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The anharmonic lattice is a representative example of an interacting, bosonic, many-body system. The self-
consistent harmonic approximation has proven versatile for the study of the equilibrium properties of anharmonic
lattices. However, the study of dynamical properties therein resorts to an ansatz, whose validity has not yet been
theoretically proven. Here we apply the time-dependent variational principle, a recently emerging useful tool
for studying the dynamic properties of interacting many-body systems, to the anharmonic lattice Hamiltonian
at finite temperature using the Gaussian states as the variational manifold. We derive an analytic formula for
the position-position correlation function and the phonon self-energy, proving the dynamical ansatz of the
self-consistent harmonic approximation. We establish a fruitful connection between time-dependent variational
principle and the anharmonic lattice Hamiltonian, providing insights in both fields. Our work expands the range
of applicability of the time-dependent variational principle to first-principles lattice Hamiltonians and lays the
groundwork for the study of dynamical properties of the anharmonic lattice using a fully variational framework.
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Introduction. Variational methods form the basis of our
understanding of quantum-mechanical many-body systems.
In a variational method, the wave functions or density ma-
trices of a system are parametrized by a set of parameters
whose size is much smaller than the dimension of the Hilbert
space. Static and time-dependent [1–3] variational methods
are being actively used to study interacting many-body model
Hamiltonians [4–13].

The anharmonic lattice is a representative example of an
interacting bosonic many-body system in materials science.
The self-consistent harmonic approximation (SCHA) is a
variational method for approximately finding the ground or
thermal equilibrium state of an anharmonic lattice Hamilto-
nian [14,15]. Recently, a stochastic implementation of SCHA
[16–19] was developed and attracted considerable attention.
SCHA has been successfully applied to study structural phase
transitions [18–21], superconductivity [16,22–25], and charge
density waves [26–31], as well as to the dynamical proper-
ties such as the phonon spectral function [20,21,32–34] and
infrared and Raman spectra [35].

However, SCHA is limited in that one needs to resort
to a specific ansatz to study the dynamical properties. It
is known that the SCHA ansatz for the position-position
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Green function is correct in the static limit of zero fre-
quency and the perturbative limit of weak anharmonicity
[18]. However, the validity of the SCHA ansatz in the non-
perturbative and dynamic regime [20,21,33,35], where the
dynamical theory is most necessary, has not been theoretically
justified.

In this Letter, we solve this important problem by ap-
plying the time-dependent variational principle (TDVP) with
Gaussian variational states [7,13,36,37] to the anharmonic
lattice Hamiltonian at finite temperature. Gaussian TDVP ex-
pands the static variational states of SCHA to states with
nonzero momenta. We use the linearized time evolution to
derive the position-position correlation function and prove
the SCHA dynamical ansatz. We illustrate that the Gaussian
TDVP is successful in describing the dynamics because it
includes the two-phonon states as true dynamical excitations.
Our work connects the TDVP theory, whose application was
mostly focused on model Hamiltonians for cold atoms, with
anharmonic lattice dynamics and the SCHA method. Such
connection gives fruitful results on both sides. In TDVP
theory, the linearized time evolution and the projected Hamil-
tonian method [4,6,9] are two different ways to compute the
excitation spectrum, whose superiority over the other varies
across systems [4,7,13]. We use the anharmonic lattice model
to show that only the linearized time evolution gives correct
excitation energies in the perturbative limit. On the SCHA
side, we illustrate ways to systematically expand the SCHA
theory by leveraging recent developments of non-Gaussian
TDVP [6,11,12].

Self-consistent harmonic approximation. We briefly re-
view the key results of SCHA. Within the adiabatic
Born-Oppenheimer approximation, the anharmonic lattice
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Hamiltonian is

Ĥ =
N∑

a=1

ˆ̃p
2

a

2Ma
+ Ṽ ( ˆ̃r1, ...,

ˆ̃rN ). (1)

Here, a is the combined index for atoms and Cartesian direc-
tions; N = Natm × d with Natm and d the numbers of the atoms
and the spatial dimensions, respectively; Ma the atomic mass;
ˆ̃ra and ˆ̃pa the position and momentum operators; and Ṽ the
Born-Oppenheimer potential energy. We set h̄ = 1.

In SCHA, the true thermal equilibrium state of the anhar-
monic Hamiltonian is approximated by that of a harmonic
Hamiltonian Ĥ (H):

Ĥ (H) =
N∑

a=1

ˆ̃p
2

a

2Ma
+ Ṽ (H)( ˆ̃r). (2)

Since we study the dynamics around the SCHA equilibrium,
we assume that the optimal harmonic potential Ṽ (H) is already
found. The SCHA density matrix is

ρ̂0 = e−βĤ (H)
/Tre−βĤ (H)

, (3)

where β = 1/kBT is the inverse temperature. For later use, we
define 〈Â〉0 ≡ Tr(ρ̂0Â).

Hereafter, we use the normal-mode representation, where
the SCHA harmonic Hamiltonian becomes

Ĥ (H) =
N∑

m=1

ωm

2

(
p̂2

m + r̂2
m

)
, (4)

with ωm the eigenvalue of the SCHA dynamical matrix, and r̂m

and p̂m the normal-mode position and momentum operators.
The anharmonic Hamiltonian [Eq. (1)] can be written as

Ĥ =
N∑

m=1

ωm

2
p̂2

m + V (r̂), (5)

with V (r̂) = Ṽ ( ˆ̃r) the potential energy in the normal-mode
representation.

In the normal-mode representation, the SCHA self-
consistency equations [18] become〈

∂V̂

∂rm

〉
0

= 0,

〈
∂2V̂

∂rm∂rn

〉
0

= ωmδm,n. (6)

Also, since ρ̂0 is a thermal state, we find

〈p̂m〉0 = 0, 〈p̂m p̂n〉0 = (
nm + 1

2

)
δm,n, (7)

with nm = 1/(eβωm − 1) the occupation number.
Gaussian time-dependent variational principle. Next we

discuss the general principles of Gaussian TDVP for a mul-
timode bosonic system at finite temperature. We use the set of
states obtained by applying a Gaussian unitary transformation
Û (x) to the SCHA density matrix as the variational manifold:

ρ̂(x) = Û (x)ρ̂0Û
†(x). (8)

Here, x is a real-valued vector that encodes all the variational
parameters. We parametrize the Gaussian transformation as

Û (x) = D̂(α)Ŝ(β, γ ), (9)

where D̂ and Ŝ are the displacement and squeezing operators,
respectively:

D̂(α) = exp

(
1√
2

∑
m

(αmâ†
m − α∗

mâm)

)
, (10)

Ŝ(β, γ ) = exp

[ ∑
m,n
m�n

bmn(βmnâ†
mâ†

n − β∗
mnâmân)

+
∑

m,n
m<n

cmn(γ ∗
mnâ†

mân − γmnâ†
nâm)

]
, (11)

where

bmn ≡
{

1/
√

4(nm + nn + 1) if m = n

1/
√

2(nm + nn + 1) if m �= n
, (12)

cmn ≡ 1/
√

2(nm − nn). (13)

The variational parameters αm, βmn, and γmn are complex
numbers. The parameter βmn (γmn) is defined only for m � n
(m < n). Here, we assume for simplicity that ωm’s are nonde-
generate and satisfy ω1 < ω2 < · · · < ωN . The total number
of complex variational parameters is N2 + N . In the linear
response regime, degeneracy does not pose any theoretical
difficulty: if modes m and n are degenerate, one just needs
to exclude γmn from the set of variational parameters. This
exclusion is done because the infinitesimal transformation
parametrized by γmn does not change ρ̂0 [38].

Each group of parameters describes a different type of
excitation. Parameters α, β, and γ correspond to one-phonon
excitations, two-phonon excitations with two creations or two
annihilations of phonons, and two-phonon excitations with
one creation and one annihilation, respectively.

The imaginary parts of the parameters generate dynam-
ics. For example, Imα generates a finite atomic momentum
through the displacement operator. The SCHA theory does not
contain these imaginary parameters because the variational
states are limited to the thermal state of a harmonic Hamil-
tonian. In contrast, Gaussian TDVP, which allows both the
real and imaginary parts of the variational parameters to vary,
naturally allows one to study the dynamics.

We define x, the vector of variational parameters, as

x = (Reα Imα Reβ Imβ Reγ Imγ )ᵀ. (14)

Since ρ̂(x = 0) = ρ̂0 is the variational solution that minimizes
the SCHA free energy, x = 0 is a stationary point of the
variational time evolution [38].

To apply TDVP to mixed states, we map the variational
density matrices to wave functions by purification [11,39]. For
each physical state in the number basis, we add an auxiliary
state so that the purified wave function becomes

|	(x)〉 = [Û (x)
√

ρ̂0 ⊗ 1]|
+〉, (15)

where ⊗ denotes a tensor product and |
+〉 is a maximally
entangled state [39] between the physical and the auxiliary
modes [see Eq. (S15) and related discussions]. For the purified
wave function, the expectation value of a physical operator Â0

is

A(x) ≡ 〈	(x)|Â0 ⊗ 1|	(x)〉 = 〈Â(x)〉0, (16)
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where

Â(x) = Û †(x)Â0Û (x). (17)

The variational time evolution is obtained by projecting the
true dynamics of the wave function to the tangent space of
the variational manifold. The tangent space is spanned by the
tangent vectors, which at x = 0 are

|Vμ〉 =[(∂μÛ )
√

ρ̂0 ⊗ 1]|
+〉. (18)

Using the variational linear response theory [13,38], one
can show that the retarded correlation function G(R)

AB (ω) be-
tween operators Â and B̂ is

G(R)
AB (ω) = lim

η→0+
−i(∂μB)Gμ

ν (ω + iη)(νρ∂ρA). (19)

Here, the matrix Green function G(z) is defined as

(z − iK)G(z) = 1, (20)

where K is the linearized time-evolution generator defined as

Kμ
ν = −μρ∂ρ∂νE , (21)

with E (x) = Tr[ρ̂(x)Ĥ ]. The symplectic form � is defined by

μρIm〈Vρ |Vν〉 = 1
2δμ

ν. (22)

By computing K and the corresponding matrix Green function
G(z), one can find the physical correlation function G(R)

AB (ω)
using Eq. (19).

Anharmonic lattice dynamics. Now, we study the dynam-
ical properties of the anharmonic lattice Hamiltonian using
Gaussian TDVP. First, the symplectic form is [38]

� =
(

0 −1
1 0

)
⊕

(
0 −1
1 0

)
⊕

(
0 −1
1 0

)
, (23)

with ⊕ the direct sum.
The three matrices correspond to the subspace spanned by

the tangent vectors for the variation of α, β, and γ , respec-
tively. In each matrix the bases for the first (second) block
of rows and columns are the tangent vectors for the real
(imaginary) parts of the parameters.

For later use, we define P1, P2+, and P2− as the projection
operators to the bases of each of the three matrices. The
subscripts 1, 2+, and 2− indicate the nature of the tangent
vectors: one-phonon excitations, two-phonon excitations with
two creations or two annihilations, and two-phonon excita-
tions with one creation and one annihilation. We also define
the projection to the whole two-phonon sector: P2 = P2+ +
P2−.

Evaluating Eq. (21), we find that the time-evolution gen-
erator K is the sum of the noninteracting part, three-phonon
interaction, and four-phonon interaction (see Sec. S4 C of the
Supplemental Material [38]):

iK = H(0) + V(3) + V(4), (24)

where

H(0) =
(

0 iω
−iω 0

)
⊕

(
0 iω+

−iω+ 0

)
⊕

(
0 iω−

−iω− 0

)
,

(25)

V(3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 −i�(3)B 0 −i�(3)C 0
0 0 0 0 0 0

−iB�(3) 0 0 0 0 0
0 0 0 0 0 0

−iC�(3) 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(26)

V(4) =
(

0 0
0 0

)
⊕

⎛⎜⎜⎜⎝
0 0 0 0

−iB�(4)B 0 −iB�(4)C 0
0 0 0 0

−iC�(4)B 0 −iC�(4)C 0

⎞⎟⎟⎟⎠.

(27)

Here, we defined the diagonal matrices:

ωm,n = ωmδm,n, (28)

[ω±]mn,pq = (ωm ± ωn)δmn,pq, (29)

Bmn,pq =bmn(nm + nn + 1)δmn,pq, (30)

Cmn,pq = − cmn(nm − nn)δmn,pq. (31)

The implicit summation over a pair of mode indices m and n
implies the constraint m � n unless otherwise noted. We also
defined the anharmonicity tensor


(m)
n1,··· ,nm

=
〈

∂mV

∂rn1 · · · ∂rnm

〉
0

. (32)

The noninteracting part H(0) describes the free evolution of
one- and two-phonon excitations in the SCHA Hamiltonian.
The three-phonon interaction V(3) couples the one- and two-
phonon excitations. The four-phonon interaction V(4) couples
the two-phonon excitations to each other.

Finally, we study the linear response of the anharmonic
lattice and compute the position-position correlation function.
First, we define the noninteracting Green function G (0):

(z − H(0) )G (0)(z) = 1. (33)

From Eq. (25), one finds

G (0)(z) = G (0)
1 (z) ⊕ G (0)

2+(z) ⊕ G (0)
2−(z), (34)

where

G (0)
1 (z) = 1

z2 − ω2

(
z iω

−iω z

)
, (35)

and

G (0)
2±(z) = 1

z2 − ω2±

(
z iω±

−iω± z

)
. (36)

Next, we include the four-phonon interaction V(4). We
define the partially interacting Green function G (4)(z):

(z − H(0) − V(4) )G (4)(z) = 1. (37)

Since the four-phonon interaction V(4) does not act on the one-
phonon sector, we find

P1G (4)P1 = G (0)
1 ⊕ 0. (38)
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For the two-phonon sector, we obtain the Dyson equation

P2G (4)P2 = P2G (0)P2 + P2G (4)V(4)G (0)P2. (39)

Finally, we study the fully interacting Green function G(z)
by including the three-phonon interaction V(3). From the def-
initions of G and G (4), we obtain the Dyson equation

P1GP1 = P1G (4)P1 + P1G (4)P1V(3)P2G (4)P2V(3)P1GP1.

(40)

One can solve the Dyson equations [Eqs. (39, 40)] to find [38]

P1GP1

= G (0)
1 − G (0)

1

⎛⎝ 0 0∑
s,s′=±

�(3)Bs[G (4)
ss′ ]12Bs′�(3) 0

⎞⎠P1GP1.

(41)

Here, we defined B+ = B and B− = C. In Eq. (41), we omit-
ted the direct sum of the zero matrix in the P2 subspace for
brevity.

From Eqs. (S1, S2), one finds that the matrix elements for
the position operator is nonzero only for the variation of Reα:

∂μr = (1 0 0 0 0 0)ᵀ. (42)

Then, from Eqs. (19, 41), one can derive the Dyson equation
for the interacting retarded position-position correlation func-
tion [38]:

G(R)
rr = G(R0)

rr + G(R0)
rr �rrG(R)

rr . (43)

The self-energy is

�rr (z) =�(3)W(1 − �(4)W)−1�(3), (44)

where W is a diagonal matrix defined as

W =
∑
s=±

Bs
ωs

z2 − ω2
s

Bs. (45)

By recovering the mode indices and defining

χmn,pq(z) ≡ 1

2

[
(ωm + ωn)(nm + nn + 1)

(ωm + ωn)2 − z2

− (ωm − ωn)(nm − nn)

(ωm − ωn)2 − z2

]
δmn,pq, (46)

one can rewrite Eq. (44) in a form identical to the SCHA
dynamical ansatz [38]:

�rr (z) = �(3)
(− 1

2χ(z)
)[

1 − �(4)
(− 1

2χ(z)
)]−1

�(3). (47)

In Eq. (47), the implicit summation over the mode indices is
done without any constraints. Equation (47) and its derivation
is the main result of this Letter. When transformed to the
Cartesian representation, Eq. (47) becomes identical to the
SCHA dynamical ansatz (Eq. (70) of Ref. [18]). We empha-
size that we rigorously derived the phonon self-energy �rr (z)
using Gaussian TDVP. Our derivation theoretically proves the
SCHA dynamical ansatz.

The physical interpretation of the self-energy formula we
obtained vary significantly from that of the SCHA dynamical
ansatz. In Gaussian TDVP, the two-phonon states are true
dynamical excitations. However, in SCHA, the two-phonon

TABLE I. Excitation energy of the anharmonic oscillator
[Eq. (48)] computed with three different methods.

Perturbation theory ω0 − λ2a2/12ω0 + O(λ4)
Linearized time evolution ω0 − λ2a2/12ω0 + O(λ4)
Projected Hamiltonian ω0 − λ2a2/16ω0 + O(λ4)

states do not have their own dynamics and appear only in-
directly through the position dependence of the SCHA force
constants. The presence of the dynamical two-phonon excita-
tions is the essential reason why Gaussian TDVP can describe
dynamical properties while the SCHA theory cannot.

For example, the phonon lifetime is an important dynami-
cal property of an anharmonic lattice. In Gaussian TDVP, the
one-phonon states acquire a finite lifetime by decaying to the
continuum of two-phonon states through the three-phonon in-
teraction. In contrast, in SCHA, there are no continuum states
to which the one-phonon states can decay. Hence, in SCHA,
the phonon lifetimes can only be described with a perturbative
approximation [32] unless one resorts to an ansatz.

Discussion. A common alternative to the linearized time
evolution is the projected Hamiltonian method [4,6,9]. There,
the Hamiltonian is projected onto the tangent space of the vari-
ational manifold. Let us consider a single-mode anharmonic
oscillator at T = 0, whose Hamiltonian is

Ĥ = ω0

2
( p̂2 + r̂2) + λa

6

(
r̂3 − 3

2
r̂

)
+ λ2b

24

(
r̂4 − 3r̂2 + 3

4

)
.

(48)

Here, λ is the perturbation strength. The SCHA variational
Hamiltonian is

Ĥ (H) = ω0

2
( p̂2 + r̂2), (49)

and the variational ground-state energy is ω0/2.
In Table I we list the excitation energy, the difference of

the ground- and first excited-state energy, computed using
different methods [38]. Comparing the variational methods
to the perturbation theory, we find that the linearized time
evolution is correct in the perturbative limit λ → 0, while
the projected Hamiltonian method is not. Since the SCHA
dynamical ansatz is exact in the perturbative limit [18], this
finding also holds for a general multimode anharmonic lattice
at finite temperatures.

This difference occurs because the projected Hamiltonian
method fails to describe the effect of virtual three- and four-
phonon states. In Fig. 1, we show the two processes that
appear in the time-domain representation of the bubble di-
agram for the phonon self-energy. Figure 1(b) describes a

FIG. 1. Diagrams of the two processes that appear in the time-
domain representation of a bubble diagram. Created using the
FEYNMAN package [40].
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process involving a four-phonon state. Since the Gaussian pro-
jected Hamiltonian method completely neglects the three- and
four-phonon excitations, it only includes the process described
in Fig. 1(a), not that of Fig. 1(b). In contrast, in the linearized
time evolution, the coupling of the one- and two-phonon states
to virtual three- and four-phonon states is included by an
additional term related to the derivative of the tangent vectors,
which is neglected in the projected Hamiltonian method [13].
Thanks to this additional term, the linearized time evolution
gives the correct perturbative limit while the projected Hamil-
tonian cannot.

A promising future research direction based on our study
is a rigorous, systematic expansion of the SCHA method
to go beyond the harmonic approximation by using non-
Gaussian variational transformations [6]. Also, the use of
mixed fermionic and bosonic variational states [6,11,12] will
allow the study of nontrivial electron-phonon correlation such
as in phonon-mediated superconductivity or polarons in an-
harmonic lattices.

Recently, Monacelli and Mauri also reported a proof of the
SCHA dynamical self-energy in an independent work [41].
While Ref. [41] additionally presents a numerical algorithm

to compute the correlation functions, our work focuses on the
link between TDVP and SCHA. Also, while the proof for the
finite-temperature case in Ref. [41] is based on an analogy
with the T = 0 case, our proof uses purification to rigorously
derive the finite-temperature equation of motion. The results
of the two works are consistent when there is an overlap.

Conclusion. In summary, we developed a variational the-
ory for the dynamical properties of anharmonic lattices using
Gaussian TDVP, establishing a firm link between Gaussian
TDVP and SCHA. We provided solid theoretical groundwork
for the use of the SCHA dynamical ansatz in studying spectral
properties. The presence of dynamical two-phonon excitations
in Gaussian TDVP was essential to obtain correct dynamics of
the one-phonon excitations. We compared the linearized time
evolution and the projected Hamiltonian methods to find that
only the former is correct in the perturbative limit. Our work
establishes a useful connection between TDVP and SCHA,
allowing further developments in both fields.

Acknowledgments. This work was supported by the
Creative-Pioneering Research Program through Seoul Na-
tional University, Korean NRF No-2020R1A2C1014760, and
the Institute for Basic Science (No. IBSR009-D1).

[1] P. A. M. Dirac, Note on exchange phenomena in the Thomas
atom, Math. Proc. Cambridge Philos. Soc. 26, 376 (1930).

[2] P. Kramer, A review of the time-dependent variational principle,
J. Phys.: Conf. Ser. 99, 012009 (2008).

[3] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde,
and F. Verstraete, Time-Dependent Variational Principle for
Quantum Lattices, Phys. Rev. Lett. 107, 070601 (2011).

[4] J. Haegeman, T. J. Osborne, and F. Verstraete, Post-matrix prod-
uct state methods: To tangent space and beyond, Phys. Rev. B
88, 075133 (2013).

[5] Y. Ashida, T. Shi, M. C. Bañuls, J. I. Cirac, and E. Demler,
Solving Quantum Impurity Problems In and Out of Equilibrium
with the Variational Approach, Phys. Rev. Lett. 121, 026805
(2018).

[6] T. Shi, E. Demler, and J. Ignacio Cirac, Variational study of
fermionic and bosonic systems with non-Gaussian states: The-
ory and applications, Ann. Phys. 390, 245 (2018).

[7] T. Guaita, L. Hackl, T. Shi, C. Hubig, E. Demler, and J. I.
Cirac, Gaussian time dependent variational principle for the
Bose-Hubbard model, Phys. Rev. B 100, 094529 (2019).

[8] N. Rivera, J. Flick, and P. Narang, Variational Theory of Non-
relativistic Quantum Electrodynamics, Phys. Rev. Lett. 122,
193603 (2019).

[9] L. Vanderstraeten, J. Haegeman, and F. Verstraete, Simulating
excitation spectra with projected entangled-pair states, Phys.
Rev. B 99, 165121 (2019).

[10] L. Vanderstraeten, J. Haegeman, and F. Verstraete, Tangent-
space methods for uniform matrix product states, SciPost Phys.
Lect. Notes, 7 (2019).

[11] T. Shi, E. Demler, and J. I. Cirac, Variational Approach for
Many-Body Systems at Finite Temperature, Phys. Rev. Lett.
125, 180602 (2020).

[12] Y. Wang, I. Esterlis, T. Shi, J. I. Cirac, and E. Demler, Zero-
temperature phases of the two-dimensional Hubbard-Holstein

model: A non-Gaussian exact diagonalization study, Phys. Rev.
Res. 2, 043258 (2020).

[13] L. Hackl, T. Guaita, T. Shi, J. Haegeman, E. Demler, and I.
Cirac, Geometry of variational methods: Dynamics of closed
quantum systems, SciPost Phys. 9, 048 (2020).

[14] D. J. Hooton, LI. A new treatment of anharmonicity in lattice
thermodynamics: I, The London, Edinburgh, and Dublin Phil.
Magazine and J. Sci. 46, 422 (1955).

[15] I. Errea, B. Rousseau, and A. Bergara, Anharmonic Stabiliza-
tion of the High-Pressure Simple Cubic Phase of Calcium, Phys.
Rev. Lett. 106, 165501 (2011).

[16] I. Errea, M. Calandra, and F. Mauri, First-Principles Theory
of Anharmonicity and the Inverse Isotope Effect in Supercon-
ducting Palladium-Hydride Compounds, Phys. Rev. Lett. 111,
177002 (2013).

[17] I. Errea, M. Calandra, and F. Mauri, Anharmonic free energies
and phonon dispersions from the stochastic self-consistent har-
monic approximation: Application to platinum and palladium
hydrides, Phys. Rev. B 89, 064302 (2014).

[18] R. Bianco, I. Errea, L. Paulatto, M. Calandra, and F. Mauri,
Second-order structural phase transitions, free energy curva-
ture, and temperature-dependent anharmonic phonons in the
self-consistent harmonic approximation: Theory and stochastic
implementation, Phys. Rev. B 96, 014111 (2017).

[19] L. Monacelli, I. Errea, M. Calandra, and F. Mauri, Pressure
and stress tensor of complex anharmonic crystals within the
stochastic self-consistent harmonic approximation, Phys. Rev.
B 98, 024106 (2018).

[20] R. Bianco, I. Errea, M. Calandra, and F. Mauri, High-pressure
phase diagram of hydrogen and deuterium sulfides from first
principles: Structural and vibrational properties including quan-
tum and anharmonic effects, Phys. Rev. B 97, 214101 (2018).

[21] U. Aseginolaza, R. Bianco, L. Monacelli, L. Paulatto, M.
Calandra, F. Mauri, A. Bergara, and I. Errea, Phonon Collapse

L032017-5

https://doi.org/10.1017/S0305004100016108
https://doi.org/10.1088/1742-6596/99/1/012009
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1103/PhysRevB.88.075133
https://doi.org/10.1103/PhysRevLett.121.026805
https://doi.org/10.1016/j.aop.2017.11.014
https://doi.org/10.1103/PhysRevB.100.094529
https://doi.org/10.1103/PhysRevLett.122.193603
https://doi.org/10.1103/PhysRevB.99.165121
https://doi.org/10.21468/SciPostPhysLectNotes.7
https://doi.org/10.1103/PhysRevLett.125.180602
https://doi.org/10.1103/PhysRevResearch.2.043258
https://doi.org/10.21468/SciPostPhys.9.4.048
https://doi.org/10.1080/14786440408520575
https://doi.org/10.1103/PhysRevLett.106.165501
https://doi.org/10.1103/PhysRevLett.111.177002
https://doi.org/10.1103/PhysRevB.89.064302
https://doi.org/10.1103/PhysRevB.96.014111
https://doi.org/10.1103/PhysRevB.98.024106
https://doi.org/10.1103/PhysRevB.97.214101


JAE-MO LIHM AND CHEOL-HWAN PARK PHYSICAL REVIEW RESEARCH 3, L032017 (2021)

and Second-Order Phase Transition in Thermoelectric SnSe,
Phys. Rev. Lett. 122, 075901 (2019).

[22] I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs,
Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, High-Pressure
Hydrogen Sulfide from First Principles: A Strongly Anhar-
monic Phonon-Mediated Superconductor, Phys. Rev. Lett. 114,
157004 (2015).

[23] I. Errea, M. Calandra, C. J. Pickard, J. R. Nelson, R. J. Needs, Y.
Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, Quantum hydrogen-
bond symmetrization in the superconducting hydrogen sulfide
system, Nature (London) 532, 81 (2016).

[24] M. Borinaga, U. Aseginolaza, I. Errea, M. Calandra, F. Mauri,
and A. Bergara, Anharmonicity and the isotope effect in
superconducting lithium at high pressures: A first-principles
approach, Phys. Rev. B 96, 184505 (2017).

[25] I. Errea, F. Belli, L. Monacelli, A. Sanna, T. Koretsune, T.
Tadano, R. Bianco, M. Calandra, R. Arita, F. Mauri, and J. A.
Flores-Livas, Quantum crystal structure in the 250-kelvin su-
perconducting lanthanum hydride, Nature (London) 578, 66
(2020).

[26] M. Leroux, I. Errea, M. Le Tacon, S.-M. Souliou, G. Garbarino,
L. Cario, A. Bosak, F. Mauri, M. Calandra, and P. Rodière,
Strong anharmonicity induces quantum melting of charge den-
sity wave in 2H-NbSe2 under pressure, Phys. Rev. B 92,
140303(R) (2015).

[27] R. Bianco, I. Errea, L. Monacelli, M. Calandra, and F. Mauri,
Quantum Enhancement of Charge Density Wave in NbS2 in the
Two-Dimensional Limit, Nano Lett. 19, 3098 (2019).

[28] J. S. Zhou, L. Monacelli, R. Bianco, I. Errea, F. Mauri, and
M. Calandra, Anharmonicity and Doping Melt the Charge
Density Wave in Single-Layer TiSe2, Nano Lett. 20, 4809
(2020).

[29] R. Bianco, L. Monacelli, M. Calandra, F. Mauri, and I. Errea,
Weak Dimensionality Dependence and Dominant Role of Ionic
Fluctuations in the Charge-Density-Wave Transition of NbSe2,
Phys. Rev. Lett. 125, 106101 (2020).

[30] J. Sky Zhou, R. Bianco, L. Monacelli, I. Errea, F. Mauri,
and M. Calandra, Theory of the thickness dependence of the
charge density wave transition in 1T-TiTe2, 2D Mater. 7, 045032
(2020).

[31] J. Diego, A. H. Said, S. K. Mahatha, R. Bianco, L. Monacelli,
M. Calandra, F. Mauri, K. Rossnagel, I. Errea, and S. Blanco-
Canosa, Van der Waals driven anharmonic melting of the 3D
charge density wave in VSe2, Nat. Commun. 12, 598 (2021).

[32] L. Paulatto, I. Errea, M. Calandra, and F. Mauri, First-principles
calculations of phonon frequencies, lifetimes, and spectral func-
tions from weak to strong anharmonicity: The example of
palladium hydrides, Phys. Rev. B 91, 054304 (2015).

[33] U. Aseginolaza, R. Bianco, L. Monacelli, L. Paulatto, M.
Calandra, F. Mauri, A. Bergara, and I. Errea, Strong anhar-
monicity and high thermoelectric efficiency in high-temperature
SnS from first principles, Phys. Rev. B 100, 214307 (2019).

[34] U. Aseginolaza, T. Cea, R. Bianco, L. Monacelli, M. Calandra,
A. Bergara, F. Mauri, and I. Errea, Bending rigidity and sound
propagation in graphene, arXiv:2005.12047.

[35] L. Monacelli, I. Errea, M. Calandra, and F. Mauri, Black metal
hydrogen above 360 GPa driven by proton quantum fluctua-
tions, Nat. Phys. 17, 63 (2021).

[36] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C.
Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum informa-
tion, Rev. Mod. Phys. 84, 621 (2012).

[37] G. Adesso, S. Ragy, and A. R. Lee, Continuous variable quan-
tum information: Gaussian states and beyond, Open Syst. Inf.
Dynam. 21, 1440001 (2014).

[38] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.3.L032017 for the analysis of the
variational parameters, technical details of the derivations, a
note on degeneracies, a note on the zero-temperature case,
and the calculation of the excitation energy of the single-mode
anharmonic Hamiltonian, and it includes Ref. [42].

[39] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[40] http://gkantonius.github.io/feynman/, accessed: 2020-05-31.
[41] L. Monacelli and F. Mauri, Time-dependent self-consistent har-

monic approximation: Anharmonic nuclear quantum dynamics
and time correlation functions, Phys. Rev. B 103, 104305
(2021).

[42] R. Pathria and P. D. Beale, Statistical Mechanics, 3rd ed.
(Academic Press, Boston, MA, 2011).

L032017-6

https://doi.org/10.1103/PhysRevLett.122.075901
https://doi.org/10.1103/PhysRevLett.114.157004
https://doi.org/10.1038/nature17175
https://doi.org/10.1103/PhysRevB.96.184505
https://doi.org/10.1038/s41586-020-1955-z
https://doi.org/10.1103/PhysRevB.92.140303
https://doi.org/10.1021/acs.nanolett.9b00504
https://doi.org/10.1021/acs.nanolett.0c00597
https://doi.org/10.1103/PhysRevLett.125.106101
https://doi.org/10.1088/2053-1583/abae7a
https://doi.org/10.1038/s41467-020-20829-2
https://doi.org/10.1103/PhysRevB.91.054304
https://doi.org/10.1103/PhysRevB.100.214307
http://arxiv.org/abs/arXiv:2005.12047
https://doi.org/10.1038/s41567-020-1009-3
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1142/S1230161214400010
http://link.aps.org/supplemental/10.1103/PhysRevResearch.3.L032017
http://gkantonius.github.io/feynman/
https://doi.org/10.1103/PhysRevB.103.104305

