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Chaotic switching for quantum coin Parrondo’s games with application to encryption
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Quantum game theory has stimulated some interest in recent years with the advancement of quantum
information theory. This interest has led to a resurgence of quantum Parrondo’s games. With two losing games
combining to give a winning game, this paradoxical idea is known as Parrondo’s paradox. By using chaotic
switching between the two losing quantum games, we show that it is possible to achieve Parrondo’s paradox
involving a quantum walker playing two-sided quantum coin tossing games. Furthermore, we show that the
framework of chaotic switching in quantum coin tosses can be applied to encryption. This is a proposal to
deploy a quantum coin toss with chaotic switching for semiclassical encryption.
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Introduction. Parrondo’s paradox refers to the phenomenon
where two individually losing games can be combined to
win through deterministic or random mixing of the games
[1–7]. Since the introduction of the original capital-dependent
Parrondo’s games, there have been variants such as history-
dependent games [8] and cooperative games [9–11]. In recent
years, quantum game theory has been gaining popular trac-
tion, especially quantum Parrondo’s games [12–16]. Previous
work showed chaotic switching to be superior for various
optimization problems, with seminal papers that considered
chaotic switching in classical Parrondo’s games [17–21].
Classical Parrondo’s games with chaotic switching and the
potential to use controllable quantum systems to investigate
certain fundamental aspects of nature [22–24] have moti-
vated our study of applying chaotic switching to quantum
Parrondo’s games. Implementation of chaotic switching to
quantum Parrondo’s games critically narrows the gap in the
literature to achieve a fullyimplementable quantum chaotic
Parrondo’s game.

Furthermore, this work seeks to amalgamate chaotic
switching with quantum Parrondo’s games. Chaotic switch-
ing, unlike random switching performed in previous research,
is a reversible process without having to generate a register.
Additionally, chaotic switching, unlike sequential switching
performed in previous research, produces a result that is sen-
sitive to initial conditions. Thus, while the chaotic sequence
is deterministic, there is variability in producing such a se-
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quence by changing the initial condition. This places chaotic
switching at an added advantage over previously studied
random and sequential switchings, opening up avenues for
applications to modern problems. We present one such appli-
cation to encryption as an illustration of our work here.

The two-sided quantum coin toss random walk [15] will be
the starting point of the quantum Parrondo’s games to be in-
vestigated. The development of quantum random walk games
ties in with the fundamental development of quantum com-
puting; hence, research into quantum random walks continues
to be an area of immense interest and motivates experimental
implementations as well as theoretical advancement. Further-
more, a Parrondo paradoxical two-sided quantum coin toss
random walk, while nontrivial, can be realized through mod-
ern standards of quantum computing [25].

In this paper, we show that chaotic switching can, indeed,
improve on quantum coin tossing Parrondo’s games and also
provide insight into how chaotic switching for quantum coin
tosses can be applied to encryption. We discuss the method
behind developing a quantum coin toss Parrondo’s game with
chaotic switching. We show that Parrondo’s paradox appears
under chaotic switching. Finally, we show the use of such a
protocol for application in encryption.

The Hilbert space in which the two-sided quantum coin
toss random walk operates is H2 ⊗ Hp, where H2 is the two-
sided coin space and Hp is the position space. The dynamics
in the position space is coupled to the one in the coin space;
however, the converse is not true. Each step of a quantum
random walk comprises two transformations. The two trans-
formations are (1) the flipping of a quantum coin (the coin
operator Ĉ) and (2) the boost corresponding to the result of the
first transformation (the translation operator Ŝ). A quantum
coin is tossed to decide the number of discrete steps sn to take
with reference to the result of the quantum coin flip. A general
two-sided quantum coin is an arbitrary superposition of two
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states,

|c〉 = a0|0〉c + a1|1〉c, |a0|2 + |a1|2 = 1, (1)

with the basis

|0〉c =
[

1
0

]
, |1〉c =

[
0
1

]
. (2)

The transformation given by the coin operator Ĉ takes the form
of a 2 × 2 general unitary operator,

Ĉ(ρ, α, β ) =
( √

ρ
√

1 − ρeiα√
1 − ρeiβ −√

ρeiαβ

)
, (3)

where 0 � ρ � 1, 0 � α, β � π . The position of the walker
on the line is represented as a superposition of the p possible
states,

|x〉 =
∑

k

αk|k〉p,
∑

k

|αk|2 = 1, (4)

with the translation operator Ŝ taking the following form:

Ŝ = |0〉c〈0| ⊗
∑

k

|k + s0〉p〈k| + |1〉c〈1| ⊗
∑

k

|k + s1〉p〈k|,

(5)

where s j, j ∈ {0, 1} is the number of steps taken by the walker
in a random walk. Thus, the entire transformation is uni-
tary and combines the coin operator and translation operator,
given by

Û = Ŝ (Ĉ ⊗ Îp), (6)

where Îp is the identity operator of size p × p. The initial state
of the system is |ψ〉0 = |c〉0 ⊗ |x〉0, and m steps are taken by
applying the unitary operator m times,

|ψ〉m = Ûm|ψ〉0. (7)

The choice of operators and initial state is important in re-
vealing the Parrondo effect. For this work, we choose the
coin operators from Eq. (3) to take the form of the following
Hadamard-like matrices:

ĈA = 1√
2

[
1 1
1 −1

]
, ĈB = 1√

2

[−1 i
−i 1

]
. (8)

In order to investigate the effects of chaotic switching,
we set a known translation operator which has the form of
Eq. (4), for which Parrondo’s paradox is observed, specifi-
cally,

Ŝ = |0〉c〈0| ⊗
∑

k

|k + 1〉p〈k| + |1〉c〈1| ⊗
∑

k

|k − 1〉p〈k|.

(9)

Note that while the chaotic switching determined by the
maps generates the choice of quantum coin that is used, it is
independent of the steps taken by the quantum random walker.

Finally, an initial state is chosen (not unique) for Par-
rondo’s effect to emerge. We examine the effects of game
A and game B under different switching schemes. The initial
state considered is

|ψ〉0 = −1

2
[|0〉c ⊗ |2〉p] + i

2
[|1〉c ⊗ |0〉p]

+ i

2
[|0〉c ⊗ |0〉p] − 1

2
[|1〉c ⊗ | − 2〉p]. (10)

Previous results from the two-sided quantum coin toss
random walk Parrondo’s games have shown that the random
switching of two fair quantum coins, each with successive
negative biased expectations, gives an average random walk
position equivalent to the classical fair coin toss game [15].
Furthermore, the sequential periodic switching of two quan-
tum coins, each with successive negative biased expectations,
gives an average random walk with positive expectation.

Chaos is aperiodic long-term behavior in a determin-
istic system that exhibits sensitive dependence on initial
conditions. While the irregularities of chaotic and random se-
quences in the time domain are often quite similar, they can be
differentiated by their phase diagram. Consecutive points of a
chaotic sequence are highly correlated (hence deterministic)
but not in the case of a purely random sequence. A chaotic
sequence, X = {xi}n

i=0, is generated by a map through iterative
composition of the function fn(·), that is,

xn = fn( fn−1(· · · f2( f1(x0)) · · · )). (11)

In this paper, we consider various chaotic maps as the means
to generate chaotic switching. They are (1) a logistic map,

xn+1 = axn(1 − xn), (12)

(2) a sinusoidal map,

xn+1 = ax2
n sin(πxn), (13)

and (3) a tent map,

xn+1 =
{

axn if xn � 0.5,

a(1 − xn) otherwise. (14)

Note that the logistic map and the tent map are topo-
logically conjugate, as shown in Refs. [26,27]. Specifically,
some fundamental aspects of chaotic dynamics are preserved
under topological conjugacy. Effectively, showing that these
chaotic maps are topologically conjugate allows us to collect
different maps of equivalent classes and therefore facilitates
the understanding of more complicated dynamical systems in
terms of simpler ones, thus further expanding the applications
of chaotic switching in quantum Parrondo’s games. However,
we will report our findings of all three maps for completeness.

Results. In the quantum coin random walk Parrondo’s
games, game A and game B are defined as the discrete-time
tossing of quantum coins ĈA and ĈB, respectively. At discrete-
time n, only one game will be played; that is, only quantum
coin ĈA or ĈB will be used to determine the step taken by
the quantum random walker. The choice of which coin to use
follows an algorithm or pattern, which we call the switching
strategy. We study the difference between the chaotic maps.
By plotting the phase diagram and the bifurcation diagram
of each of the chaotic maps (see Fig. 1), we are able to
observe and choose the parameters to determine the switching
dynamics for each map.

There are two main observations from Fig. 1. First, the
bifurcation diagrams reveal how the control parameter a
determines the structure and order of switching. Take, for
example, a = 3.2 for the logistic map. Under such conditions,
if we were to take the two branches of the bifurcation dia-
gram, say, if xn < 0.6, we play game A; otherwise, we play
game B. Then we simply end up with the game sequence
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(a)

(b) (c) (d)

FIG. 1. (a) Phase diagram of a random map. Phase and bifurcation diagrams of the (b) logistic, (c) sinusoidal, and (d) tent maps. For the
phase diagrams, the line xn+1 = xn is drawn to show the line of fixed points. The parameters chosen to generate the phase diagrams are a = 4,
a = 2.28, and a = 1.9, respectively, with the same initial condition used for the bifurcation diagrams, x0 = 0.1, x0 = 0.5, and x0 = 0.8. The
diagrams are generated by plotting the next 1000 values of xn after 100 000 iterations.

[· · · AAAB· · · ] as the transient periodic sequence, regardless
of initial condition. However, if we take a = 4, this sequence
is still deterministic but is now sensitive to the initial condition
(i.e., chaos). Second, in a comparison between the phase por-
trait of the random number generator and those of the chaotic
maps, it is clear that despite being referred to as “chaotic”
maps, there is structure and relation between xn+1 and xn.
Thus, we can use “random map” (in a general sense) to refer
to the case where xn+1 and xn have no direct relation. The
switching strategy will be determined by the chaotic sequence
generated by the recurrence relation in Eqs. (12)–(14). The

chaotic switching of game A and game B is investigated
through simulations.

There are three parameters that are important in our discus-
sion. The first parameter is a, which is the control parameter in
each of the chaotic maps that determines whether the system
is chaotic. For the purposes of investigation we identified the
values of a for which chaos occurs. The choices of a are
fixed; they are a = 4, a = 2.28, and a = 1.9 for the logistic,
sinusoidal, and tent maps, respectively. These values are cho-
sen because by simple inspection of the bifurcation diagrams
in Fig. 1 for these values of a, the maps are chaotic. The
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(a)

(b)

FIG. 2. (a) Plot of the effect parameter γ on the proportion of game A played. As expected, the proportion of game A played against γ

for a uniform random switching is a straight line joining points (0,0) and (1,1). (b) The mean position of tossing quantum coins A and B
individually, randomly, in a periodic sequence [BBBAB], and for each of the chaotic maps for m = 100 steps.

second parameter is x0, the initial value of X . Last, the third
parameter is γ ; this parameter controls the proportion of game
A played. To determine whether to play game A or game B at
each discrete time step n, we utilize the γ parameter. The γ

value is important to make Parrondo’s paradox appear. For
example, in the case of the random map, γ = 0.5 implies
that game A and game B are played in equal proportion.
In our model, if xn < γ , then game A is played; otherwise,
game B is played. As an example, consider x0 = 0.2 and
γ = 0.5 for the logistic map with a = 4. The sequence gener-
ated is {0.2, 0.64, 0.9216, 0.289 . . . , 0.821 . . . , . . . }, so the
sequence of games played is {A, B, B, A, B, . . . }. It is worth

noting that by changing x0 and γ , we are able to generate a
different sequence, but all these sequences remain determin-
istic as they are generated by the logistic map with a fixed
a. From this point forth, all sequences (i.e., steps taken) have
length m = 100.

This motivates the first simulation. We want to examine
whether Parrondo’s paradox appears in the case where games
A and B are played with equal proportion for each of the
chaotic maps. To determine the respective value of γ , we first
plot a diagram to show the proportion of game A played.

From Fig. 2(a), we observe that the proportion of game A
played is not linear in γ for chaotic switching strategies. We
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TABLE I. Compilation of the mean positions and parameters
used for both simulations.

Map a x0 γ 〈x〉
Game A/B −0.061261
Random U (0, 1) 0.5 3.9932 × 10−4

[BBBAB] 0.053479
Simulation 1

Logistic 4 0.1 0.487 −8.8423 × 10−4

Sinusoidal 2.28 0.5 0.788 −0.0013614
Tent 1.9 0.8 0.569 −6.1492 × 10−4

Simulation 2
Logistic 4 0.5 0.6 0.090191
Sinusoidal 2.28 0.96 0.24 0.023668
Tent 1.9 0.98 0.08 0.044325

found the value of γ that results in an equal proportion of
games A and B being played. The parameter values used in
the first simulation are reported in Table I.

For all simulations, we have fixed the parameter a for each
of the chaotic maps. With the initial state from Eq. (10), our
numerical experiments confirm that tossing quantum coin ĈA

or coin ĈB individually results in a net negative mean position
for the random walker after m = 100 steps. Simulations were
carried out for the random map and all periodic sequences
of up to length 5; of importance is the sequence [BBBAB].
Subjected to the quantum coins Ĉ and the initial condition
|ψ〉0, the periodic sequence [BBBAB] produces the best pos-
itive mean position 〈x〉. The random map and the periodic
sequence [BBBAB] will be used as benchmarks to evaluate
the performance of the chaotic maps.

To simulate the effect of the chaotic maps, we randomly
selected a subsequence of length 100 from each of the chaotic
maps and computationally calculated the mean position of the
random walker subjected to this sequence of games; that is,
game A is played when xn < γ . This is averaged over 300
randomly selected subsequences. The results are presented in
Fig. 2(b).

As expected, the mean position of the random walker under
the chaotic maps produces an expected position similar to that
of a random map (fair outcome). This is due to the construct
of the simulation. The choice between tossing quantum coins
A and B is determined by averaging over 300 randomly se-
lected subsequences. This random selection and averaging of
subsequences nullifies the deterministic outcome that can be
predicted from a chaotic sequences for a fixed x0, thus giving
us the same result as simply randomly choosing between toss-
ing two quantum coins. In a previous paper [15], we showed
that based on the construction of both quantum coins, they
are inherently fair. Randomness, in this case averaging over
300 randomly selected subsequences, eliminates the quantum
bias that emerges as a result of quantum coin tosses. Fur-
thermore, since the classical limit of random tossing must
reveal the underlying fair nature of the quantum coins, all
mean positions of the random walker under the chaotic maps
produce a fair outcome (i.e., mean position of zero). In this
case, we see that the periodic sequence produces the highest

mean position for the random walker. At this juncture, it is
important to ask if we can do better.

With the knowledge that averaging over randomly selected
subsequences results in a fair outcome, we now conduct the
second simulation, which eliminates the process by which
averaging takes place. Instead, we will use deterministic se-
quences that are generated by each of the chaotic maps. To
find the values of x0 and γ that produce the best possible mean
position, we use the same initial state and values of a as in the
previous simulation and plot the mean position of the random
walker after m = 100 steps for various values of x0 and γ in
the form of a heat map. As it turns out that we can actually do
better, the results are shown in Fig. 3.

From Figs. 3(a) and 3(b), we can determine the values of
x0 and γ for each chaotic map that return the best outcome
for the random walker for their respective values of a. Using
these parameter values (see parameter values in Table I), we
perform a second simulation by applying the chaotic switch-
ing using the sequence generated by the values of x0 and γ in
the initial state given by Eq. (10) using quantum coins, Eq. (8),
and translation operator, Eq. (9). Similar to the procedure in
simulation 1, if xn < γ , quantum coin A is used; otherwise,
coin B is used. The results are reported in Fig. 3(d).

The results from the second simulation show that the
chaotic switching strategies now outperform that of the ran-
dom switching strategy; in particular, the logistic map chaotic
switching strategy outperforms the [BBBAB] periodic switch-
ing strategy. The numerical results of the first and second
simulations are organized in Table I. The key difference be-
tween simulations 1 and 2 is the absence of averaging chaotic
subsequences in the latter. Simulation 2 also varies x0 and
γ to allow us to find the best possible combination of x0

and γ that gives the best outcome for the quantum random
walker.

Conclusion. Developments in quantum Parrondo’s games
thus far seek to translate quantum games from their classical
counterpart [14] or explore Parrondo’s paradox with no classi-
cal analog. Previous research focused mainly on fundamental
concepts in quantum information that may be useful in clas-
sifying operations or states in a quantum computer based on
the final observed outcome. In previous work [12,13,15,16],
the quantum Parrondo’s paradox emerged from a random se-
quence. However, since the sequence of coin tosses is random,
one cannot extract information about the sequence without
deploying significant computational memory. That is to say, if
one were to ask what the final outcome from a particular start
state would be or what sequence would result in a given final
outcome, the answer to these questions could not be answered
without performing discrete time computation and memory
storage. However, in our framework and protocol (say logistic
map), the sequence is generated by just two numbers, x0 and
γ . Therefore, given x0 and γ , we will know the final outcome.
Furthermore, we will also know the exact sequence to achieve
the final outcome if we know x0 or γ . Equivalently, if we know
the final outcome and γ , we are able to use the exact inverse
function iteratively to obtain x0 without needing to know what
the last toss was as there are only two sequences that need to
be tested—when the final toss uses quantum coin A or B. This
is the reason why using a random sequence is not feasible as
there is no inverse to a random map.
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(a) (b)

(c)

(d)

FIG. 3. Mean position of the random walker for each of the chaotic maps for m = 100 steps by varying x0 and γ . (a) Heat map of the
logistic map for a = 4. (b) Heat map of the sinusoidal map for a = 2.28. (c) Heat map of the tent map for a = 1.9. The values of x0 and γ vary
in the closed interval [0,1]. (d) The mean position of the random walker from tossing quantum coins A and B individually, randomly, and in a
periodic sequence [BBBAB] and the best outcome for the random walker for each chaotic map by varying the parameters γ and x0 in (a)–(c).
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FIG. 4. General schematic of how Parrondo’s chaotic switching in quantum coin toss games can be applied to encryption through the use
of secure and insecure channels.

This technique of determining which quantum coin to use
by comparing xn to γ can form the motivating basis for ad-
vances in encryption [28,29]. As an illustration of the use
of such a protocol in encryption, consider a sender (Alice)
and a receiver (Bob). The general schematic that makes use
of Parrondo’s chaotic switching in quantum coin toss games
applied to encryption is summarized in Fig. 4.

Consider Alice and Bob, both of whom are able to receive a
private key γ through a secure channel. Here we assume that Ĉ
and Ŝ are publicly known. Before Alice sends a message, she
generates a public key x0. With the generated x0 and private γ ,
Alice is now able to generate a chaotic sequence. She uses this
sequence, which determines a chaotic sequence of quantum
coin tosses, to encrypt an initial state |ψ〉0; this is the message
that Alice would like to send. This encrypted message |ψ〉 f

and the public key x0 are then sent through an insecure channel
to Bob. The receiver, who holds the private key γ , will receive
the final state |ψ〉 f and public key x0. The receiver is able to
decipher the original message by using the received x0 and
γ to reverse the final state to decipher the initial state, thus
obtaining the original message. Such a scheme ensures that
even if |ψ〉 f and x0 are intercepted and Ĉ and Ŝ are pub-
licly known, the interceptor cannot efficiently decrypt them
to obtain the original message. The complexity to decrypt
(from the perspective of an interceptor) can be enhanced by
including both Ĉ and Ŝ as private keys, but at the expense
of having more preshared information. Notice that a similar
effect can be achieved if, instead of using chaotic maps, a

periodic switching is used. Thus, instead of the private key
being γ , the private key is now the periodic sequence. In such
a case, there is no requirement for a public key. However, this
is a cipher that, once broken, cannot be reused. A disclosure
of the periodic sequence renders all messages encrypted using
this sequence unsecured.

In summary, the rate of winning obtained from a chaotic
switching strategy is controlled by the parameters a defining
the chaotic generator, initial conditions x0, and the proportion
of game A played γ . We note that by varying the parameters x0

and γ , Parrondo’s games with chaotic switching strategy can
give a higher rate of winning compared to a random switching
strategy. This work brings us closer to finding the best possible
mean position in a two-sided quantum coin random walk Par-
rondo’s game. Additionally, while chaos in quantum systems
is not defined in the same way as it is in chaotic and dynamical
systems, there are quantum systems whose physical properties
exhibit properties of chaos [30]. Furthermore, there is no con-
cept of entanglement within classical systems. Yet research
has shown that chaos and entanglement are very strongly
and clearly related [22,23]. These results leapfrog the gap
between the current status of quantum Parrondo’s paradox and
a fully implementable and demonstrable quantum-entangled
Parrondo’s paradox.

The introduction of chaotic switching, when combined
with Parrondo’s paradox, extends the application of Par-
rondo’s paradox from simply a tool used in quantum
information for classification or identification (of the initial
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state and final outcome) to one that has real-world engineer-
ing applications—as we can now also control the process
of reaching the final outcome as observed in its proposed
use in encryption. The development of a fully implementable
quantum chaotic Parrondo’s game may also improve on our
semiclassical framework and provide advances to bridge some
of the problems still faced in quantum encryption [31,32].

The wide application of quantum Parrondo’s paradox puts our
research in the spotlight, for this work also inspires future
study of applications beyond the quantum Parrondo’s paradox
to explain physical phenomena.
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