz laser provides a powerful tool to observe dynamic features of quantum spin
liquids.
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Introduction. Quantum spin liquids (QSLs) have attracted
tremendous attention for decades as exotic states of mat-
ter. Many theoreticians have tried to find essential properties
of QSLs, and it has been theoretically revealed that the
low-energy excitations of QSLs are given by fractionalized
particles, and the wave functions possess a topological nature
[1–4].

Meanwhile, it has been recognized as notoriously diffi-
cult to identify QSLs experimentally because most of their
thermodynamic quantities are featureless. Hence, the exper-
iments have been done for their dynamical quantities. For
instance, longitudinal [5–7] and transverse [8,9] transport
phenomena have provided important information about low-
energy excitations in QSLs. For the Kitaev QSL [10–14],
ferromagnetic α-RuCl3 has been shown to exhibit several
characteristic behaviors in, e.g., the thermal Hall effect [15],
longitudinal thermal conductivity [7], and Raman scattering
[16,17], and antiferromagnetic YbCl3 [18] has been ex-
pected to host QSL from neutron diffraction measurements.
While these experimental results have been reasonably taken
as evidence for QSLs, they are indirect, and active stud-
ies are ongoing to search for new ways to obtain further
evidence.

One such direction is the nonlinear optical response at
the THz frequency regime, which has been opened up by
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rapid development of THz laser technology [19–22]. Be-
ing at the energy scale of magnetic excitations, THz pulses
are suitable for directly investigating and controlling quan-
tum spin systems [23–46]. To detect crisp signatures of
QSLs, the so-called THz two-dimensional coherent spec-
troscopy has been proposed [47] and theoretically analyzed
in the Kitaev model [48]. However, in the Kitaev model,
this method is based on third-order, rather than second-
order, optical response and thus it requires much stronger
THz pulses for successful detection. The required intensity
of THz pulses can be the bottleneck in experiments since
spin-light couplings are generally much weaker than charge-
light ones [37–43]. In fact, while high-harmonic generation
(HHG) [49,50] has been observed at THz frequencies in, e.g.,
Dirac electrons [51–53], only the second-order response has
been reported [28] in magnetic insulators at present. Thus,
another method based on lower-order nonlinear responses,
if exists, should be useful for experimental verification of
QSLs.

In this Letter, we show that a combination of an intense
THz laser pulse and static electromagnetic fields uncov-
ers characteristics of the Kitaev QSL through harmonic
generation, including the second-order harmonic. We numer-
ically analyze the HHG spectra of the Kitaev model with
magnetostriction-type magnetoelectric (ME) coupling [54]
with the quantum master equation approach [41,46,55,56]
to take account of dissipation effects. In addition to broad
and continuous response functions characteristic of Majorana
fermions, we find that static electric fields break some sym-
metry and activate the second-harmonic generation (SHG),
and a static magnetic field causes an anomalous shift for
the harmonic spectra. These findings indicate that nonlinear
response to intense THz light gives us a powerful instrument
for detecting dynamical features of Kitaev QSLs. Through
this study, we will build a bridge between photoscience and
QSLs.
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FIG. 1. (a) Lattice structure of the Kitaev model. Blue, green, and
red lines, respectively, correspond to x, y, and z bonds. (b) Kitaev
model with a dimerization on x and y bonds, which is caused by a
static electric field Edc along the x̃ direction. (c) Gapless itinerant
fermion band of the Kitaev model at Jx,y,z = J and Edc = κ = 0.
(d) Ground-state phase diagram of the Kitaev model in (Jx, Jy, Jz )
space at κ = 0. Orange and blue areas are, respectively, gapless and
gapped QSLs. Application of Edc induces (Jx, Jy ) → (Jx − Edc, Jy +
Edc). (e)–(g) Density of states of itinerant fermions at (Edc, κ ) =
(0, 0), (0.1,0), and (0,0.2) in J < 0. For details of the density of
states, see Figs. S8 and S9 of the supplemental material [57].

Kitaev Model and Methods. The Hamiltonian of the Kitaev
model (see Fig. 1) [58] for this work is given by
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where σα
r (α = x, y, z) is the Pauli matrix on the site r =

( j, k), and the spin-1/2 operator on r is Sα
r = h̄

2 σα
r (we set

h̄ = 1 throughout the paper). Jα is the Ising coupling con-
stant between nearest-neighboring spins on α bond 〈r, r′〉α ,
and we mainly focus on the symmetric point J = Jx,y,z. The
neighboring three-spin term [58] originates from the third-
order perturbation with respect to a static Zeeman term HB =
−gμBB · ∑

r σα
r of an applied magnetic field B (g is the g-

factor and μB is the Bohr magneton). The coupling constant is
computed as κ ∼ (gμB)3BxByBz/J2: For |J|/kB = 10K, κ ∼
0.1|J| corresponds to |B| ∼ 1T . The κ term is the leading
term changing the Majorana-fermion dispersion (as one will
see later) in the Zeeman interaction. The final term of Eq. (1)

represents the coupling between electric polarization P̂ and an
applied static electric field Edc along the x̃ direction [Figs. 1(b)
and 1(d)]. Equation (2) assumes that P̂ is proportional to
dimerization along the x̃ direction. This kind of ME term
appears in a class of multiferroic magnets and its typical
origin is the spin-phonon coupling [54]. This dimerization
makes the ground-state energy reduce (see the supplemental
material [57]), and therefore this ME term may appear in
a sort of real Kitaev-like material. In a class of multifer-
roics, the ME-coupling energy reaches that of the Zeeman
term [23–25,32,34,54,59,60], and thereby we have assumed
that the effective coupling Edc = Edcηms is the same order
as g0μBEdc/c, with c being the speed of light and g0 = 2:
For |J|/kB = 10K, Edc ∼ 0.01|J|–0.1|J| corresponds to 0.1–1
MV/cm. We note that a similar dimerization (Jx �= Jy) can
appear in a class of Kitaev candidates even without a dc
electric field.

The Kitaev model (1) is exactly solvable via fermioniza-
tion [58,61], as detailed in the literature [10–13,58,61] (see
the supplemental material [57] for details). The fermionized
Hamiltonian consists of four kinds of Majorana fermions:
two dispersive and two localized ones (called visons). Visons
have a small gap [58] and are absent [62] in the ground
state at zero temperature T = 0. The Hamiltonian at T = 0
is therefore described only by the dispersive fermions. Fig-
ures 1(c)–1(g) show that the dispersive fermion is gapless
around the isotropic point Jx,y,z = J , while the κ term opens a
gap. We note that some perturbations can also be fermionized
[63,64], and therefore our analysis below is also applicable to
such perturbed Kitaev models [65].

To consider HHG in the Kitaev model at T = 0, we intro-
duce an ac ME coupling between an ac electric field Eac(t )
and the polarization P̂: Hms(t ) = −Eac(t )P̂ [54]. We have
assumed that Eac ‖ x̃, and the field is a Gaussian pulse with a
THz frequency �: Eac(t ) = Eac cos(�t ) f (t ), and the envelope
function is given by f (t ) = exp[−2(ln 2)(t2/t2

FWHM)], where
tFWHM is the full width at half-maximum of the intensity
Eac(t )2. We define the ac coupling constant Eac = Eacηms and
consider five-cycle pulses (tFWHM/T = 5). We note that even
after application of Eac(t ), the Hamiltonian H0 + Hms(t ) is
described by a bilinear form of the dispersive fermion in
wave-vector k space. There is no vison dynamics in our setup
that is valid in sufficiently low temperatures. We also phe-
nomenologically introduce dissipation effects described by
the Lindblad equation so as not to break the block-diagonal
structure in k [41,46,55,56] (for details, see the supplemental
material [57]). The dissipation is k-independent and charac-
terized by the dissipation rate γ = 0.1J , which corresponds
to the relaxation time τ = 1/γ ∼ 7.6 ps for J/kB = 10K
[66–75]. We suppose that the system is initially (t → −∞)
in the ground state, and we solve the Lindblad equation nu-
merically to obtain the THz-driven nonequilibrium dynamics.

The observable of interest is P̂, which is the source of
HHG in our model. Time evolution of polarization is given by
P(t ) = 〈P̂〉t = N−1 ∑

k,kx>0 Tr[ρ(k, t )Pk], where Pk is 2 × 2
reduced polarization for the subspace with k, and N is the total
number of unit cells. Since the electromagnetic radiation is
proportional to d2P(t )/dt2, the radiation power at frequency
ω is given by I (ω) = |ω2P(ω)|2, where P(ω) is the Fourier

L032024-2



LINEAR AND NONLINEAR OPTICAL RESPONSES IN … PHYSICAL REVIEW RESEARCH 3, L032024 (2021)

FIG. 2. HHG spectra I (ω) in driven isotropic (Jx,y,z = J) Kitaev
models with/without a dc electric field Edc at κ = 0 under a THz
pulse of � = 2.0J . (a) I (ω) as a function of ω at Edc = 0 and 0.1J
under the irradiation of Eac = 0.1J . I (ω) is normalized with its max-
imum value. (b),(c) (Eac, Edc) dependence of SHG [I (2�)] and FHG
[I (4�)] spectra. The intensities, panels (b) and (c), are normalized
with I (�) at Eac = Edc = 0.05J .

transform of P(t ) [76]. Since a constant shift of P(t ) does not
change I (ω), we will also use �P(t ) = P(t ) − P(tini ).

Effect of a dc Electric Field and Dimerization. We turn to
our analyses and results. First we focus on the dc-electric-field
dependence of HHG in the Kitaev model with Jx,y,z = J and
κ = 0. Figure 2(a) shows a typical HHG spectrum I (ω) for
ferromagnetic (J > 0) Kitaev models at Edc = 0 and 0.1J .
Figures 2(b) and 2(c) are, respectively, the (Eac, Edc) depen-
dence of the SHG and fourth harmonic generation (FHG)
that arise due to dimerization by Edc �= 0. The SHG signal,
activated by the dc electric field, is stronger than higher-order
harmonics, and it can be a useful probe for QSL, as we discuss
further below.

The HHG selection rules are often understood by dynami-
cal symmetries that become exact in the limit of tFWHM → ∞
[77,78], also known as the time glide symmetry [79]. For our
Kitaev model, we find that the following dynamical symmetry
determines the HHG selection rule. In the nondimerized case
of Edc = 0, the Hamiltonian H0 + Hms(t ) is invariant under
the time translation operation t → t + T/2 combined with
the unitary transformation Û = Ûmir × Û z

π/2, where Ûmir is the

reflection operation with respect to the ỹ axis and Û z
π/2 is the

global π/2 spin rotation around the Sz axis. P̂ is odd for this
transformation, and therefore we obtain P(t + T/2) = −P(t ),
which means that even-order HHG is prohibited, consistent
with Fig. 2 [57]. However, for Edc �= 0, this dynamical sym-
metry is broken, and even-order HHG is allowed. We note that
for κ �= 0, the unitary operator Û is modified as Û → V̂ Û ,
where V̂ is the time-reversal operator.

Thus, even-order HHG can be controlled by the static
electric field Edc through dimerization. Similar effects have
been discussed in a spin chain [41] and in electronic systems
[80–90], where Edc induces electric current breaking the inver-
sion symmetry. Being based only on symmetry, the dynamical

FIG. 3. I (�) of the Kitaev models with Jx,y,z = J and Edc = 0.1J
at (a) a weak laser intensity Eac/J = 10−3 and (b) strong intensities of
Eac/J = 0.1, 0.15, and 0.2. Blue lines and dotted points are, respec-
tively, results of the linear response (Kubo) theory and numerically
solved master equation [57]. I (�) is normalized with the maximum
value of the Kubo formula. Panels (c) and (d) show DOSs of fermions
corresponding to cases (a) and (b), respectively. (e) SHG [I (2�)] and
(f) THG [I (3�)] of the Kitaev model with Edc = 0.1J in the space
(Eac, �). The intensities, panels (e) and (f), are normalized with I (�)
at (Eac, �) = (0.05J, 2J ). The corresponding DOSs are depicted in
panels (g) and (h).

symmetry argument is applicable to a wide class of perturbed
Kitaev models. For example, the dynamical symmetry sur-
vives for Jz �= Jx = Jy while it breaks down for Jx �= Jy. The
magnetic anisotropy dependence of even-order harmonics is
discussed in the supplemental material [57]. In the following,
we assume Edc �= 0 as necessary to ensure that even-order
HHG is present.

Dependence of Laser Frequency and Intensity. Next, we
consider the � and Eac dependence of the HHG. Figures 3(a)
and 3(b), respectively, show the � dependence of I (�) for
weak (Eac = 10−3J) and strong (Eac = 0.1J, 0.15J, 0.2J) THz
pulses. In addition to the numerical result of the Lindblad
equation, we plot that of the linear response theory (the Kubo
formula) (see the supplemental material [57]). From the com-
parison between I (�) in Fig. 3(a) [Fig. 3(b)] and the fermion
density of state (DOS) D(ω) in Fig. 3(c) [Fig. 3(d)], we find
that two-particle continuum spectra occur in the driven Kitaev
model. This results from the ME coupling between an ac elec-
tric field (i.e., photon) and a pair of fermions with k and −k.
This continuum indicates the existence of fermionic excita-
tions in Kitaev magnets, and it differs qualitatively from usual
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ordered magnets, where one often observes a δ-functional
peak due to magnons [91].

It is noteworthy that even the fundamental harmonic (ω =
�) shows characteristics of the QSL in the strong THz pulse.
Unlike in the weak pulse, the Kubo formula is no longer
valid in the strong one in the deep nonperturbative regime.
In this regime of Eac � 0.15J , a new broad peak emerges in
I (�) at �peak ∼ 4J [Fig. 3(b)], which is twice as large as the
high DOS position. Namely, I (�) driven by intense pulses
tells us the peak position of the DOS. For instance, Eac =
0.15J/ηms ∼ 3MV/cm for J = 10K under the assumption of
Eac = g0μBEac/c, and it indicates that the currently available
THz laser is strong enough to observe such nonlinear optical
spectra. We note that in Fig. 3(b), the increase of I (�) in the
high-� range around � ∼ 8J is due to the factor �4 in I (�).

The SHG and third harmonic generation (THG) spectra,
I (2�) and I (3�), are depicted in Figs. 3(e) and 3(f). We
find that broad peaks in I (2�) and I (3�) appear around � =
�peak/2 and �peak/3, respectively. This is a natural result,
indicating that excitation processes creating fermions with a
high DOS are dominant in HHG. Figure 3(h) shows that the
peak frequency of the THG is slightly higher than that of the
DOS D(3�/2). This would also be attributed to the factor
(3�)4 in I (3�).

Effect of a dc Magnetic Field. Now we discuss the dc-
magnetic-field dependence of HHG in Kitaev models. We
focus on the antiferromagnetic Kitaev model [57], where the
Kitaev QSL state is more stable against magnetic fields than
in the ferromagnetic case [92]. The magnetic-field driven κ

term opens a mass gap �κ in the fermion band, as shown in
Fig. 1(g). As �κ increases, the maximum of D(ω) at ω ∼ 2|J|
grows up for �κ � 2|J| (κ � 0.2|J|) [see Figs. 1(e) and 1(g)].
Therefore, the intensities of HHG spectra are expected to be
controlled by the dc magnetic field and laser frequency �. Fig-
ure 4 proves this expectation. Panels (a) and (c), respectively,
show the � dependence of I (�) and D(ω) at a tuned effective
magnetic field κ = 0.2|J|, where D(�) take the highest value
at �0 ∼ �κ ∼ 2|J|. In this case, we have a sharp peak of I (�)
at �peak = 2�0 ∼ 4|J|. Figures 4(b) and 4(d) represent I (�)
and D(ω) as functions of κ at a fixed � = 2|J|. We see that a
clear peak of I (�) appears when �κ passes across one-half of
the laser frequency �/2.

We also show I (�) and I (2�) in the (κ,�) space in
Figs. 4(e) and 4(f). For I (�) in the case of κ � 0.2|J|, the
frequency � of the broad peak increases monotonically in an
almost κ-linear fashion. This is because the peak position �0

of D(�) increases almost linearly with κ for κ � 0.2|J| (for
more details, see Fig. S15 of the supplemental material [57]).
Since κ ∼ |B|3, the B-cube-dependent frequency at the peak is
specific for the Kitaev model and essentially differs from the
B-linear behavior of magnon peaks. The frequency at the peak
of I (2�) is almost half of �peak of I (�), as shown in Fig. 4(f),
and this is a natural result from the perturbative viewpoint. We
note that, even in the linear response regime (ω = � and weak
THz pulse), the fundamental harmonic shows characteristics
of the QSL for κ � 0.2|J| (see the supplemental material
[57]). I (�) driven by intense pulses with a finite magnetic
field tells us the peak position of the DOS �0, which is half as
large as �peak.

FIG. 4. (a) I (�) in an antiferromagnetic (J < 0) Kitaev model
with κ = 0.2|J|, Edc = 0, and Eac = 10−3|J|. (b) κ dependence of
I (�) in � = 2.0|J|, Edc = 0, and Eac = 10−3|J|. Blue line and dotted
points are, respectively, results of the linear response theory and
the master equation [57]. I (�) in (a) and (b) are normalized with
the maximum value in panel (a). (c) � and (d) κ dependences of
D(ω) that, respectively, correspond to panels (a) and (b). (e) I (�)
and (f) I (2�) of the Kitaev model with Edc = Eac = 0.1|J|. The
intensities, panels (e) and (f), are normalized with I (�) at (κ, �) =
(0.05|J|, 2|J|).

Finally, we estimate the laser intensity required in the HHG
experiment. For the Kitaev magnet with |J|/kB = 10K and
κ = 0, the required ac electric field Eac for the observation
of HHG can be estimated from Fig. 2(a): Eac = 2.6MV/cm
at 0.42 THz is necessary for R(�) = I (2�)/I (�) � 10−2

and Eac = 0.9MV/cm for R(�) � 10−3. These required ac
electric fields can be reduced when applying the effective
static magnetic field κ = 0.2|J| as shown in Fig. 4 and the
supplemental material [57]. In this case, the electric field is
estimated as Eac = 0.7MV/cm at 0.42 THz for R(�) � 10−2

and Eac = 0.2MV/cm for R(�) � 10−3. We remark that the
above criteria, R(�) � 10−2 and 10−3, for successful detec-
tion are much more strict than those in the actual experiments
for electronic systems [51–53]. Thus, much weaker pulses
might be enough to verify our predictions experimentally.
These estimates indicate that lower-order harmonics in Kitaev
magnets can be detected with current THz light techniques.

Conclusions. We have analyzed the HHG in Kitaev mag-
nets with an ME coupling by using a quantum master equation
and the linear response theory. Our results show that the
specific nature of the Majorana fermion excitations can be
detected by linear and nonlinear THz-light responses. The
characteristics of the Kitaev model, such as even-order har-
monics, continuum HHG spectra, and broad peaks, can be
controlled by applying static electric or magnetic fields. This
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study sheds light on an interdisciplinary field between photo-
science and QSLs.

Our setup does not accompany vison (localized fermion)
excitations. Studies for laser-driven vison dynamics and the
effects of temperature and ac Zeeman terms are interesting
directions for future work.
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