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Dynamical elastic contact of a rope with the ground
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A rope laid on the ground with one end subjected to time-dependent forcing is proposed as a prototypical
elastic dynamical contact problem, which we study analytically, numerically, and experimentally. The dynamics
is governed by an infinite set of linear and nonlinear resonances. In the limit of weak bending stiffness, the
fundamental frequency is found to be independent of the rope tension. A transition between a radiation-less and
a wave radiating state occurs via a series of grazing bifurcations, whereby new contacts between the rope and
the ground are formed. The grazing bifurcations form overlapping Arnold tongues in the frequency-amplitude
parameter space. Finally, for ropes with large bending stiffness and when the geometric nonlinearity is important,
bistability is observed between several wave-making regimes.
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Take a long piece of rope, lay it on the ground, and give it
a sudden vertical shake at one extremity. If vigorous enough,
you are likely to see a bell-shape elevation traveling far away
along the rope, until internal friction makes it disappear. Such
a wave is familiar to anyone and simple looking, but the under-
lying physics is more complicated than meets the eye. In this
Letter, we shed some light on the dynamics underlying wave
generation by a combination of analytical, numerical, and
experimental results. Aside from its recreational aspect, this
problem is an opportunity to gather basic qualitative and quan-
titative knowledge about the theory of dynamical contacts
involving deformable bodies. Indeed, questions of this kind
can usually be approached only numerically [1,2]. Even in
the static case, analytically tractable elastic contact problems
are rare and most often proceed from Hertz’s famous study
of two spheres pressed against one another [3]. On the other
hand, the present problem has a practical interest, as it may
be connected to some aspects of cable laying on ocean beds
[4,5], rails deformation under a moving load [6], the intrusion
of a rod into a cylinder in the context of oil well drilling
[7], or parasitic contacts in rotating machines [8]. Importantly,
and contrary to other systems combining vibration and impact
[9,10], as in an atomic force microscope in the tapping regime
[11], the contact point is not known in advance and becomes
nonunique on the occasion of wave emission.

To study wave generation in a systematic way, we set
up an experiment, schematically depicted in Fig. 1, where
a long rope is excited harmonically with a small amplitude.
Intuitively, one would expect that below a certain threshold
frequency, the lifted part of the rope does no more than
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gently follow the motion imparted at the extremity and that,
above, waves are radiated along the rope. We determine such
a frequency and find, unexpectedly, that it is independent of
the rope tension when bending stiffness is negligible. Fur-
ther analysis reveals that wave generation starts at grazing
bifurcations. Next, we show that (i) the wave-less state can
regain stability by increasing the driving frequency above the
fundamental frequency and (ii) waves can also be generated
below this frequency through nonlinear amplification. As a
result, the stability boundary of the waveless state displays
a set of minima in the amplitude vs frequency parameter
space, which are called Arnold tongues in dynamical systems
theory. Finally, we experimentally observe hysteresis between
a regime of large-wave emission and another one where only
small waves are radiated; here too, the boundary of bistability
indicates an Arnold tongue pattern.

In the experiment, one end of the rope, at x = 0, is initially
lifted to a height Z0 and then made to oscillate vertically and
harmonically around that position. The elevation w(x, t ) of
the rope that is not in contact with the ground obeys the beam
equation [12]

ρ
∂2w

∂t2
= T

∂2w

∂x2
− B

∂4w

∂x4
− ρg, (1)

where ρ is the line density, B is the bending stiffness, and g
is the acceleration due to gravity. We assume that the rope
is under tension T . This tension could naturally arise from
static friction with the ground, as one lifts one extremity of
the rope, or it could be directly applied, as in our experimental
setup. Before shaking the rope, we manually apply a gentle
tension on the rope, on the order of 1 N (as was measured
in a static configuration with a force meter), and maintain
the resulting static deformation by placing a weight at the
unlifted end of the rope (see Fig. 1). This is done to maintain
a small slope, which is required for the validity of Eq. (1). In
practice, due to space constraints, the rope made an angle of
approximately 30◦ with the horizontal at the actuated end. In
what follows, we assume for simplicity that T is kept constant
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FIG. 1. Schematic of the rope with one end vibrated with relative
amplitude ε and pulsation ω around a fixed elevation Z0. Prior to
vibrating the rope, a tension T is applied and the resulting static
deformation is maintained by a weight placed at the other end of
the rope. The rope is sufficiently long to neglect reflection from the
weight. For ε sufficiently small, only one coordinate xc(t ) describes
the edge of the contact region between the rope and the ground
(contact point).

and uniform in x, which neglects variations associated to
stretching or slipping along the ground and requires the slope
to remain small [13]. This is in contrast with recent studies
on the formation of rucks [14,15] where that force is deduced
through the constraint of inextensibility. Note that rucks are
essentially under compression rather than in tension, leading
to a completely different dynamics. At x = 0, one has

w = Z0 + ε�Z (t ), �Z (t )/Z0 = cos ωt, ε � 1, (2)

and, in the absence of an applied moment, ∂2w
∂x2 = 0. At the

contact point x = xc(t ), the boundary conditions are w =
∂w
∂x = ∂2w

∂x2 = 0. Our aim is to describe the rope dynamics as
a function of ε and ω.

In spite of appearances, the above differential problem is
strongly nonlinear: The solution w(x, t ) of Eq. (1) depends
nonlinearly on xc(t ), which, in turn, is a functional of w(x, t ).
A hint of nonlinear behavior can already be found from
traveling-wave solutions of Eq. (1) far down the rope in that
their speed depends on their amplitude [12]. Before embark-
ing on the analysis, we note that a considerable simplification
of Eq. (1) can be made. In our experiments, we use stranded
wires. We estimate their bending rigidity by measuring the
torque required to make them conform to a quarter circle of
prescribed radius. For the thickest wire (diameter 6 mm), we
find B ≈ 0.01 N m2. Hence, over a length scale of 1 m and
with T ≈ 1 N, one clearly has B ∂4w

∂x4 � T ∂2w
∂x2 and the bending

term can safely be neglected everywhere except in boundary
layers near x = 0 and x = xc. Therefore, even though we nu-
merically simulate Eq. (1) we focus, for the sake of analytical
investigation, on

∂2w

∂t2
= c2 ∂2w

∂x2
− g, c2 = T/ρ, (3)

subjected to Eq. (2) and only w = ∂w
∂x = 0 at x = xc. Expand-

ing xc as

xc ∼ x0 + εx1 + ε2x2 + · · · , (4)

the boundary conditions can be expanded as

Y (x0, t ) + (εx1 + ε2x2)
∂Y

∂x

∣∣∣∣
x0

+ ε2 x2
1

2

∂2Y

∂x2

∣∣∣∣
x0

+ · · · = 0,

(5)

where Y = w, ∂w
∂x . Furthermore, w is also expanded

as

w ∼ w0 + εw1 + ε2w2 + · · · . (6)

Substituting the above expansions into Eq. (3), the leading-
order problem is a static one and is easily solved:

w0 = g(x − x0)2

2c2
, x2

0 = 2c2Z0

g
= 2T Z0

ρg
. (7)

At the next order, we have ( ∂2

∂t2 − c2 ∂2

∂x2 )w1 = 0, which
has the general solution w1 = F (t − x/c) + G(t + x/c). Us-
ing Eq. (2), one has F (t ) + G(t ) = �Z (t ). Next, the two
boundary conditions (5) yields F (t − x0/c) + G(t + x0/c) =
0 and −F ′(t − x0/c) + G′(t + x0/c) = −gx1(t )/c. Eliminat-
ing the functions F and G from these three equations, we
find

x1(t ) − x1(t − 2x0/c) = (2c/g)�Z ′(t − x0/c). (8)

The above equation describes the linear response of the con-
tact point to a general small-amplitude excitation ε�Z (t ). In
the particular case of a harmonic excitation �Z/Z0 = cos ωt ,
one easily finds, using Eq. (7), that

x1 = x0 cos ωt

2sinc(ωx0/c)
, (9)

where sinc(x) = sin(x)/x. An infinite linear response is thus
found at frequencies ω/(2π ) = fp where

fp = p

√
g

8Z0
, p = 1, 2, . . . . (10)

The set of these resonances make the rope equivalent to a
resonator of length x0, in which waves can travel at speed c.
What is surprising, however, is that the tension T is absent
from the expression of the resonances. This is because both c
and x0 increase in proportion to

√
T . The fundamental reso-

nance is akin to that of a classical pendulum of length 2Z0/π
2.

Alternatively, Eq. (1) can be recast in dimensionless form to
show that T disappears from the mathematical formulation
in the limit B/(T x2

0 ) → 0. Indeed, with ξ = x/x0, W = w/Z0

and τ = ct/x0, Eq. (1) becomes

∂2W

∂τ 2
= ∂2W

∂ξ 2
− 2 − β

∂4W

∂ξ 4
, β = B

T x2
0

= ρgB

2T 2Z0
, (11)

with W − 1 − ε cos �τ = Wξ = 0 at ξ = 0 and W = Wξ =
Wξξ = 0 at ξ = ξc(τ ), and

� = ωx0/c = ω
√

2Z0/g. (12)

In the limit β → 0, the tension is thus scaled out of the
problem. For nonzero β, the frequencies fp are not equi-
spaced anymore and f1 increases slightly, up to 42% as
β → ∞ [16].

We have checked the independence of f1 on T experi-
mentally. We mounted a stepper motor (Nema 23) capable of
delivering a torque of up to 3 N m. The motor was driven by
a QGL-HQ MA860H pilot, whose signal came from an Ar-
duino Mega2560. The rotation of the motor was converted into
vertical motion by using a home-made Scott Russel linkage.
With this setup, a precise motion �Z (t ) could be imparted on
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TABLE I. Experimental demonstration of independence of reso-
nance frequency on the tension in the rope. ρ = 15 g/m, B ≈ 0.0005
N m2, ε = 0.05, Z0 = 81 cm,

√
g/8Z0 ≈ 1.23 Hz.

x0 ± 0.03 (m) 1.08 1.20 1.47 1.65 1.80 2.30 2.45
f1 ± 0.02 (Hz) 1.18 1.19 1.20 1.20 1.23 1.17 1.20

the rope. We used a thin stranded metallic wire rope (diam-
eter 2 mm) with ρ = 15 g/m, B ≈ 0.0005 N m2. The static
elevation Z0 was 0.81 m, yielding a theoretical fundamental
resonance

√
g/8Z0 ≈ 1.23 Hz. Note that the slope of the rope

is not very small at x = 0. Nevertheless, the rope rapidly
becomes horizontal as it nears the ground. Additionally, we
found that the static profile was almost undistinguishable from
a quadratic one, as in Eq. (7), away from the immediate
vicinity of the origin. Equations (1) and (3) thus appear to
be reliable. To avoid sideways motion of the rope, also known
as “ponytail instability” [17,18], the rope was vertically oscil-
lated against a board. This produced some friction, but much
less than the internal one. According to the linear theory, a
general driving �Z (t )/Z0 = ∫

A(ω) exp(iωt )dω yields a lin-
ear response

x1(t ) = x0

2

∫
A(ω)eiωt

sinc(ωx0/c)
dω. (13)

Hence, in order to excite the fundamental resonance only,
�Z (t ) was gradually ramped from a vanishing amplitude to
a constant sinusoidal excitation in 20 periods of oscillation.
In this way, A(ω) was strongly peaked around a well-defined
frequency and unwanted excitation of high-order poles in
Eq. (13) was reduced. We increased the frequency until res-
onance was detected, in the form of a transition to small
waves being emitted down the rope. Because of the very
small amplitude of the waves, there was some uncertainty
on the frequency at the transition on the order of 0.02 Hz.
We repeated the experiment with different values of the ten-
sion T , measured by the static part x0 of the contact point.
To measure T directly was difficult to implement but, from
Eq. (7), x0 increases monotonically with T . Independence of
f1 on x0 thus implies independence of T , all other parameters
being unchanged. The results, shown in Table I, confirm the
prediction.

Equation (9) indicates that, starting from a small frequency
below f1 and increasing it, the response of the system di-
verges. One can anticipate that the unbounded growth of the
oscillation can only resolve itself into a train of waves along
the rope. On the other hand, in the range f1 < ω/(2π ) < f2,
the linear response becomes small again, suggesting that it
is possible not to emit waves there. However, apart from the
divergence, the above linear theory fails to give details on how
waves are actually generated. Proceeding to higher orders of
the analysis, we use the coordinate s = [x − xc(t )]/x0 and the
reduced pulsation � = ωx0/c. For a purely harmonic forcing,
we find [16] that

w/Z0 ∼
∑
j�0

( ε

sin �

) j
Fj (s, ε) cos ( jωt ), (14)

where F0 ∼ s2 + O(ε2),

F1 ∼ (�s − sin �s)

[
1 + ε2�4 cos2 �

32 sin4 �

(
1 + 2

tan �

�

)]

+ ε2�4 sec �

16 sin3 �
[sin 2�−sin (2�+�s)] sin �s + O(ε4),

(15)

F2 ∼ �2

8

[
(1 − cos �s)2 − sin2 �s

− cos 2�

sin 2�
(2�s − sin 2�s)

]
+ O(ε2), (16)

and

F3 ∼ �4

32

[
sin �s + sin 3�s − 2 sin 2�s

+ (2 − cos 2� + cos 4�)

2(1 + 2 cos 2�) sin2 �
(3�s − sin 3�s)

− 4
cos 2�

sin 2�
(1 − 2 cos �s) sin2 �s

]
+ O(ε2). (17)

The leading-order expressions of F2 and F3 indicate new res-
onances when sin 2� = 0 and when 1 + 2 cos 2� = 0; that
is, when ω/(2π ) = fp/2 or fp/3. Indeed, the nonlinearity in
Eq. (5) leads to higher harmonics of the cos ωt forcing which,
in turn, can match the fundamental resonances. As one pro-
gresses to higher orders in the analysis, more harmonics are
found. In particular, the condition qω/(2π ) = fp yields the
nonlinear resonances ωp,q/(2π ) = fp/q = (p/q) f1, similarly
to Ref. [8]. Since {ωp,q|p, q ∈ Z} is a dense set, any frequency
is arbitrarily close to a nonlinear resonance and any harmonic
forcing should in principle lead to a divergent response in the
absence of dissipation.

Let us study the limit ω/(2π ) → fp of the above expan-
sion. Writing � = pπ + μ, μ � 1, Eqs. (14)–(17) yield, for
sufficiently small μ,

w/Z0 ∼ s2 + (−)p ε3(pπ )4

32μ5

[
cos(ωt )(pπs − sin pπs)

+ 1

3
cos (3ωt )(3pπs − sin 3pπs)

]
. (18)

This function displays a local minimum at times t given by
ωt = (2n + p)π . One finds that, at such times, the rope makes
contact with the ground at s = −1.13/(pπ ) with zero slope
and zero velocity if

ε = εG(ω) ≈ 0.309

p2
μ5/3 = 0.309

p2

(ωx0

c
− pπ

)5/3
. (19)

Importantly, Arnold tongues given by the above formula be-
come flatter as p increases. Hence, the areas below these
curves shrink as 1/p2. Similarly, using the O(ε4) expression
for F4(s, ε) [16], one may investigate the region ω/(2π ) →
f1/2, by writing � = π/2 + μ, μ � 1. One then obtains that
the rope touches the ground before x = x0 if, locally,

ε = εG(ω) ≈ 1.815μ3/4 = 1.815
(ωx0

c
− π

2

)3/4
. (20)
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FIG. 2. Bifurcation diagram in the (ω, ε) plane obtained by
simulation of Eq. (1) with B/(T x2

0 ) = 0.01. Blue dots: numerics. Or-
ange dashed curves, from left to right: ε = 1.815|� − �0/2|3/4, ε =
0.309|� − �0|5/3, and ε = 0.077|� − 2�0|5/3, where �0 = 3.2. In-
set shows the analytical profile (18) at impact near the �0 resonance.
Between parentheses are indicated frequencies in Hz corresponding
to an experiment with Z0 = 81 cm.

Equation (18) is not rigorously valid because it breaks
the asymptotic ordering of terms in Eq. (14). Therefore, it
should not be given any theoretical value other than provid-
ing a qualitative trend. Nevertheless, the resulting expression
(19) is found to fit remarkably well with the appearance of
waves in numerical simulations. Numerical simulations of
dynamical contact problems are known to be challenging [2].
A practical issue is the determination and proper process-
ing of the contact set in the discretized rope. We used an
algorithm adapted from Liakou et al. [19]. A description is
given in the Supplemental Material [16]. Figure 2 shows the
boundary between the regimes of no radiation and radiation.
Numerically, the fundamental resonance is slightly shifted
from � = π to � = �0 ≈ 3.2; this results from the small
but nonzero bending stiffness [B/(T x2

0 ) = 0.01]. Strikingly,
the numerical curve contains a large number of sharp dips,
in addition to those predicted by the linear analysis. These
are signatures of the nonlinear resonances discussed above. In
particular, a sharp resonance is seen at �0/2. As anticipated
by the theory, the waveless state regains stability in the range
�0 < ωx0/c < 2�0 for sufficiently small ε. The analytical
formulas derived above in the vicinity of �0/2, �0, and 2�0

convincingly fit the numerical curve.
The situation described by Eqs. (18) and (19) is reminis-

cent of a grazing bifurcation. Such a bifurcation classically
applies to a point mass attached to a spring and subjected
to a periodic force. Upon increasing the forcing amplitude,
the mass starts making contact with an obstacle. Beyond the
grazing bifurcation, the dynamics rapidly becomes chaotic
[20]. The crucial difference here, of course, is that the rope is
spatially distributed. Nevertheless, the analogy is sufficiently
strong to also call the threshold identified by Eq. (19) a
grazing bifurcation. Let us denote by t∗ and x∗ the time and lo-
cation of impact as determined above. If ε exceeds the grazing
bifurcation threshold, the contact happens with a finite speed
−V . In the limit of an infinitely rigid ground with restitution
coefficient r, the rope locally rebounds instantaneously with

speed rV . This amounts to a reaction force (1 + r)ρV δ(t −
t∗)δ(x − x∗), which produces an elevation w∗(x, t ) = 0.5(1 +
r)V x0/c in the range −c(t − t∗) < x − x∗ < c(t − t∗) [12].
The perturbation w∗ expands in both directions and adds itself
to the elevation given by Eq. (14). Ultimately, this provokes
the detachment of the bump between x∗ and xc(t∗) and its
propagation at speed c down the rope. In this scenario, the
portion of the rope ahead of x∗ which ultimately forms the
traveling wave is initially given by Eq. (18) at t∗.

We now turn to the experimental demonstration of wave
generation through harmonic forcing at x = 0. As previously
mentioned, the computer-driven motor was mounted on a
table at a height Z0 = 81 cm. The angle of the rotor varied
in steps of 1.8◦. Given the length of the arm of the Rus-
sel linkage, this translates into an uncertainty of �Z (t ) of
4 mm, hence an uncertainty |�ε| ≈ 0.005. The transitions
were monitored by varying ε for fixed ω. Being computer
controlled, the uncertainty in frequency is estimated to be
well under 0.01 Hz and hence negligible. From what pre-
cedes, waves emitted at the grazing bifurcation point εG(ω)
are of very small amplitude, the maximum being approxi-
mately 0.085Z0/(pπ )2 (see inset of Fig. 2). Moreover, past the
bifurcation threshold, this amplitude does not grow rapidly as
[ε − εG(ω)]1/2, but, rather, only linearly in ε − εG(ω), as in
other impact systems [21]. Finally, the waves undergo rapid
attenuation due to internal friction between the strands of the
rope. This makes the determination of the transition experi-
mentally challenging, and we focused on large frequencies,
near 2�0, in order to benefit from a large amplification of the
oscillations.

Figure 3(a) shows the experimental result. The boundary
between no waves and small waves is the grazing bifurcation
curve. It shows a minimum near 2.3 Hz, in good agree-
ment with the f2 resonance of Fig. 2. However, quantitative
agreement between the numerical curve of Fig. 2 and the
experimental one in Fig. 3(a) is poor, even though the order
of magnitude is the same. We attribute this poor matching to
the nonconstancy of T . Indeed, T is not actively controlled
in the experiment. The fact that the slope of the rope is not
everywhere small together with small parasitic slippage on the
ground both make T vary in time and space in practice [16].

Next to the small-wave regime described thus far, we ex-
perimentally discover a large-wave regime. The two regimes
stably coexist over a wide range of parameters. Figures 3(b)
and 3(c) are snapshots of the two distinct dynamical states, ob-
served for the same values of ω and ε [black dot in Fig. 3(a)].
The limit of coexistence between the two regimes is clas-
sically given by a curve of limit point εLP(ω) in the (ω, ε)
space.

Fortunately, the curve εLP(ω) is much more convenient
to determine than εG(ω) because the transition between the
two regimes is visually clear-cut. We record εLP(ω) in the
following way: (i) start with a value ε > εLP(ω) in the state of
large-wave emission. (ii) Decrease ε by small steps and wait
for the system to relax to a stable operation. (iii) As soon as
ε < εLP, the large-wave state irreversibly disappears after only
a few oscillations, giving way to the small-wave state. The
most important feature of the εLP(ω) curve is its minimum.
This minimum attests of the resonant nature of that state and

L022026-4



DYNAMICAL ELASTIC CONTACT OF A ROPE WITH THE … PHYSICAL REVIEW RESEARCH 3, L022026 (2021)

1.7 1.8 1.9 2.0 2.1 2.2

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ε

ω/2π (Hz)

no wave

small waves

large + small waves

(a) (b)

0.
5

m

(c)

�

εG(ω)
↙

εLP (ω)
↖

FIG. 3. (a) Experimental bifurcation diagram in the (ω, ε) parameter plane. εLP(ω): limit-point curve above which large-wave and small-
wave regimes coexist. εG(ω): grazing bifurcation curve. (b) Snapshots of the large-wave oscillation. (c) Snapshot of the small-wave oscillation
(extracted frames from video in the Supplemental Material [16].) Panels (b) and (c) both correspond to the same value of ω and ε but different
initial conditions [black square in panel (a)]. ρ = 48 g/m, B ≈ 0.01 N m2, Z0 = 81 cm.

is an indirect manifestation of the Arnold tongues described
above.

Regarding the large-wave-emitting state, we make two
observations. First, we could not observe it with ropes of
smaller cross sections, i.e., smaller bending stiffness B. This
suggests that bending stiffness plays an important role in the
existence of this dynamical regime. Second, we could not
numerically reproduce the bistability between a large-wave-
and a small-wave-making state for any value of B in Eq. (1).
From this, we conclude that this model is insufficient to de-
scribe this state and that a fully geometrically nonlinear model
is required [12,13,17]. Geometrical nonlinearity couples the
transverse motion w(x, t ) to a longitudinal motion, making
the displacement fully vectorial. This could be the subject of
further investigation.

Dynamical contacts between deformable bodies may dis-
play rich dynamical behavior. Using a simple rope as a
prototype example, we have seen that the dynamics combines
the physics of free moving boundaries and that of nonsmooth
dynamical systems. In particular, contacts are governed by
the infinite set of resonant deformation modes of the rope
[see the multiple poles in Eq. (8)], supplemented by their
nonlinear harmonics. When analyzing more complicated dy-

namical contact problems, where analytical results are out of
reach, the present study suggests to pay attention to linear
resonances and their nonlinear harmonics. In the vicinity of
these resonances, nonlinear waves and chaos are suscepti-
ble to arise via grazing bifurcations. The stability regions
are likely to be again delimited by Arnold tongues in the
parameter space. Thanks to the slenderness of the rope, the
elastic degrees of freedom are reduced to their simplest ex-
pression here. Next in complexity would be the study of
time-dependent contacts between two slender bodies and the
inclusion of out-of-plane degrees of freedom. At the exper-
imental level, it would be interesting to carry out a more
complete and systematic study than the present demonstra-
tion. It would, for instance, be interesting to directly monitor
the tension within the rope and to manufacture ropes with
controlled properties. Finally, the effect of adhesion could be
investigated.
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