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Thermal pure quantum matrix product states recovering a volume law entanglement
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We propose a way to construct a thermal pure quantum matrix product state (TPQ-MPS) that can simulate
finite-temperature quantum many-body systems with a minimal numerical cost comparable to the matrix
product algorithm for the ground state. The MPS was originally designed for the wave function with area law
entanglement. However, by attaching the auxiliary sites to the edges of the random matrix product state, we
find that the degree of entanglement is automatically tuned so as to recover the volume law of the entanglement
entropy that characterizes the TPQ state. The finite-temperature physical quantities of the transverse Ising and
the spin-1/2 Heisenberg chains evaluated by a TPQ-MPS show excellent agreement even for bond dimension
∼10–20 with those of the exact results.
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Introduction. Finding a good description of typical wave
functions of quantum many-body states at finite temperature
has been a challenge in condensed matter theory. Traditional
quantum mechanical representation of equilibrium states re-
lies on the density operators of Gibbs’ ensembles, which are
classical mixtures of an exponentially large number of pure
quantum states. This construction does not allow us to sim-
ulate sufficiently large quantum systems of physical interest,
since the available numerical devices, e.g., stochastic quan-
tum Monte Carlo (QMC) methods or some size-free methods
[1–4], are limited.

The key conceptual development against the ensemble
physics is the typicality [5–10]; there exists a single ther-
mal pure quantum (TPQ) state that solely represents the
thermal equilibrium [11–17]. It then happens that for the de-
scription of any of the equilibrium quantum states, one can
choose arbitrary degrees of the classical mixture, from the
purity-[1/(e�(N ) )] ensemble to the purity-1 TPQ state. Let
us consider a size-N system with a Hamiltonian H and its
subsystem A of size n. Since the equilibrium state at inverse
temperature β can be described equivalently by the TPQ
state |ψ〉β and by the Gibbs state, the local observables OA

also fulfill

β〈ψ |OA|ψ〉β = Tr(OAe−βH)/Tr(e−βH). (1)

This directly indicates the equality of the local den-
sity matrix and the local canonical ensemble, ρn(|ψ〉β ) =
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TrĀ(e−βH)/Tr(e−βH). Accordingly, the von Neumann en-
tropy Sn = −Tr(ρn ln ρn) obtained by the reduced density
operator ρn of the subsystem A becomes the entanglement
entropy (EE) of a TPQ state and is related to thermodynamic
entropy density sth as [18]

Sn/n = sth (1 � n � N ). (2)

The EE of the TPQ state thus needs to fulfill the volume law,
and indeed, in a similar context, the Page curve of the second
Renyi entropy in a finite open boundary system is observed in
the exact TPQ state [19].

Practically, however, constructing such an exact TPQ state,
which we call a full-TPQ state [11,15,16], requires a cost
only slightly smaller than the conventional finite-temperature
diagonalization methods [20–22] and is available only up to
∼2N of that of the Gibbs state. As for the ground state, the ap-
proximate forms of the pure wave functions are established by
the density matrix renormalization group (DMRG) or matrix
product states (MPSs) [23–25]. However, their application to
the TPQ state has never been tested because the MPS descrip-
tion has an area law entanglement by construction [26,27] and
is apparently unsuitable for the finite-temperature case, where
the entanglement blows up massively.

In this Letter, we show that the TPQ-MPS is realized by at-
taching appropriate auxiliary sites at both edges of the system,
which work as an entanglement bath and make the system
highly entangled. By successively operating the Hamiltonian
to the random matrix product state (RMPS) with the auxil-
iaries, the MPS is annealed down to lower temperature, where
we find that the system recovers the volume law entanglement
when measured from the system center toward the very edges.
We demonstrate that the TPQ-MPS wave functions give an
accurate evaluation of the physical quantities in typical quan-
tum spin models without taking the ensemble average. The
computational cost is significantly reduced to that of the MPS
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FIG. 1. (a) Schematic representation of the RMPS in Eq. (3). Two auxiliary sites (pink circles) are connected to the two open edges of the
system, which have no physical interactions with the main system. The lower panel is the canonical form of the TPQ-MPS |ψRM〉. For the
starting point of mTPQ (k = 0) we take �

[m]im
αmβm

of χ×χ×d with a Gaussian distribution, λi = 1, and auxX
αX β of X = L, R as the χ×χ unit

matrices, which gives the canonical form of the RMPS. (b) Energy density of the transverse Ising model plotted independently for ten mTPQ
runs. Upper and lower panels are those of TPQ-MPS and MPS without auxiliaries (aux) with N = 16 and χ = 40. (c) and (d) Entanglement
entropy Si = −Tr(ρ̂i ln ρ̂i ) of the TPQ-MPS and MPS without auxiliaries, when the N = 64 system is divided at bond i = 1 ∼ N . The kth
mTPQ state of the transverse Ising model with fixed χ = 40, 20 is shown. (e) Entanglement entropy Sc

n = −Tr(ρ̂n ln ρ̂n) of the TPQ-MPS when
dividing the N = 64 system and picking up the n sites from the center. Dashed lines are the linear fits whose slope gives the thermodynamic
entropy sth. The bold green dashed line is Sc

n obtained without auxiliaries for k = 800. The shade marks Sc
n � ln χ allowed for the standard

MPS for χ = 40. (f) Slope of Sc
n as a function of kBT (k) for k = 200–1600 in the mTPQ calculation for χ = 5, 10, 20, 40 and N = 64. Solid

black and gray lines are sth obtained by the QMC results at N = 64 and 32, respectively. Inset: χ−1 dependence of the data where the circles
at the starting point are the QMC results for the corresponding temperature.

of the ground state, and the accessible system size increases
to N � 100.

So far, MPS methods at finite temperature such as min-
imally entangled typical thermal states (METTSs) [28,29]
and matrix product purification (MPP) [30–32], both with
intermediate degrees of purity, have relied on some sort of
“ensemble” averages to compensate for the low entanglement
properties of the MPS. The METTS starts from the mini-
mally entangled product state, which requires a large number
of sampling averages, �100 [33]. MPP adopts an extra N
ancillary systems, which are traced out to obtain the mixed
state of the system [34]; this expression is mathematically
redundant since they replace a mixed state in an irreducible
representation in the minimum Hilbert space of dimension dN

by a reducible representation in a space of dimension d2N , and
does not save our numerical cost by itself.

Random initial state. We consider a one-dimensional (1D)
lattice system consisting of N sites with open boundary con-
ditions (OBCs), where each site hosts d-dimensional degrees
of freedom, and two auxiliaries attached at both edges having
χ dimensions. The RMPS of such a system shown in Fig. 1(a)
is given as [35]

|ψRM〉 =
∑

αL{in}αR

〈auxL
αL

|A[1]i1 · · · A[N]iN |auxR
αR

〉

|αL, i1 · · · iN , αR〉, (3)

where the A[m]im is the dχ2 matrix on the mth site with
im = 1, . . . , d and is explicitly given using the dχ × dχ

random unitary matrix U as A[m]im
αβ = U(i,α)(1,β ) or U(1,α)(i,β ),

which fulfill the left or right canonical form, respectively.
Here, |auxL/R

αL/R
〉 is the right or left auxiliary state with

αL/R = 1 to χ . This RMPS reproduces the physical quan-
tities at T = ∞ with a variance of order χ−2, which can
be shown analytically as follows. Taking A on the left-
hand side or right-hand side of a one-site operator Ôi as
the left or right canonical form, we have 〈ψRM|ψRM〉 =
χ . By taking account of the formula for the random
average, Ui jU ∗

kl = δi jδkl/(χd ) and Ui jU ∗
ikUlmU ∗

ln = [δ jkδmn +
δilδ jnδmk − (δilδ jkδmn + δ jnδmk )/(χd )]/(χ2d2 − 1), we have
the expectation values 〈ψRM| · · · |ψRM〉/χ ≡ 〈· · · 〉 as

〈Ôi〉 =
∑

i, j,α,β

1

χ2d
δi j〈 j|Ôi|i〉 = 〈Oi〉∞, (4)

with 〈Oi〉∞ ≡ d−1TrOi, and its variance as

〈Ôi〉2 − (〈Ôi〉
)2 = d − 1

χ2d2 − 1

(〈Ô2
i 〉∞ − 〈Ôi〉2

∞
)
. (5)

The typicality of the RMPS is studied and confirmed nu-
merically in a similar context [35,36], followed by several
proposals to stochastically construct microcanonical and
canonical ensembles of the RMPS [37–39].

In our work, the RMPS is constructed not by using Eq. (3)
but by preparing a tensor �

[m]im
αmβm

(∈ C) of bond dimension
χ , whose elements follow the Gaussian distribution [see
Fig. 1(a)]. It can be straightforwardly shown that after trans-
forming Eq. (3) into the canonical form by the successive
Schmidt decomposition [40,41], the obtained matrices also
form an equivalent RMPS.
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mTPQ-MPS method. The initial state (k = 0) is taken as
the aforementioned RMPS with bond dimension χ , where
we take auxiliaries of χ × χ attached at both edges as a unit
matrix Î in the first place. The RMPS successively generates
a series of un-normalized microcanonical TPQ (mTPQ) states
k = 0, 1, 2, . . . as [15]

|k〉 = (l − ĥ)k |ψRM〉 , (6)

where ĥ is the Hamiltonian divided by N and l is a parameter
larger than the maximum eigenenergy, which is necessary
to generate a sharp microcanonical energy distribution (see
Ref. [15]). Here, |k〉 is the TPQ state at a temperature kBT (k) =
N (l − uk )/2k [42] with energy uk = 〈k|ĥ|k〉/〈k|k〉. In our al-
gorithm, (l − ĥ) is represented by a matrix product operator
(MPO) of bond dimension D that depends on ĥ, and applying
this MPO at each step to |k〉 multiplies the matrix dimension
to Dχ . Before truncating the dimension of the enlarged matrix
down to χ , we transform the MPS to its canonical form
including auxiliary sites in order to minimize the truncation
error [43]. The process is repeated until kBT (k) reaches a
low enough temperature β−1

max. The effective bond dimension
χ eff

i (i = 0, N ), which is the number of finite eigenvalues of
the Schmidt decomposition λi on the ith bond, can change
automatically within 1 � χ eff

i � χ .
We consider an operator Â that can be described by a

low-order polynomial of local observables. At each step,
such Â is evaluated and stored; 〈Â〉 = 〈k|Â|k〉/〈k|k〉 is the
physical quantities at kBT (k). Instead of directly adopt-
ing this form, one can generate the physical quantities
for arbitrary temperatures β−1 � β−1

max by the canonical
summation as (see Ref. [16])

〈β|Â|β〉 = e−βNl
∑

k

{
(Nβ )2k

(2k)!
〈k|Â|k〉 + (Nβ )2k+1

(2k + 1)!
〈k|Â|k + 1〉

}
.

The quality of the TPQ-MPS is tested by the comparison of
〈Â〉β = 〈β|Â|β〉/〈β|β〉 with the exact or nearly exact solution
by exact diagonalization (ED), QMC, or quantum transfer
matrix (QTM) [44,45] methods [46].

The required number of random averages of mTPQ runs
Nran is as small as in the full TPQ that uses the full Hilbert
space, e.g., typically less than 5 for N � 32. This can be seen
from the benchmark results in Fig. 1(b): When performing
ten mTPQ runs with and without auxiliaries, the variance of
the former turned out to be small by orders of magnitude,
particularly at higher temperature. The variance of TPQ-MPS
decreases at lower T , contrarily to the full TPQ. The higher
performance despite its being an approximate method is pos-
sibly because the basis in the MPS construction is optimally
biased at low temperature to those favoring the low-energy
states. The difference from the original TPQ also lies in that
the range of mTPQ temperature kBT (k) depends much on l .
Usually, starting from smaller l will accelerate the conver-
gence, and we reach the same temperature with smaller kmax.
However, because of finite χ , the starting temperature at k ∼ 1
for l � �(h) is kept to kBT � �(h) (h being the typical local
energy scale of the Hamiltonian), in which case the canonical
summation becomes inaccurate. In contrast, l � �(10h) sac-
rifices the low-temperature information, and one needs to set
the proper l depending on the models.

Volume law and the auxiliaries. Let us first exam-
ine the basic entanglement properties of the TPQ-MPS.
Here, we benchmark the 1D transverse Ising chain, Ĥ =
J

∑N−1
i=1 σ̂ z

i σ̂ z
i+1 − g

∑N
i=1 σ̂ x

i , with σ z = ±1, whose MPO has
D = 3, and take J = g = 1. Figures 1(c) and 1(d) show the
EE, Si = −Tr(ρ̂i ln ρ̂i ), where ρ̂i is the density matrix when
dividing the system into left and right parts at the ith bond. It
is known that Si of the TPQ state follows a Page curve [47],
which increases linearly from the edges that reflect the volume
law and saturates toward the maximum at the center. The
standard MPS without auxiliaries in Fig. 1(d) indeed follows a
Page-like curve at the edge up to the bond dimension, where Si

becomes flat because of the upper bound by the bond dimen-
sion χ . Here, the lower temperature or larger k requires the
smaller χ . In contrast, in TPQ-MPS, the auxiliaries introduce
to the edge a large S0 that depends only on the effective bond
dimension at the edge, generating a nearly flat Si throughout
the system.

However, if we divide the system by setting the subsys-
tem at the center, namely, cutting the two bonds at equal
distances from the center, we find physically meaningful en-
tanglement properties. Figure 1(e) is the corresponding EE,
Sc

n = −Tr(ρ̂n ln ρ̂n), as a function of the size n of the subsys-
tem. One finds that Sc

n increases linearly in n until it saturates
to the upper bound. At k � 600, where the system reaches the
temperature kBT (k) � 0.33, Sc

n continues to increase up to the
very edges of the system.

Entropy. These results indicate that the TPQ-MPS wave
function has acquired qualitatively different degrees of free-
dom in its state space, just by attaching the two auxiliaries.
While the upper bound of the EE, 2 ln χ , is only twice as large
as the case without auxiliaries, the EE continues to go up until
that bound since the MPS does not feel the edge. This is in
sharp contrast to the standard MPS, where the entanglement
is suppressed toward both edges [Fig. 1(e), bold green dashed
line]; although the bound of Sc

n for the latter was theoretically
believed to be ln χ ∼ 3.7 (see shaded region), the realized
value is much smaller, Sc

n � 1–1.5, and behaves linearly only
up to n ∼ 10 near the edges.

Because of this advantage, the present scheme allows the
evaluation of the thermodynamic entropy density sth using
Eq. (2): We perform a linear fit of a series of Sc

n for N = 64
and for various χ and compare its slope with sth obtained
by integrating the specific heat of the QMC calculation. As
shown in Fig. 1(f), the slope of Sc

n agrees with sth, asymp-
totically approaching the QMC data with increasing χ . In
principle, we need to take χ ∼ esthn/2 to attain a volume law
of the subsystem size n. This fact is unrelated to size N . The
TPQ-MPS makes full use of the theoretical bound of Sn �
2 ln χ = 4–10 for χ = 50–100, which affords a description
of the entanglement of the pure state in the standard target
temperature range, e.g., kBT � J , that is of physical interest
in typical quantum lattice models. By contrast, Sn of the usual
MPS is unreliable because it is tightly bounded by the peak of
the Page curve related to N , which is lower than ln χ .

Benchmarks. Figure 2(a) shows the energy density e =
E/N of the transverse Ising model for N = 16, which is in
good agreement with the QMC results with OBCs, where
we put together the periodic boundary conditions (PBCs) of
the same size. The N = 16 and 64 cases are also compared

L022015-3



IWAKI, SHIMIZU, AND HOTTA PHYSICAL REVIEW RESEARCH 3, L022015 (2021)

FIG. 2. Comparison of the results of the TPQ-MPS and QMC
done by the authors in the transverse Ising model with J = g = 1.
We choose l = 5 and kmax = 500, 1200, 2000 for N (Nran ) = 16 (20),
64 (5), 96 (5), respectively, giving β−1

max ∼ 0.1. (a) Energy density
e = E/N for N = 16 with χ = 5, 10, 20 and l = 5 as a function
of kBT compared with the PBC and OBC results from a QMC
of the same size. The inset shows the low-temperature part with
(N, χ ) = (16, 40) and (64,40) with l = 10 and the corresponding
QMC. (b) The energy difference |eTPQ−MPS − eQMC| from (a) and
N = 96, χ = 40, the variance of the TPQ-MPS average (solid lines)
for N = 16, χ = 20–40, and the variance of the QMC (bold lines
above the shaded areas) for 100 independent runs. (c) Specific heat
C/N for the same data as (a), and N = 64, 96, χ = 40 with l = 5 in
the inset. QMC-OBC results for the same sizes are given as a solid
line. (d) Spatial distribution of the site and bond energies (solid and
dashed lines) for N = 64 and kBT = 0.5, 1, 2. QMC-OBC results are
shown by symbols for kBT = 0.5.

in the inset, demonstrating that the finite-size effect is much
larger than the difference between the TPQ-MPS and QMC
results. Already at χ � 10, the error is converged as we see
in Fig. 2(b) and is smaller than the variance of the QMC
results over 100 independent runs each with 200 000 averages,
regardless of size N and χ . The specific heat C/N also gives
excellent agreement with the QMC results of the same size
[see Fig. 2(c)]. Figure 2(d) gives the spatial distribution of the
bond and site energies (J and g terms of the Hamiltonian) for

�

FIG. 3. Physical properties of the Heisenberg model with J = 1
compared with the N = 16 ED-OBC and QTM (N = ∞ exact so-
lution) ones [45] shown with dashed and solid lines, respectively.
We choose l = 1 and β−1

max ∼ 0.03 with kmax = 500 (N = 16), 2000
(N = 64, 96). (a) Energy density e = E/N and (b) susceptibility χs

for N = 16, 64, 96 with χ = 20, 40, 40 as a function of kBT . The
inset in (a) shows the specific heat for N = 16.

several temperatures at N = 64. They perfectly follow those
of OBCs obtained by QMC for kBT = 0.5 even at the very
edges that show downturn or upturn. The variances of mTPQ
runs are kept small enough; 10–20 averages for N = 16 and 5
for N = 64, 96 in Figs. 2(a)–2(d).

Next, we test our method with the Heisenberg chain de-
scribed by Ĥ = ∑N−1

i=1 Jŝiŝi+1, with sz
i = ±1/2. The MPO

for this Hamiltonian has D = 5, which would increase the
truncation error. In fact, it is known for the MPS ground
state that the model requires much larger χ compared with
the product-type ground state of the transverse Ising model.
Figure 3(a) shows E/N and C/N for several system sizes in
comparison with the N = 16 ED with OBCs and the N = ∞
exact solution (QTM) [45], which shows good agreement
for the same order of χ as the transverse Ising model. We
also plot in Fig. 3(b) the susceptibility χs to see how much
a well-known logarithmic singularity at the lowest temper-
ature can be traced by the TPQ-MPS. The drop of χs at
N = 16 is almost perfectly reproduced already for χ = 20.
Also, the larger size results are in reasonable agreement with
the QTM.

Conclusion. We realized the TPQ-MPS by attaching the
edge auxiliaries of dimension χ to the MPS, showing that
the EE of the subsystem cut out from the center continues to
show a volume law up to the very edges of the system, par-
ticularly at low temperature, by setting the bond dimension χ

to realistically small values. Physical properties are evaluated
almost free of random sampling. Such a construction enables
the application to higher dimensions, possibly less costly than
the previously developed tensor network approaches [48–51].
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