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Toolbox for quantifying memory in dynamics along reaction coordinates
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Memory effects in time series of experimental observables are ubiquitous, have important consequences for the
interpretation of kinetic data, and may even affect the function of biomolecular nanomachines such as enzymes.
Here we propose a set of complementary methods for quantifying conclusively the magnitude and duration of
memory in a time series of a reaction coordinate. The toolbox is general, robust, easy to use, and does not rely on

any underlying microscopic model. As a proof of concept we apply it to the analysis of memory in the dynamics
of the end-to-end distance of the analytically solvable Rouse-polymer model, an experimental time series of
extensions of a single DNA hairpin measured by optical tweezers, and the fraction of native contacts in a small
protein probed by atomistic molecular dynamics simulations.
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The dynamics of complex, high-dimensional physical
systems such as complex biomolecules is frequently de-
scribed by means of memoryless, Markovian diffusion along
a low-dimensional reaction coordinate [1-10]. Such simpli-
fied models often accurately describe selected observations
in experiments [11-15] and computer simulations [1,6,7].
However, as soon as latent, hidden degrees of freedom that
become projected out do not relax instantaneously on the
time scale we observe the reaction coordinate [16], or the
reaction coordinate does not locally equilibrate in metastable
mesostates [17], almost any projection of high-dimensional
dynamics onto a lower dimensional coordinate introduces
memory [16-25].

Memory effects can have intriguing manifestations in the
evolution of both ensemble- [16,26-29] and time-averaged
observables [16,30], and are often particularly well pro-
nounced in observations that reflect, or couple to, intramolec-
ular distances in conformationally flexible biomolecules
[17,19,21-23,26,31-39]. Moreover, if the dynamics is ergodic
in the sense that the system relaxes to a unique equilibrium
probability density function from any initial condition (i.e.,
the reaction coordinate has a unique free energy landscape)
then the memory is necessarily transient [16]. Whether or not
memory is in fact relevant depends on how its extent compares
to the relaxation time and whether or not the latter is reached
in an experiment. If the extent of memory is comparable to,
or longer than, the time scale on which biomolecules operate,
such as, e.g., enzymes catalyzing chemical reactions [40,41],
non-Markovian effects shape biological function.
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It is therefore important to assess the presence and duration
of memory effects in the dynamics along reaction coordinates.
An elegant “test of Markovianity” of a reaction coordinate has
recently been proposed by Berezhkovskii and Makarov, who
considered the behavior of transition paths [42]. The authors
provide a pair of inequalities whose violation conclusively re-
flects that the dynamics is non-Markovian. However, memory
effects are typically transient [16], although their extent may
exceed the duration of experimental observations [34]. There
is thus a need to determine not only the presence of memory
in a time series of a reaction coordinate but also its extent and
attenuation on different time scales.

Here, we fill this gap by providing a toolbox for quantify-
ing the magnitude and duration of memory in a time series
of a reaction coordinate. We propose a set of model-free
complementary methods that are easy to use and suited to
treat reaction coordinates with arbitrary dimensionality. As a
proof of concept we apply these methods to the analysis of an
experimental time series of the extension of a DNA hairpin
measured by optical tweezers, the fraction of native contacts
in a protein probed by atomistic molecular dynamics (MD)
simulations, and the exactly solvable Rouse model of polymer
chain.

Theory. Our approach is twofold—(i) we quantify viola-
tions of the Chapman-Kolmogorov equation in a time series
of the monitored true dynamics and (ii) we compare the true
dynamics to a constructed nominally memoryless diffusion in
the free energy and diffusion landscape of the true dynamics.
This assumes all hidden degrees of freedom to be at equilib-
rium constrained by the instantaneous value of the observable.

Let g, with 0 <t < T denote the monitored time series
of the reaction coordinate and ¢M the constructed Marko-
vian series. Without any loss of generality we assume that
the reaction coordinate is one-dimensional—the generaliza-
tion to multiple dimensions is straightforward. We assume
g and gM to be ergodic with an equilibrium probability
density peq(q) that is by construction identical for both pro-
cesses. Let G(q, t|qo) = (8(g; — q))4, denote the probability
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density that the reaction coordinate evolving from ¢,—o = qo
is found at time ¢ to have a value in an infinitesimal neigh-
borhood of ¢ and GM(q, 7|q0) = (8(g™ — q)),, the Markovian
counterpart, where §(x) denotes Dirac’s delta function and
the angular brackets (-),, the average over all realizations
of g; evolving from gy. We then have lim,_, ., G(q, t|go) =
lim;_, oo Gy (g, t190) = peq(q) as a result of ergodicity. In
practice the limits are achieved as soon as t becomes suffi-
ciently larger than the relaxation time f, i.e., t 2 t.], Which
may or may not be reached in an experiment. Note that the
relaxation times of the true and Markovian reference process
are typically different [16,29].

We use two descriptors. The first is the Kullback-Leibler
divergence between the transition probabilities of the true and
a reference process defined as [43]

DSO(t)E/qu(q,tho)ln[G(q,tho)/Ga(q,tho)], D

where a = CK, M denotes the particular kind of reference
process that we detail below. By construction D (r) # 0 if
and only if G(q, t|q0) # G*(q, t|qo) and thus nonzero values
of Dy, (1) reflect memory in the dynamics of g;.

When ¢; reaches equilibrium in the course of the experi-
ment we also consider the normalized equilibrium autocorre-
lation function defined as

(qrq0) M — <Q)§q

Cu() = )
M) (@%)eq — ()3

()
where we have introduced

(grgo)m = //QCIOG’M(%f|CIO)Peq(6]0)dqd‘]0
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where the definitions in terms of time averages hold when
trajectories are much longer than the relaxation time, i.e.,
T > t.. The absence of an index refers to the true process
and M to the constructed Markovian counterpart.

We consider two distinct reference processes. The first
one is a mathematical construction based on the Chapman-
Kolmogorov equation (i.e., @ = CK) that we may write as

G (g, 11q0) = / (g1 — Tlg)G( Tla)dd. @)

because the Green’s function of a time-homogeneous
Markov process is time-translation invariant, G(q, t — t|q’) =
G(q,tlq, t), and GSK(q, t|qo) = G(q, t|qo) independent of T
[44]. The physical interpretation of Eq. (4), which is exact
for Markov processes, is that we observe the true dynamics
g, until time t and then instantaneously reset the memory (if
any) to zero.

If g is indeed memoryless we have GSX(q,t|qo) =
G(q,t|qo) for any 7 and thus DX (1) =0 for any ¢ and

7,40

T. If GSK(q, t|qo) # G(q,t|qo) for some ¢ and 7, then g, is

conclusively non-Markovian and DICED (t) > 0, but the con-
verse is not true. Namely, there exist non-Markovian
processes that satisfy the Chapman-Kolmogorov equation
[16,45]. Note that this method does not require ¢, to reach
equilibrium during an experiment and requires only G(g, t|qo)
that is straightforward to determine from a time series g, given
sufficient data. If equilibrium is reached, DEX (1 > 1) ~ 0
for any go. By analyzing DTCEO (t) we can quantify the degree
and range of memory as a function of t and gy, which we
demonstrate below.

In the second method we construct from ¢, a Markovian
time series q?’[ (i.e., a = M) evolving under the influence of
the potential of mean force w(g) = —kgT In peq(q) according
to the thermodynamically consistent anti-Itd (i.e., postpoint)
[17] Langevin equation

4 = DA T + oD@ @8, )

ar

where f (q}‘/l) = —kgT 9;1n peq(q)| g=gM and &, denotes zero
mean Gaussian white noise with covariance (&&,) =
8@t —t'), D(q,) is the diffusion landscape, and ® is the anti-
1td or Klimontovich product [46] [see Supplemental Material
(SM) [47] for the discretized version of Eq. (5)]. This method
assumes the ability to determine the equilibrium probability
density peq(q) and thus requires g; to reach equilibrium. In
the simplest model the diffusion coefficient does not depend
on g and we may interpret Eq. (5) according to 1t6. However,
this may not be the case (see below), and we note that the
best possible Markovian approximation includes a positional
dependence [48]. Efficient methods have been developed to
infer D(q) [6,9,10].

On the level of the probability density function Eq. (5)
corresponds to the Fokker-Planck equation

3GM(q, t1q0) = 3,D()[d, — f(q)/ksT1G™(q, tIg0), (6)

with initial condition GM(q, 0|¢qo) = 8(¢ — go) and natural
boundary conditions imposed by the underlying physics.
Depending on the specific problem GM(q,t|go) can be
found by a numerical integration of the Langevin equa-
tion and subsequent histogram analysis, i.e., GM(q, t|qo) =
(8(gM — g)) 4, Or by projecting the full dynamics or directly
solving Eq. (6) as done, e.g., for polymers [49], single-file
models [16,27], and in the literature on persistence [50,51] in
diffusive and critical dynamics [50-55]. Below we illustrate
both approaches.

End-to-end distance of a Rouse polymer. As a first ex-
ample we consider a Rouse polymer chain with N 41
beads (N bonds) in the absence of hydrodynamic interac-
tions [56,57] and focus on the end-to-end distance as the
reaction coordinate, i.e., ¢; = |r; — ry+1|, wWhich is known
to be non-Markovian. The model is exactly solvable and the
explicit results for C(¢), Cy(t), G(q.t|q0), GM(q.t|qo), and
GX(q, t]qo) are all given in [47]. We express time in units of
fkuhn, the characteristic diffusion time of a Kuhn segment, i.e.,
tkuhn = b? /D, where b is the Kuhn length and D the diffusion
coefficient of a bead.

A comparison of the autocorrelation function of the true
dynamics and its Markovian approximation Cy(¢) is shown
in Fig. 1(a), with the inset depicting the corresponding
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FIG. 1. Autocorrelation function of the true dynamics (orange)
and its Markovian approximation (blue) for (a) a Rouse polymer with
1000 monomers with time expressed in units of the diffusion time of
a Kuhn segment 7k, , (b) the extension of a DNA hairpin, and (c) the
fraction of native contacts in the WW domain of protein 2F21. The
black line in the inset depicts the respective equilibrium probability
density function pq(¢) and the red one D(g). The dashed lines depict
the initial conditions we consider in Fig. 2.

equilibrium probability density peq(g). Note that when the
free energy landscape w(q) overestimates the confining effect

of hidden degrees of freedom on g, the Markovian approxi-
mation overestimates the relaxation rate (e.g., Ref. [16]; see
also [47]). Namely, the Markovian approximation assumes
the hidden degrees of freedom to remain at equilibrium at
all times, whereas the actual instantaneous, fluctuating restor-
ing force on g, is in this case smaller than the force arising
from w(gq).

The Chapman-Kolmogorov construct for the Rouse poly-
mer, GSK(q, tlgo) (given explicitly in [47]) differs from
the true G(q,t|qo) for all expected large values of fr — 7.
A quantification of the discrepancy between the true and
“Chapman-Kolmogorov” evolution of the end-to-end distance
of the Rouse polymer in terms of the Kullback-Leibler di-
vergence (1) is shown in Fig. 2(a). A typical time evolution
of DEI;) (t) gradually increases from zero, reaches a max-
imum, and afterwards returns back to zero, which reflects
the gradual buildup and attenuation of memory because ¢,
“remembers” the initial condition of the hidden degrees of
freedom [16]. As a result, the Chapman-Kolmogorov Green’s
function GSK (g, t|qo) fails to predict the true evolution of g;,
and DSSU (t) constructed this way depends on both, T and
initial condition ¢gg. For the Rouse polymer with 1000 beads
DTCEO (t) #0atleastuptor ~ 10* X fxunn.

Next we examine D(%I(t), the Kullback-Leibler divergence
(1) between the true Green’s function G(q,?|qo) and the
Markovian approximation corresponding to the white-noise
Markovian diffusion in the exact free energy landscape [i.e.,
Eq. (5)]. The results are shown in Fig. 2(d).

The qualitative features of the time dependence of D%(t)
are similar to those observed in Fig. 2(a)—memory builds up
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FIG. 2. Kullback-Leibler divergence D? in Eq. (1) between true Green’s function G(q, t|gy) and (a)—(c) the Chapman-Kolmogorov Eq. (4)
(i.e., a = CK), and (d)—(f) the Markovian approximation GM(q, t|¢,) corresponding to the Langevin Eq. (5) (i.e., @ = M) as a function of time
t for (a) and (d) the Rouse polymer with 1000 beads evolving from several initial conditions ¢, (b) and (e) the extension of a DNA hairpin
evolving from several initial conditions within a bin of thickness 1 nm centered at ¢, and (c) and (f) the fraction of native contacts in the WW
domain of protein 2F21 for several go; the error bars depict the standard deviation obtained by systematically neglecting ~20% (in case of
the hairpin) and ~40% (in case of the protein) of the data. Due to the particular construction of Eq. (4) times shorter than depicted are not

accessible due to numerical instability or poor statistics.
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in a finite interval and smoothly returns back to zero from the
attained maximum. The intuition behind this result is that it
takes a finite time to allow for distinct evolutions of hidden
degrees of freedom that introduce memory in the dynamics of
the reaction coordinate ¢;. At long times memory is progres-
sively lost as a result of the gradual relaxation of the hidden
degrees of freedom to their respective equilibrium that in turn
renders the dynamics of the reaction coordinate effectively
memoryless and correspondingly D}I‘g(t) vanishes.

Single-molecule experiments on a DNA hairpin. As a sec-
ond example we consider a time series of the end-to-end
distance of a single-strand DNA hairpin measured in an op-
tical tweezers experiment performed by the Woodside group
[58]. The data set contains 11 million measurements of the
extension of the DNA hairpin 30R50T4 held in a pair of
optical traps with stiffness 0.63 pN/nm and 1.1 pN/nm, re-
spectively, sampled with a 2.5 us temporal resolution. It has
been shown that this time series is non-Markovian [39]. The
length of the time series is much larger than the relaxation
time [see Fig. 1(b)] and therefore we slice it into several
pieces that are statistically independent. More precisely, we
use the time scale f.,, Where the autocorrelation function
of the extension, C(t), falls to ~0.05. This ensures f., >
t1 and yields an ensemble of 50 statistically independent
trajectories.

We determine the equilibrium probability density peq(q)
[see inset of Fig. 1(b)] and two-point joint probability density
p(g.t,q0,0) = plq,to +1t, qo, to) by performing a standard
histogram analysis with a bin size of Iy, = 0.35 nm, such
that g refers to a bin of width l;, centered at g. The Green’s
function is thereupon obtained by the law of conditional
probability, G(g,tlq0) = p(q. 1, qo, 0)/peq(q), while C(2) in
Eq. (2) is determined directly from the respective second lines
of Eq. (3).

The Chapman-Kolmogorov construct is determined from
G(q,t|qo) by direct integration of Eq. (4) and is used to
determine DEI;O (1), while the corresponding fictitious Marko-
vian process evolves as Markovian diffusion in a free energy
landscape w(q) with a constant diffusion coefficient D that we
determine according to standard methods as detailed in [47].
According to the results to a good approximation D is inde-
pendent of g. The analysis yields D = 447 £+ 9 nm?/ms that
we use to generate the Markovian time series g™ by integrat-
ing the Itd6 Langevin equation (5) using the Euler-Mayurama
scheme (for details see [47]), and determine DtM (q0) in Eq. (1)
and Cy(¢) in Eq. (2), respectively.

In contrast to the Rouse polymer the DNA hairpin ex-
ists in two characteristic conformational states—folded and
unfolded. As a result, the equilibrium probability density
function peq(g) is bimodal and the dynamics of g, displays
signatures of metastability [58]. However, since the two peaks
corresponding to the two subpopulations are not separated
[see inset of Fig. 1(b)] the potential of mean force w(q) is
expected to underestimate the free energy barrier and there-
fore the Markovian evolution is likely to overestimate the
relaxation rate. In complete agreement Fig. 1(b) displays an
overestimation of the rate of decay of autocorrelations in the
Markovian approximation by two orders of magnitude in time.
Moreover, a long-lived plateau is observed in the true C(z)
spanning more than an order of magnitude in time.

In order to assess whether the mismatch between true and
Markovian time evolution is predominantly due to an un-
derestimation of the free energy barrier between folded and
unfolded states of the hairpin we inspect the Kullback-Leibler
divergence (1) between the true and “Chapman-Kolmogorov
evolution” shown in Fig. 2(b). The result clearly shows pro-
nounced signatures of memory extending over more than
~10 ms. Note that the “Chapman-Kolmogorov evolution” is
exact until time r = 7, whereupon memory is reset to zero.
Therefore, a nonzero DSI;O (t) is a clear signature of memory
arising from the dynamical coupling of g, to hidden degrees
of freedom. Similar to the Rouse polymer DEI;() (t) depends on
the initial condition gj.

A buildup and decay of memory similar to the Rouse
polymer is also observed in the time evolution of DS’OI (1), the
Kullback-Leibler divergence between the Green’s function of
the true evolution and the white-noise Markovian diffusion in
the exact free energy landscape shown in Fig. 2(b). Notably,
Fig. 2(b) and Fig. 2(e) display essentially the same extent of
memory (though the peak is attained sooner in the white-noise
Markovian diffusion), demonstrating that metastability does
not necessarily destroy nor dominate memory in the evolution
of reaction coordinates. Note that the presence of memory in
metastable systems is not unusual (see, e.g., Refs. [21,22] and
[29]). In total, the analysis conclusively identifies extended
memory in the dynamics of the extension of the hairpin.

It is important to note that the extent of memory (of the
order of ~10 ms) is clearly shorter than the relaxation time
te1 [compare Figs. 1(b) and 2(e)], and therefore the decay
of memory does not coincide with f. and the correspond-
ing “forgetting” of initial conditions of the coordinate itself.
Instead the memory reflects correlations between g, and the
initial conditions of the hidden degrees of freedom [16].
The information encoded in C(¢) and DM-CK(¢) is therefore
different—DM-CK(¢) is a genuine measure of the extent and
duration of memory.

MD simulation of WW domain of 2F21. We analyzed
177 atomistic MD trajectories of the WW domain of the
human Pinl Fip (2F21) mutant [59] provided by the Grub-
miiller group, each 1 us long sampled every 10 ps. During
this time the protein attains a pronounced local equilibrium
in the folded state and does not unfold. The data set was
produced in 15 days in “wall time.” We also analyzed two
longer trajectories, 486 and 651 s long sampled every 200 ps,
from [60] where the protein reversibly (un)folds several times
but sampling of the unfolded state is limited (see [47]). The
fraction of native contacts [61] was chosen as the reaction
coordinate (see [47] for details). It reflects the displacement
of the protein’s structure from the native conformation. In
contrast to the previous examples it is not known whether
this coordinate displays memory. Technical details including
the simulation parameters, estimation of D(gq) (with error
analysis), and corresponding results for the longer trajectories
are shown in [47].

The results are qualitatively similar to the hairpin with
one notable exception—the diffusion coefficient may not be
considered to be constant. The equilibrium density peq(q)
and diffusion landscape D(g) in the folded state are shown
alongside C(¢) in Fig. 1(c). As a first signature of memory
the Markovian time series constructed according to Eq. (5)
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overestimates the relaxation rate by almost two decades. The
Kullback-Leibler divergence DEI;U (t) in Fig. 2(c) shows pro-
nounced memory up to ~10 ns, extending up to ~100 ns
when considering the longer trajectories that also capture the
protein’s dynamics in the unfolded state (see [47]). Occurring
on time scales ~20 us [60], the (un)folding dynamics is thus
memoryless. This example highlights that our method does
not distinguish between local and global equilibrium in the
case of a time-scale separation, such as the ns time-scale
folded-state dynamics and ~20 ps time-scale (un)folding
dynamics.

The constructed Markovian time series shows qualitatively
similar signatures of memory as the hairpin [see Fig. 2(f)].
The extent of memory displayed by D%(r) matches that of

DEX (1) and, similar to the Rouse polymer and hairpin, de-
pends on the initial condition go. One may quite generally
relate this dependence to the dynamics of hidden degrees of
freedom with respect to how far g is displaced from the free
energy minimum. When g is near the free energy minimum
the dynamics of hidden degrees of freedom has a smaller
effect.

Remarks on feasibility. The toolbox requires an ensemble
of statistically independent or ergodically long trajectories.
Most demanding is the Chapman-Kolmogorov analysis that
requires sufficient sampling of the support of the integral in
Eq. (4) at different times 7, . Constructing the Markovian
time series requires accurate estimates of peq(g) and D(g).
The minimal data requirements depend on the system at hand,
and may vary substantially. However, we propose a simple
test of the reliability of the results—determining their uncer-
tainty by a comparison with results obtained by omitting say
~10%-20% of data as shown in Figs. 2(e) and 2(f). For a

reliable quantification of memory the statistical uncertainty
should be substantially smaller than the value of the Kullback-
Leibler divergence, as in the present case.

Conclusion. We presented a set of complementary methods
to quantify conclusively the degree and duration of memory in
a time series of a reaction coordinate g;. The proposed toolbox
does not assume any particular physical model. Instead it
exploits the Chapman-Kolmogorov equation and constructs
a fictitious Markovian diffusion process in the free energy
landscape of ¢,, and compares the artificially constructed
transition probability density with the observed probabil-
ity density. The analysis not only determines whether the
dynamics of ¢, has memory but also quantifies the mag-
nitude and duration of memory and thus complements the
recently proposed “test for Markovianity” based on transi-
tion paths [42]. Whereas in our examples we considered
only one-dimensional coordinates, the toolbox generalizes
straightforwardly to higher-dimensional reaction coordinates.
The method is general, robust, and easy to use, and should
be used before any attempt to describe a complex system
with a low-dimensional Markovian reaction coordinate. We
therefore hope that it will find numerous applications in-
volving time series derived from experiments and computer
simulations.
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