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We investigate the impact of an Ohmic-class environment on the conduction and correlation properties of
one-dimensional interacting systems. Interestingly, we reveal that interparticle interactions can be engineered
by the environment’s noise statistics. Introducing a backscattering impurity to the system, we address Kane-
Fisher’s metal-to-insulator quantum phase transition in this noisy and realistic setting. Within a perturbative
renormalization group approach, we show that the Ohmic environments keep the phase transition intact, while
sub- and super-Ohmic environments modify it into a smooth crossover at a scale that depends on the interaction
strength within the wire. The system still undergoes a metal-to-insulator-like transition when moving from sub-
Ohmic to super-Ohmic environment noise. We cover a broad range of realistic experimental conditions, by
exploring the impact of a finite wire length and temperature on transport through the system.
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Introduction. One of the most fascinating manifestations of
quantum many-body physics occurs in one-dimensional sys-
tems. There, irrespective of whether the interacting particles
are gapless fermions, bosons, or spins, their low-energy prop-
erties universally exhibit Tomonaga-Luttinger liquid (TLL)
behavior with well-defined bosonic excitations [1–5]. Dis-
tinct signatures of TLL [6] include separation of spin and
charge degrees of freedom [7–10], which are experimentally
verified as the fractionalization of injected charges [11–14];
power-law behavior of correlation functions, also known as
the zero-bias anomaly [15–17]; and Kane-Fisher impurity
physics [18–20]. The latter concerns the sensitivity of gapless
excitations to local perturbations, that are microscopically
rationalized in terms of Friedel oscillations [21], and as a
manifestation of orthogonality catastrophe [22–24]. Thus, the
presence of a backscattering impurity inside a TLL [18,19,25]
engenders a quantum phase transition between a perfectly
conducting phase and an insulating phase as a function
of interaction strength. Such TLL features have been ob-
served in a wide variety of experiments including nanotubes
[16,17,26], quantum Hall edges [27,28], cold-atom platforms
[29–31], circuit quantum simulations [25], antiferromagnetic
spin chains [32], and spin ladder systems [33,34].

Recent technological advances in solid-state platforms
[12,35,36], as well as many-body quantum simulators with
cold-atom experiments [30,37–41], or quantum circuits
[25,42,43], sparked a renewed interest in the dynamics of
open quantum systems [44]. Here, the competition between
coherent quantum processes and incoherent forcing induced
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by the environment leads to novel physics, with no counterpart
in isolated quantum systems [45–54], and raises fundamental
questions regarding the existence of universality in open quan-
tum systems. As a result, the interplay between TLL physics,
dissipation, and drive is also revisited, leading to novel effects,
such as a many-body quantum Zeno effect due to localized
loss [55–60], engineering correlation with nonlocal two-body
loss effects [61,62], exotic phases such as Zeno insulators, and
dissipation-induced spin-charge separation [63]. Similarly, the
impact of out-of-equilibrium scenarios has been extensively
explored [50,64–68], highlighting further universal open TLL
physics.

A particularly relevant instance of an open TLL involves
the presence of leads (reservoirs) attached to the ends of
a quantum wire. This setup is fundamental for exploring
quantum transport [30,41,69,70]. However, the presence of
leads (and their resulting dissipative channels) unavoidably
affects the wire’s transport properties, where even the pres-
ence of noninteracting one-dimensional (Ohmic) leads melts
the insulating phase of dirty TLLs [67,71–75], as well as
the aforementioned zero-bias anomaly [76]. The leads have
shown to have a more dramatic impact on transport and the
I-V characteristic of the interacting wire, when they are mod-
eled as TLLs with interaction strengths different from that
of the wire [77,78]. Realistic leads, however, are realized
by distinctly different systems, ranging from metallic gates
with an unscreened Coulomb potential [79] or lattice vibra-
tions [80], to superfluid ultracold gases [81], or to complex
RC circuits [82]. Accordingly, these realizations bring about
different open system scenarios, with various environment
densities of states, coupling to the TLL, and fluctuations.
This diversity can result in vastly different phenomena. De-
spite its criticality, to our knowledge, a unifying, low-energy
theory that is able to include the effect of arbitrary reser-
voirs (that are not necessarily TLLs) coupled to a TLL is
still missing.
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FIG. 1. (a) Sketch of a quantum wire containing a single
impurity, that backscatters electrons, coupled to leads. (b) The noise-
power spectrum of the electronic leads as a function of frequency,
where ωc marks the environment bandwidth. (c) The phase diagram
of a two-level system (φ4 theory) coupled to an Ohmic environment
for varying dissipation strength α. For small dissipation α < 1, the
effective tunneling � between two potential wells diverges, i.e., the
particle is delocalized, but for stronger dissipation α > 1 the particle
is localized � → 0 [83]. (d) Phase diagram of the TLL hosting an
impurity coupled to Ohmic leads [cf. action (4), with an effective
scattering potential V mapped to a sine-Gordon potential] as a func-
tion of the interaction strength in the wire Kw [cf. Eq. (4)].

In this Letter, we fill this gap by formulating a low-
energy theory for a quantum wire in contact with arbitrary
Ohmic-class leads, and show how these dramatically mod-
ify the low-energy properties of the wire. To highlight
the consequences of this open system interplay, we ana-
lyze Kane-Fisher’s impurity problem as a concrete setup.
We show that while a super-Ohmic environment (with fast
fluctuations) localizes the particles akin to a Zeno effect,
sub-Ohmic noise (slow fluctuations) overwhelms the low-
energy properties of the TLL. The impurity, then, engenders
the TLL-environment competition with a nonmonotonous
renormalization group (RG) flow, leading ultimately to a
conducting-to-insulating-like transition in the TLL as a func-
tion of the noise statistics in the environment. Furthermore,
considering realistic finite-size one-dimensional (1D) sys-
tems, we predict that the nonmonotonous flow implies unusual
temperature-dependent scaling of the conductance coming out
from the TLL-environment competition.

Setup and microscopic model. We consider a system of
interacting spinless electrons confined in a single-channel 1D
wire of length L that is adiabatically connected to metallic
leads [see Fig. 1(a)]. The Hamiltonian of the wire reads

Hw =
∫

x

[ ∑
η=L,R

{iαηνF�
†
η (x)∂x �η (x) + Uρη (x)ρη (x)}

]
,

(1)

with
∫

x = ∫ L/2
−L/2 dx, where the first term represents the ki-

netic energy of electrons with a linearized dispersion εk =
αηνFk, νF the electron velocity, and αL = 1 (αR = −1) cor-
responds to the left- (right-)moving electrons with fermionic
field operators �L (�R). The second term describes local

electron-electron interactions inside the wire via (normal-
ordered) density operators ρη (x) =: �†

η (x)�η (x) : with a
constant magnitude U .

Many-body interactions in the wire modify the
relevant quasiparticles profoundly, resulting in the
emergence of collective bosonic excitations [1,3,4].
Using bosonization, we can write the fermionic fields
as �η = √

�/(2π )F̂η exp[ikFx + iφη (x)], where � is an
ultraviolet cutoff, F̂η the Klein factor, and φη represents

bosonic fields with commutation relations, [φη (x), φη′ (y)] =
−iπ αηδη,η′ sgn(x − y). The density operator in terms
of these bosonic fields reads ρη (x) = ∂x φη (x)/(2π ).
Thereby, the bosonized Hamiltonian of the interacting

wire takes the form Hw = ν

4π

∫
x { 1

Kw
(∂x ϕ)2 + Kw(∂x θ )2},

where ϕ(x, t ), θ (x, t ) = (1/
√

2)[φL(x, t ) ± φR(x, t )] satisfy
the commutation relation [ϕ(x), θ (y)] = iπ sgn(x − y),
ν = νF/Kw, and Kw = 1/

√
1 + U/(πvF) is the so-called

Luttinger liquid parameter, with Kw = 1 referring to
a noninteracting wire, and Kw < 1 (Kw > 1) indicating
repulsive (attractive) interactions.

The wire is connected to electronic leads, which we intro-
duce by imposing appropriate boundary conditions ∂t φη (x =
±L/2) = 2πJη(t ), where Jη(ω) is the current operator in the
leads. Assuming an equilibrium situation 〈Jη(ω)〉 = 0, where
〈· · · 〉 denotes thermal averaging with respect to the leads, the
effect of the boundaries enters the correlation functions of
the wire via the noise-power spectrum S(ω) = 〈Jη(ω)Jη(−ω)〉
[76,83–85]. We consider an Ohmic-class noise-power
spectrum

S(ω) = ω

∣∣∣ ω

ωc

∣∣∣s−1
e−|ω/ωc|[1 + nb(βω)], (2)

where ωc is the characteristic energy scale of the environment,
indicating the exponential suppression of current-current cor-
relations for ω � ωc. The parameter s ∈ (0, 2) distinguishes
between different cases, i.e., s = 1 describes an Ohmic
lead, whereas s < 1 (s > 1) corresponds to the sub- (super-)
Ohmic case. The noise power exhibits a bosonic distribution
nb(βω) = 1/[exp(βω) − 1] at inverse temperature β.

To realize an Ohmic environment, it suffices to consider
free fermions with a well-defined Fermi-Dirac distribution.
On the other hand, non-Ohmic environments with s 	= 1 can
be realized, for example, by electron-phonon coupling in the
leads (s > 1) [80], or by complex RC circuit architectures
(s < 1) [82]. In Fig. 1(b), we plot the frequency dependence
of the noise spectrum for these three cases. Comparing to
the Ohmic case, the current-current fluctuations in the sub-
(super)-Ohmic leads are more dominant at lower (higher) fre-
quencies, i.e., environmental fluctuations are slower (faster).
Ohmic-class environments have been extensively studied in
the framework of the spin-boson model [82,83,86–88], reveal-
ing the profound influence of the environment fluctuations on
the nature of the ground state, as well as on the dynamics
of the system. In particular, it was shown that in the Ohmic
case, there exists a critical dissipation that distinguishes be-
tween a localized phase and a delocalized one [see Fig. 1(c)].
In contrast, in the sub- (super)-Ohmic case, the system is

L032013-2



LUTTINGER LIQUID COUPLED TO OHMIC-CLASS … PHYSICAL REVIEW RESEARCH 3, L032013 (2021)

argued to be localized (delocalized) independent of dissipa-
tion strength [83]. Analogously, in this Letter, we investigate
the impact of such current fluctuations in the leads on the
transport through a disordered interacting wire.

Environment-induced correlations. First, we consider the
limit of T = 0, and investigate the impact of the noise
spectrum in the leads on the TLL physics. The corre-

lations between bosonic excitations of TLL are entirely
determined by the Hamiltonian (1) and the noise-power
spectrum at the boundaries (2) [76,85]. In particular,
the wire’s bosonic greater Green’s function defined as
G>,0

ϕϕ (x, x′, ω) ≡ −i〈ϕ(x, ω)ϕ†(x′, ω)〉0, with 〈· · · 〉0 referring
here to the thermal average, is found to be G>,0

ϕϕ (x, x′, ω) =
−iS(ω)Fϕ (x, x′, ω)/ω2, with

Fϕ (x, x′, ω) = 2

(
1

K2
w

− 1
)

cos
[

ωτL (x+x′ )
L

]
cos[ωτL] + (

1
K2

w
+ 1

)
cos

[
ωτL (x−x′ )

L

]
(
1 + 1

K2
w

)2 − (
1 − 1

K2
w

)2
cos2[ωτL]

, (3)

the structure function of a many-body Fabry-Pérot in-
terferometer that is formed due to the presence of the
leads reflecting the bosonic excitations at the bound-
aries [76,85]. Detailed balance holds G<,0

ϕϕ (x, x′, ω) ≡
−i〈ϕ†(x′, ω)ϕ(x, ω)〉0 = e−βωG>,0

ϕϕ (x, x′, ω), as expected for
bosons in thermal equilibrium [89]. The finite length of
the wire introduces a characteristic timescale to the system,
namely, the time of flight for the collective excitations τL =
LKw/νF to cross the wire. At high frequencies, ωτL � 1, the
system acts similarly to the infinite wire [90], whereas at small
frequencies, ωτL � 1, Fϕ (x, x′, ω) ≈ 1 such that the physics
of the interacting wire is washed out, and the system response
is dominated by the environment—cf. Ref. [42] for the Ohmic
environment case [91].

An impurity in the wire at zero temperature. To reveal
the consequences of the environment-induced correlations, we
consider a backscattering impurity at x = x0, leading to an ad-
ditional Hamiltonian term, Hb = V0 [�†

L(x0)�R(x0) + H.c.].
The action of the bosonized system at all positions x 	= x0

is quadratic and can be therefore integrated out, resulting in
the following (local sine-Gordon) action in imaginary-time
path-integral formalism

A =
∫ β

0
dτ ϕ†(τ )

[
G0

ϕϕ (τ )
]−1

ϕ(τ )

+ V0

∫ β

0
dτ cos[

√
4πϕ(τ )], (4)

where G0
ϕϕ (τ ) = ∫ ∞

−∞ dω G0
ϕϕ (iω)eiωτ , with G0

ϕϕ (iω) =∫
dω′
2π i

G0,>
ϕϕ (ω′ )−G0,<

ϕϕ (ω′ )
iω−ω′ the imaginary-time (Matsubara) Green’s

function of the clean wire at x = x0. Without loss of
generality, we assume x0 = 0 [92]. The action (4) and its
corresponding correlation functions describe the physics
found in a variety of systems, including Brownian motion of
a quantum mechanical particle in a periodic potential [93], as
well as in the dissipative two-level system [83,86,94,95]; our
specific wire-environment competition manifests through the
explicit functional form of G0

ϕϕ .
The noise spectrum of Ohmic leads scales linearly at low

energies, S(ω) ∼ ω, and we commonly observe G0
ϕϕ (iω) =

Kw/|2ω|. More generally, however, we can always define
a similar structure G0

ϕϕ (iω) = K (ω)/|2ω| with an energy-
dependent Luttinger parameter K (ω) incorporating the finite
length of the wire, and the fluctuations from the leads. At low

frequencies ω � ωc, we have [90]

K (ω) ≈ Kw

sin (πs)/2

∣∣∣ ω

ωc

∣∣∣s−1 1 + Kw + (1 − Kw)e−τL|ω|

1 + Kw − (1 − Kw)e−τL|ω| , (5)

which is plotted in Fig. 2(a) for the long-wire limit ω � 1/τL.
Equation (5) is one of the main results of this work, showcas-
ing how the presence of leads, at the wire’s ends, modifies the
effective strength of the interparticle interactions in the wire
at different frequencies. In particular, in the sub-Ohmic case
(slow environmental fluctuations), at sufficiently low frequen-
cies, the effective interactions in the wire appear attractive
[K (ω) > 1], while for the super-Ohmic case, the interactions
become effectively repulsive [K (ω) < 1].

We employ a perturbative RG approach (due to the pres-
ence of infrared divergences [82]), in which we integrate out
high-energy fields and map the system (4) to itself, but with
a smaller ultraviolet cutoff �′ = �(1 − dl ), i.e., dl = d�/�

[18]. As a result, a renormalized scattering potential V (�) (up

(a)

(c) (d)(b)

FIG. 2. Scaling and RG flow of the scattering potential V (ω)
and effective Luttinger parameter K (ω) at zero temperature [cf.
Eqs. (4)–(6)]. (a) The frequency dependence of K (ω) for ω � 1/τL

for a range of interaction strengths in the wire Kw ∈ [0.6, 1.4] and
different Ohmic-class cases, s = 1.2, 1.0, 0.8. The solid lines depict
the noninteracting case Kw = 1, and the lighter (darker) shades mark
Kw < 1 (Kw > 1). (b)–(d) The flow diagram (along the direction of
the arrows) of the scattering potential vs effective interaction as we
change the cutoff energy scale � from [∞,� f ], with � f > 1/τL for
(b) Ohmic (s = 1.0), (c) sub-Ohmic (s = 0.8), and (d) super-Ohmic
(s = 1.2) cases.
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to dl2) obeys the flow equation

dV

dl
= V [1 − K (�)]. (6)

Note that due to the noisy leads, the flow involves also the
renormalization of K (ω). The numerical solution of the flow
equation for the infinite wire limit is shown in Fig. 2, whereas
the impact of the finite wire is detailed in the Supplemental
Material [90]. For the Ohmic case s = 1 [Fig. 2(b)], standard
Kane-Fisher physics [18] is observed, where the wire’s Lut-
tinger parameter plays a decisive role, i.e., for Kw < 1 (Kw >

1) the fixed point of the RG, for � → 0, is V → ∞ (V → 0)
for the insulating (metallic) case. The quantum critical point
is at Kw = 1, corresponding to noninteracting electrons [see
Fig. 1(d)].

Considering sub-Ohmic environment noise [see Fig. 2(c)],
the low-frequency noise induces an effective K (ω) that in-
creases with �. Therefore, starting from repulsive interactions
in the wire, the renormalized scattering potential exhibits a
nonmonotonic behavior. Specifically, defining �∗ such that
K (�∗) = 1, we observe that for � > �∗, the backscatter-
ing potential increases and transport through the wire is
suppressed, while for � < �∗, the potential decreases and
transport is unaffected by the impurity. The transition point �∗
strongly depends on the wire’s bare Luttinger liquid parameter
Kw [cf. Eq. (5)]. Crucially, regardless of the specific initial
microscopic parameters of the wire, the fixed point of the flow
is K → ∞,V → 0. We compare the sub-Ohmic case with the
super-Ohmic one, where the flow lines show an opposite trend
[see Fig. 2(d)]. In this case, the effective K (ω) is reduced and
the fixed point is realized at K → 0,V → ∞.

Our perturbative RG analysis assumes an initially small
scattering impurity potential. In the opposite limit of a strong
impurity, we can formulate the problem in a dual rep-
resentation with Gθθ (iω) = 1/[2K̃ (ω)|ω|] [90], with K̃ (ω)
defined by changing (1 − s) → (s − 1) in Eq. (5). Hence,
the sub-Ohmic environment acts as a super-Ohmic one,
and vice versa [96]. As a result, tunneling t across the
barrier satisfies the RG equation dt/dl = t{1 − [1/K̃ (�)]}.
We conclude that the metal-to-insulator quantum phase
transition that occurs for the Ohmic environment at the
critical point, Kw = 1, is replaced for non-Ohmic envi-
ronments by a smooth crossover with a characteristic en-
ergy scale �∗ that depends on the interaction strength in
the wire.

Conductance at finite temperatures. We study ac conduc-
tance through the wire, and consider an external probe in the
form of a potential U (x, t ) = U (x) cos(ωt ), leading to an ad-
ditional term in the Hamiltonian, δH = ∑

η

∫
dxρη(x)U (x).

Within linear response theory [71,72,90,97], the ac
conductance reads G(ω) = −(e2/h)2iωGR

ϕϕ (ω), with the
retarded plasmonic Green’s function in the presence of
the impurity GR

ϕϕ (ω) = ∫
D[ϕ]ϕ(ω)ϕ†(ω)e−A|ω+i0+ =

[(G0,R
ϕϕ )−1(ω) − �R(ω)]−1, where the self-energy can be

obtained by expanding the partition function corresponding
to the action (4) [90], which up to V 2

0 reads

�(iω) = iV 2
0

∫ β

0
dτ [1 − eiωτ ]eE (τ ), (7)

(a) (c)(b)

FIG. 3. Temperature dependence of the impurity-induced correc-
tion to conductance through a finite-length wire [L = 100νF/(Kwωc )]
for different interaction strengths (Kw) [cf. Eq. (7)]. (a) Ohmic,
(b) sub-Ohmic (s = 0.8), and (c) super-Ohmic case (s = 1.2).
The dashed lines show in (a) the expected power-law depen-
dence Gb ∝ (T/ωc )2Kw−2, (b) the exponential dependence Gb ∝
exp[−αs(T/ωc )s−1], and (c) Gb ∝ (T/ωc )2s−4 [90]. The arrows in
(b) and (c) mark �∗, where K (�∗) = 1.

with

E (τ ) =
∫ ∞

0

dω

2π

{
1 − cosh(ωτ )

tanh(βω/2)
+ sinh(ωτ )

}
G0

ϕϕ (ω). (8)

Thereby, the ac conductance can be written as G(ω) =
(e2/h)[G0 − Gb], where G0 = −2iωGR,0

ϕϕ (ω) corresponds
to the conductance through a clean wire, and Gb ≡
−2iωGR,0

ϕϕ �R(ω)GR,0
ϕϕ represents the correction to the conduc-

tance due to the presence of the impurity. In the dc limit,
limω→0 G0(ω) = (ω/ωc)s−1, which is independent of temper-
ature and interaction strength inside the wire. For the Ohmic
case, limω→0 G0(ω) = 1, for sub-Ohmic this limit diverges,
and in the super-Ohmic case it vanishes.

In the following, we focus on the temperature-dependence
of the correction Gb (see Fig. 3). The temperature mimics the
RG flow of the renormalized scattering potential (cf. Fig. 2):
(i) In the Ohmic case [Fig. 3(a)], for 1/τL � T � ωc, we
obtain a power-law temperature dependence of the form Gb ∝
(T/ωc)2Kw−2. Such a power law is characteristic for critical
scaling close to a quantum phase transition [90]. Specifically,
for a repulsive interaction, Gb grows with decreasing tem-
perature, while it gets suppressed for attractive interactions.
For a noninteracting wire, Gb is independent of temperature.
Interestingly, at small temperatures (T τL � 1), we observe a
temperature-independent behavior for all values of Kw, cor-
responding to the cutoff of the critical scaling by the finite
length of the wire: (ii) For the sub- and super-Ohmic case
[Figs. 3(b) and 3(c), respectively], we observe a character-
istic energy scale �∗ above which the system qualitatively
behaves as in the Ohmic case, i.e., with a power-law decrease
governed by the noise scaling with ωc. However, at T � �∗,
for the sub-Ohmic case, we obtain an exponential suppres-
sion with exponents depending on the interaction strength as
Gb ∝ exp[−Kwαs(T/ωc)s−1]. In contrast, in the super-Ohmic
case for T � �∗, the Gb grows with decreasing temperature
in a power-law fashion with an exponent that is entirely in-
dependent of the interaction strength in the wire T 2s−4. The
finite length effect at low temperatures is washed away by the
noisy environment.

Conclusion. We show that the specifics of charge fluctu-
ation at the boundaries of an interacting wire can modify

L032013-4



LUTTINGER LIQUID COUPLED TO OHMIC-CLASS … PHYSICAL REVIEW RESEARCH 3, L032013 (2021)

the transport through a dirty Luttinger liquid beyond the
Kane-Fisher description. We further outline the physical im-
plications of the wire-environment competition for realistic
transport measurements in a wide variety of systems. Specifi-
cally, at low temperatures, the impurity-induced correction to
conductance (i) follows the result of Kane-Fisher [18], and
critically scales with an interaction-dependent power law up
to a finite length cutoff in the Ohmic case, (ii) gets washed
out in the sub-Ohmic case due to the dominant role of slow
(viscous) fluctuations in the environment, and (iii) is effec-
tively amplified as the fast charge fluctuations (super-Ohmic)
at the boundary of the wire act similarly to a Zeno effect
[83]. Our results highlight bath engineering as a tool to design
different phases of matter, without the drawback of inducing
dissipation. Furthermore, we pave the way toward analyzing,

e.g., the interplay between non-Ohmic reservoirs and a macro-
scopic number of in-wire impurities, where another type of
metal-to-insulator quantum phase transition is predicted to
occur [3], or the investigation of bath-induced stabilization
protocols for exotic excitations, such as Majorana fermions.
Further interesting extensions of our work involve the inclu-
sion of the spin, considering the range of interactions [79,98],
and investigating the backaction of the quantum wire on the
environment.
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