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Contactless rheology of finite-size air-water interfaces
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We present contactless atomic force microscopy measurements of the hydrodynamic interactions between an
oscillating sphere and a bubble in water at the microscale. The size of the bubble is found to have a significant
effect on the response due to the long-range capillary deformation of the air-water interface. To rationalize
the experimental data, we develop a viscocapillary lubrication model accounting for the finite-size effect. The
comparison between experiments and theory allows us to measure the air-water surface tension, without contact
and with the volume of liquid down to tens of microliters, paving the way toward robust contactless tensiometry
of polluted air-water interfaces.
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The interface between two media has an energy cost per
unit surface, called surface tension, resulting from the mi-
croscopic interactions of the constitutive molecules at the
interface [1,2]. Surface tension is an important parameter
in soft condensed matter and at small scales where capil-
lary phenomena usually dominate. Examples include wetting
properties [3,4], thin-film dynamics [5,6], and multiphase
flows.

Surface active molecules, i.e., surfactants, are widely used
to stabilize capillary interfaces on purpose, e.g., in emulsions
or foams, but they are also inevitable due to pollution. These
contaminants, which are usually adsorbed at the interface
between two immiscible fluids, lower the surface tension and
are responsible for specific rheological properties of the in-
terface [7]. To understand the dynamics of soft materials, the
interaction between objects such as droplets and bubbles, or
to quantify the amount of interfacial contamination, capillary
interfacial rheology is essential. Specifically, surface tension
is measured by a large variety of techniques: the pendant-drop
method [8], the spinning-drop method, and Wilhelmy plates
or du Noüy rings [9], to name a few. Moreover, the interfa-
cial rheology is usually measured with the Langmuir trough
[10–12], oscillating-disk devices [13,14], particle tracking
techniques [15–18], oscillating pendant drop [19–22], or
through the measurement of capillary waves [23–27].
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The atomic force microscope (AFM) is another powerful
tool to probe capillary phenomena such as the interaction
between bubbles [28,29] or droplets [30–32], as well as dy-
namical wetting [33–38] and the boundary conditions of flows
at a water-air interface [39–41]. In a recent work, some of us
used an AFM in dynamic mode in order to probe slippage
at air-water interfaces containing impurities [40]. From the
measurement of the hydrodynamic force, we have shown in
particular that the viscous component of the force contains
a signature of the advection of impurities adsorbed at the
interface. Besides, the flow-induced advection of impurities
at the interface also induces an elastic component in the force
response. At small distances, the capillary deformation of the
water-air interface becomes non-negligible and leads to an
additional elastic component in the force response. The main
objective of this previous work was to study the effect of im-
purity advection, and it was thus limited to large distances for
which the capillary deformation of the bubble was negligible.
Furthermore, this previous work focused only on interfaces
with low contamination.

Contactless measurements using a dynamic AFM and a
dynamic surface force apparatus (SFA) are increasingly used
as a gentle probing method to quantify material properties
[42–48]. Such measurements are based on an elastohydrody-
namic (EHD) coupling that results from the hydrodynamic
pressure which induces an elastic deformation of the sub-
strate. The air-water interface is suitable to test such EHD
coupling, since the interface deformation has an elasticlike
capillary restoring response. It is described in the framework
of the Young-Laplace equation that couples the hydrodynamic
pressure and the capillary deformation of the interface. Im-
portantly, the EHD coupling at the air-water interface has a
long-range lateral extent due to the structure of the Young-
Laplace equation. For large enough systems, the millimetric
capillary length

√
γ /(ρg) characterizes the lateral extent of
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FIG. 1. A glass sphere attached to an AFM cantilever is driven
to oscillate vertically near an air bubble deposited on a polystyrene
surface in a SDS solution at a frequency of ω/(2π ). θ is the con-
tact angle of the SDS solution on polystyrene in air. The vertical
displacement of the sphere Z (t ) = Aei(ωt+ϕ) + Abeiωt includes the
cantilever deflection Aei(ωt+ϕ) and the base displacement Abeiωt . The
motion results in an axisymmetric liquid-gap thickness profile h(r, t ),
depending on the radial distance r and time t , that includes an
axisymmetric vertical profile hb of the deformed bubble surface.

the capillary deformation, where γ is the air-water surface
tension, ρ is the density of water, and g is the gravity accel-
eration. However, for systems with lateral extents narrower
than the capillary length, the deformation depends strongly
on the system size [37]. Therefore, we expect the bubble
stiffness defined as the ratio between the hydrodynamic force
and bubble deformation to depend not only on the surface
tension but also on the bubble size.

In this Letter, we present a contactless measurement of the
rheological properties of air-water interfaces using dynamic
AFM. The air-water interfaces are formed by depositing an
air bubble in water with various concentrations of sodium
dodecyl sulfate (SDS). The measured mechanical response
presents two components: viscous and capillary, and both
of them show a significant dependence on the bubble size.
To rationalize the experimental results, we develop a model
based on lubrication theory and the Young-Laplace equation,
accounting for finite-size effects. From the comparison of the
experimental results and theoretical predictions, the values of
surface tension are extracted for different surfactant concen-
trations. As such, this method allows for robust probing of
interfacial rheology in the absence of any direct contact.

The schematic of the experimental setup is shown in Fig. 1.
The experimental method is described in [49] in detail. The
cantilever is excited by the base oscillation R[Abeiωt ], where
ω and Ab are the angular frequency and amplitude of the
base vibration, respectively, R[.] denotes the real part, and
t denotes time. The system essentially behaves as a damped
oscillator, where the vertical displacement Z (t ) of the center
of mass of the sphere with respect to its rest position satisfies

mcZ̈ + �bulkŻ + kcZ = Fd + F, (1)

with mc the effective mass (i.e., including the added fluid
mass), �bulk the damping coefficient in the bulk, kc the
stiffness of the cantilever, Fd the driving force due to the

imposed oscillation of the cantilever, and F = R[F ∗eiωt ]
the hydrodynamic force resulting from the interaction be-
tween the oscillating sphere and the air-water interface.
The displacement Z (t ) of the sphere includes the cantilever
deflection R[Aei(ωt+ϕ)] measured by AFM and the base dis-
placement, and thus reads Z (t ) = R[Aei(ωt+ϕ) + Abeiωt ] =
R[Z∗eiωt ], where A and Z∗ = Aeiϕ + Ab are real and complex
amplitudes, respectively [49]. We further define the mechan-
ical impedance G∗ = −F ∗/Z∗. Invoking the complex version
of Eq. (1), the impedance reads

G∗ = −kc

[
1 −

( ω

ω0

)2
+ i

ω

ω0Q

]
Aeiϕ − A∞eiϕ∞

Aeiϕ + Ab
, (2)

where A∞ and ϕ∞ are, respectively, the amplitude (A) and
phase (ϕ) measured far from the bubble (i.e., where F van-
ishes), ω0 = √

kc/mc is the bulk resonance frequency, and
Q = mcω0/�bulk is the bulk quality factor. Equation (2) pro-
vides a direct way to measure G∗ experimentally from the
cantilever’s deflection signal.

To model theoretically G∗, we consider the axisymmetric
system composed of the rigid sphere located at an average
distance D from the apex of the undeformed air bubble. The
ensemble is immersed in an incompressible Newtonian fluid
with a dynamical shear viscosity η. We define the effective
curvature radius Reff of the lubricated contact from R−1

eff =
R−1

s + R−1
b , where Rs and Rb are the curvature radii of the

sphere and bubble, respectively. We focus on the situation
in which D � Reff, so that we can invoke the lubrication ap-
proximation of the steady Stokes equations. The experiments
are done at low enough frequencies so that we can assume
a no-slip boundary condition at the air-water interface [40].
Such a condition is also assumed at the sphere-liquid inter-
face. Therefore, the liquid-gap thickness obeys the Reynolds
equation [50]:

∂h(r, t )

∂t
= 1

12ηr

∂

∂r

[
rh(r, t )3 ∂

∂r
p(r, t )

]
, (3)

where r is the radial coordinate, p(r, t ) is the excess hydrody-
namic pressure field with respect to the rest state, h(r, t ) =
D + Z (t ) + r2/(2Rs) − hb(r, t ) is the liquid-gap thickness,
and hb is the bubble surface profile (see Fig. 1). The latter
follows the Young-Laplace equation:

γ

r

∂

∂r

⎡
⎣r

∂hb
∂r√

1 + (
∂hb
∂r

)2

⎤
⎦ = �P(t ) + p(r, t ), (4)

where γ denotes the air-water surface tension, and �P is
the pressure drop across the interface. The contribution of
Hamaker forces is neglected in the model, as the sphere-
bubble distance in the experiment is in the 10 nm–20 μm
range, and thus typically larger than the distance below which
these forces are dominant.

Even though the excess hydrodynamic pressure field is
essentially localized near the apex of the bubble, over a radial
extent that scales with the hydrodynamic radius ∼√

2ReffD,
the Young-Laplace equation induces deformations on larger
scales—typically the millimetric capillary length [1]. Here,
we consider bubbles with radii Rb smaller than the cap-
illary length, so that (i) gravity is neglected, and (ii) the
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radial extent of the bubble’s deformation induced by the hy-
drodynamic pressure is rather set by Rb. Thus, we expect
finite-size effects. Interestingly, there is still a natural scale
separation since

√
2ReffD � Rb in practice. We thus use an

asymptotic-matching method to solve the problem [31]. The
outer solution (denoted with the subscript “out”) is solved ex-
actly and depends directly on the hydrodynamic force F (t ) =
2π

∫ ∞
0 dr r p(r, t ) [51]. We treat the inner hydrodynamic re-

gion (denoted with the subscript “in”) as a boundary layer of
the full interfacial deformation. We further assume a small
amplitude of the sphere’s oscillation, and we expand the in-
ner surface profile of the bubble as hb,in(r, t ) = −r2/(2Rb) −
uin(r, t ), where uin is the inner flow-induced capillary defor-
mation of the air-water interface. The linearization of Eq. (4)
near the apex of the bubble, combined with the air-volume
conservation, yields [51]

−γ

r

∂

∂r

(
r

∂uin

∂r

)
= −F (t )

πR2
b

1

1 + cos θ
+ p(r, t ), (5)

where θ is the contact angle (see Fig. 1), and where we
assumed the contact line to be pinned. The matching of
the inner and the outer solutions imposes the asymptotic
behavior uin(r, t ) ∼ − F (t )

2πγ
[1 − ln( 1+cos θ

1−cos θ
) + ln( r

2Rb
)] for r �√

2ReffD. We invoke the linear-response framework, and
we write uin(r, t ) = R[u∗

in(r)eiωt ] and p(r, t ) = R[p∗(r)eiωt ],
with u∗

in(r) and p∗(r) the corresponding complex amplitudes.
Finally, the amplitude of the hydrodynamic force reads F ∗ =
2π

∫ ∞
0 dr r p∗(r) in the lubrication approximation, which al-

lows us to compute the mechanical impedance G∗ [51].
The experiments are performed using an AFM (Bioscope,

Bruker) equipped with a liquid cell (DTFML-DD-HE). A
spherical borosilicate particle (MO-Sci Corporation) with an
Rs = 54 ± 2 μm radius is glued at the edge of a silicon
nitride cantilever (ORC8-10, Bruker AFM Probes). The stiff-
ness kc = 0.20 ± 0.01 N/m of the cantilever (with the sphere
attached to it) is determined from the drainage method [52].
The bulk resonance frequency ω0/(2π ) = 1240 ± 3 Hz and
the bulk quality factor Q = 3.4 ± 0.1 are obtained from the
resonance spectrum at a large distance [49]. Air microbubbles
are deposited onto spin-coated polystyrene layers, within SDS
solutions in water. The SDS concentrations C are in the 0.2–
40 mM range. As measured with an optical microscope, the
bubble radii Rb are in the 0.2–0.6 mm range, and the contact
angles θ (see the definition in Fig. 1) are in the 40◦–90◦ range,
with the exact value depending on C. A multiaxis piezo stage
(NanoT series, Mad City Labs) is used to control the distance
between the sphere and the bubble by imposing a displace-
ment to the substrate at very low velocity. The amplitude A
and phase ϕ of the cantilever’s deflection signal are measured
by a lock-in amplifier (Model 7280, Signal Recovery), and
they are recorded versus the piezo displacement. Addition-
ally, the dc component of the cantilever’s deflection is also
recorded and used to determine the average gap distance D.
We stress that the amplitude of the spherical probe’s oscilla-
tion is a few nanometers, and always less than 3.5 nm, which
is itself smaller than D, fixed to be in the 10 nm–20 μm range.

The real and imaginary parts of the measured mechanical
impedance G∗ = G′ + iG′′ are plotted in Fig. 2 as functions
of the average sphere-bubble distance D for two frequencies

FIG. 2. Real (blue circles) and imaginary (red circles) parts of the
measured mechanical impedance G∗ = G′ + iG′′ vs average sphere-
bubble distance D for a surfactant concentration C = 1 mM, and
frequencies ω/(2π ) = 200 Hz (a) and 300 Hz (b). The bubble radius
is Rb = 346 ± 2 μm and the contact angle is θ = 81◦ ± 2◦. The best
fits to the model [51] are displayed with solid black lines, using
a single fitting parameter γ = 54 ± 4 mN/m. The large-distance
asymptotic solution for G′ [see Eq. (6)] is also shown with green
dashed lines. The slope triangles indicate power-law exponents.

and a given surfactant concentration. Best fits to the model
[51] are also shown, in good agreement with the data, the
air-water surface tension γ = 54 ± 4 mN/m being the only
fitting parameter. Furthermore, two asymptotic regimes can be
observed, at large and small distance, respectively. They cross
over near D ≈ 1000 nm, which corresponds to the typical
viscocapillary distance Dc = 16R2

effηω/γ emerging from the
model [51], and equal to 771 and 1160 nm in Figs. 2(a) and
2(b), respectively. At large distance, the viscous contribution
G′′ dominates and follows a ∼D−1 scaling law, as expected
from the asymptotic expression G′′ � 6πηR2

effω/D [43]. In
contrast, the restoring contribution G′ due to the air-water
capillary interface appears with an apparent ∼D−2 scaling
law at large distance. We stress that the latter is not an exact
scaling law, due to a logarithmic correction [51]:

G′(D) � 9πη2R4
effω

2

γ D2

[
− 3 + ln(4) − 2 ln

(
1 + cos θ

1 − cos θ

)

+ ln

(
R2

b

2ReffD

)]
. (6)

At small distance, both G′ and G′′ saturate to constant values,
which is reminiscent of elastohydrodynamic responses near
soft substrates [43–45,48,53,54], and might be related to sat-
urations in the deformation and pressure fields. At such small
distances, the capillary deformation of the bubble surface es-
sentially accommodates the sphere’s oscillation, and the liquid
is no longer expelled from the gap, which further leads to a
stronger capillary response than the viscous one.

To reveal the importance of finite-size effects in the
viscocapillary response, we introduce the dimensionless
mechanical impedance G∗ = G∗Dc/(6πηωR2

eff ). In Fig. 3,
the experimental and theoretical dimensionless mechanical
impedances are plotted versus the dimensionless average
sphere-bubble distance for three bubble radii. Except for
the viscous contribution in the large-distance limit, the di-
mensionless impedance is generally found to depend on the
bubble size in a nontrivial way, which is correctly reproduced
by the model. This observation highlights the importance
of finite-size effects in viscocapillary interactions, resulting
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FIG. 3. Dimensionless mechanical impedance vs dimensionless
distance, for three bubble sizes as indicated, a single frequency
ω/(2π ) = 200 Hz, and a single surfactant concentration C = 1 mM.
The experimental data are shown in (a). The results of the model
are plotted in (b), using the previously obtained best-fit parameter
γ = 54 mN/m.

from the long-range capillary deformation of the air-water
interface. We note that the logarithmic correction in the large-
distance asymptotic expression of the capillary contribution
[see Eq. (6)] contains a bubble-size dependence that cannot
be resolved with the AFM sensitivity and the current bubble-
size range. At small distance, the size dependence is more
pronounced and both the real and imaginary parts of the di-
mensionless impedance decrease when increasing the bubble
size.

Having discussed the finite-size effects on the global hy-
drodynamic force, we now investigate their influence on the
amplitudes of the local excess pressure and deformation fields.
To do so, we perform numerical integrations of Eqs. (3) and
(5) using the asymptotic expression for the inner deforma-
tion field [51]. Figure 4 shows the results for D/Dc = 0.3,
with the same parameters as in Fig. 3. We observe that the
real and imaginary parts of the dimensionless amplitude of
the excess pressure field decay rapidly on a typical distance
∼√

ReffD, and they depend weakly on the bubble radius. In
sharp contrast, the real and imaginary parts of the dimension-
less amplitude of the inner deformation field largely depend
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FIG. 4. Real (a) and imaginary (c) parts of the amplitude of the
dimensionless inner deformation field as functions of the dimen-
sionless radial coordinate, at a dimensionless distance D/Dc = 0.3,
for the three bubble radii of Fig. 3, as obtained from the model
[51]. Similarly, the real and imaginary parts of the amplitude of the
dimensionless excess pressure field are plotted in panels (b) and (d),
respectively. The insets display zooms near the symmetry axis.
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FIG. 5. Air-water surface tension as a function of surfactant
(SDS) concentration, as obtained from fits (see Fig. 2) of the AFM
experimental data by the model (red dots). Statistical error bars
associated with multiple measurements at different frequencies are
indicated. For comparison, independent measurements using the
Wilhelmy-plate method are provided (blue dots).

on the bubble radius, as well as on the contact angle (not
shown).

So far, the air-water surface tension was considered as a
free parameter and was fixed by fitting the AFM experimental
data to the model. The fitted values of the surface tension as
a function of the SDS concentration in water are shown in
Fig. 5. We observe that the surface tension globally decreases
with increasing surfactant concentration, as expected. At sur-
factant concentrations smaller than ∼0.5 mM, the surface
tension is close to the 72 mN/m value for pure water. At
concentrations larger than ∼8 mM, the surface tension satu-
rates to a value on the order of 30 mN/m. The critical micellar
concentration of SDS in water is estimated to be around 8 mM
[55,56], which is in agreement with the latter observation.
The uncertainty on the fitted values of the surface tension
is on the order of ±4 mN/m, which mainly results from the
fact that the experiments at different frequencies lead to slight
variations.

Finally, we discuss the capacity of our method to be used
as a robust tensiometer. To do so, we perform independent
tensiometry experiments on similar air-water-SDS interfaces
using the Wilhelmy-plate method [9]. The results are shown
in Fig. 5, and they agree well with the ones obtained with
our method. Possible systematic deviations at the highest con-
centrations may result from a surfactant-induced depinning
of the contact line of the bubble on the substrate [57]. In
such a scenario, the hydrodynamic pressure would not only
trigger a local capillary deformation [see Eq. (4)], but would
also induce a spreading-dewetting cycle of the bubble on
the substrate. In addition, the bubble resonance frequency
being lower at lower surface tension, capillary waves might
be excited at the air-water interface at large surfactant concen-
trations. Besides, at the smallest concentration (0.2 mM) used
in the AFM experiment, the air-water interface may not be
entirely covered with an adsorbed surfactant layer, potentially
resulting in slippage. In such a scenario, the surfactant ad-
vection induced by the flow would add an elastic component
to the mechanical response [39,40], which might explain the
small deviation observed in Fig. 5.

In conclusion, we have studied the viscocapillary interac-
tion between an air bubble and a spherical probe attached
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to an AFM cantilever, and immersed within a surfactant so-
lution in water. The sphere was oscillated in the direction
normal to the air-water interface, thus generating a flow and
an associated hydrodynamic pressure field that could deform
the interface. The resulting force exerted on the sphere was
measured as a function of the sphere-bubble distance, and it
was found to depend on the bubble size. We also developed a
model, coupling axisymmetric lubrication flow and capillary
deformations, and accounting for finite-size effects through an
asymptotic-matching method. The experimental results were
found to be in good agreement with the model, the air-water
surface tension being the single free parameter. Finally, from a
comparison with independent tensiometry measurements us-
ing the Wilhelmy-plate method, we discussed the capacity of

our method to measure surface tensions robustly. The volume
of the liquid required in our method can be as small as tens of
microliters. Altogether, this work paves the way to contactless
capillary rheology, with fundamental perspectives in confined
soft matter, and practical applications toward micromonitor-
ing of water contamination.
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