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Deep reinforcement learning for feedback control in a collective flashing ratchet
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A collective flashing ratchet transports Brownian particles using a spatially periodic, asymmetric, and time-
dependent on-off switchable potential. The net current of the particles in this system can be substantially
increased by feedback control based on the particle positions. Several feedback policies for maximizing the
current have been proposed, but optimal policies have not been found for a moderate number of particles. Here,
we use deep reinforcement learning (RL) to find optimal policies, with results showing that policies built with a
suitable neural network architecture outperform the previous policies. Moreover, even in a time-delayed feedback
situation where the on-off switching of the potential is delayed, we demonstrate that the policies provided by
deep RL provide higher currents than the previous strategies.
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Introduction. A flashing ratchet is a nonequilibrium model
that induces a net current of Brownian particles in a spatially
periodic asymmetric potential that can be temporally switched
on and off [1–4]. If one can access the position informa-
tion of the particles, the current can be greatly improved by
feedback control that switches the potential on-off based on
the position information [5]. Feedback strategies for maxi-
mizing the current in flashing ratchets have been extensively
studied [4–13] due to the model’s applicability in various
disciplines [14]; for instance, flashing ratchets have been used
for explaining transport phenomena in biological processes
such as ion pumping [15], molecular transportation [16], and
by motor proteins [17–20]. However, the proposed feedback
strategies [4–11] are not optimal policies for a moderate num-
ber of particles and require prior information of the system as
well.

Owing to the recent advances in deep learning [21], physi-
cists in diverse fields have been applying it to complex
problems that are analytically intractable, e.g., glassy sys-
tems [22], quantum matter [23], and others [24]. In particular,
reinforcement learning (RL) [25] has shown unprecedented
success in previously unsolvable problems through combi-
nation with deep neural networks [26–29]. This framework,
so-called deep RL, has become a highly efficient tool for
quantum feedback control, showing similar or better perfor-
mance than previous handcrafted policies [30–34]. In this
Letter, we employ deep RL to obtain optimal policies in the
collective flashing ratchet model, and validate our approach by
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application to a time-delayed feedback situation that occurs in
actual experiments [12].

Collective flashing ratchet. We consider the collective
flashing ratchet model [5], which consists of an ensemble of
N noninteracting Brownian particles in contact with a heat
bath at temperature T and that drift in a spatially periodic
asymmetric potential U . The dynamics of the N particles is
governed by the following overdamped Langevin equation,

ηẋi(t ) = α(st )F (xi(t )) + ξi(t ),

st ≡ {x1(t ), . . . , xN (t )},
i = 1, . . . , N, (1)

where xi(t ) is the position of particle i, η is the friction
coefficient, and ξi is a Gaussian noise with zero mean and cor-
relation E[ξi(t )ξ j (t ′)] = 2ηkBT δi jδ(t − t ′) where E denotes
the ensemble average. Here, α is a deterministic control policy
that depends on a set of positions st with an output of 0 (off)
or 1 (on). The force is given by F (x) = −∂xU (x) with the
potential [see Fig. 1(a)]

U (x) = U0

[
sin

(
2πx

L

)
+ 1

4
sin

(
4πx

L

)]
. (2)

In all simulations, we set L = 1, kBT = 1, diffusion coeffi-
cient D = kBT/η = 1, U0 = 5kBT , and time step size �t =
10−3L2/D. The current of the particles in steady state under
policy α is denoted as

Eα[ẋ] ≡ Eα

[
1

N

N∑
i=1

ẋi

]
(unit: D/L). (3)

Various policies for maximizing the current (3) have been
proposed as follows: the periodic switching policy [4], max-
imizing instantaneous current (greedy policy) [5], threshold
policy [6–8], and Bellman’s criterion [13].

The periodic switching policy [4] is α(t ) = 1 for
t ∈ [0, Ton), α(t ) = 0 for t ∈ [Ton, Ton + Toff ), and periodic
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FIG. 1. (a) N = 1 case. Top: Potential U and trained value net-
work Vφ as a function of position x are denoted by blue and orange
lines, respectively. Bottom: The solid line denotes the probability of
switching on the potential (pon) as a function of x for the greedy
policy. The dotted line represents pon of the trained MLP policy.
(b) Illustration of a MLP with two hidden layers for the policy
network πθ .

α(t + Ton + Toff ) = α(t ) with optimal periods Ton ≈
0.03L2/D and Toff ≈ 0.04L2/D. For any N , this policy
gives the current Eα[ẋ] ≈ 0.862D/L because it does not
depend on the position but only time.

The greedy policy [5] is defined as α(st ) = �( f (st )),
where f (st ) = ∑N

i=1 F (xi(t ))/N is the mean force and � is
the Heaviside function given by �(z) = 1 if z > 0 or else 0.
While the greedy policy is the optimal one for N = 1, this
policy is outperformed by the periodic switching policy for
large N .

The threshold policy [6–8] is α(st ) = 0 if f (st ) � uon

when f (t ) is decreasing, and α(st ) = 1 if f (st ) � uoff when
f (t ) is increasing, with thresholds uon � 0 and uoff � 0. The
threshold policy with optimal thresholds gives a mostly simi-
lar performance to the greedy policy for N < 102–103 and is
better than the greedy policy for larger N . It is also optimal for
N = ∞, which is equivalent to the periodic switching policy.

Neither greedy nor threshold policy is optimal for finite
N > 1. Roca et al. [13] proposed a general framework for
finding the optimal policy via Bellman’s principle, and found
it for N = 2 using numerical integration. However, this nu-
merical method requires prior information of the model and
is computationally infeasible for large N due to the curse of
dimensionality.

Methods. We employ the actor-critic algorithm, which is
one of the policy gradient methods in RL [25], together with
deep neural networks to find the optimal policies in the col-
lective flashing ratchet for any N .

To formulate this problem in RL language, we define the
reward as the total mean displacement of the particles:

rt = 1

N

N∑
i=1

(xi(t + �t ) − xi(t )). (4)

The total discounted reward from time t , called the return, is
Gt = ∑∞

k=0 γ krt+(k+1)�t where γ ∈ [0, 1) is the discounting
factor and we set γ = 0.999. We build a policy network πθ ,
called the actor, where θ denotes the trainable neural net-
work parameters, that takes system state s as an input. The
outputs πθ (s) = (pon, poff ) are the probabilities for switching
the potential on or off [see Fig. 1(b)]. We sample the on-off
probability from πθ (st ) every t in the training process.

The goal in RL is to obtain the optimal policy π∗
that maximizes the expected total future reward, i.e., π∗ =
arg maxπEπ [Gt ]. If the equation of motion is known, Eπ [Gt ]
can be numerically calculated using Bellman’s equation [13].
However, in this Letter, we assume that we can only access
the system state st and reward rt . In such a case, called a
model-free RL, we need an estimator Vφ for a value function,

V π (st ) = Eπ [Gt |st ], (5)

which is the expected return a given state st under a policy
π . The estimator Vφ , called the value network or critic, where
φ denotes the trainable parameters, is also built with another
neural network.

There are various optimization methods for the actor-critic
algorithm [35]. Among them, we employ proximal policy
optimization [36], which is widely used in RL because of
its scalability, data efficiency, and robustness for hyperparam-
eters (see Supplemental Material [37] for training details).
After the training process is complete, we test the policy
deterministically, i.e.,

α(st ) =
{

1 if pon > 0.5,

0 if poff > 0.5,
where (pon, poff ) = πθ (st ).

Neural network architecture. First, we employ multilayer
perceptron (MLP) architecture for the policy network πθ and
value network Vφ [see Fig. 1(b)]. The configuration details
of the neural network architectures are given in the Supple-
mental Material [37]. Using the periodicity of the potential
U (x), we transform the state st into the input feature ψt =
[ϕ1(t ),ϕ2(t ), . . . ,ϕN (t )] for the neural network input where

ϕi(t ) =
[

cos

(
2πxi(t )

L

)
, sin

(
2πxi(t )

L

)]
. (6)

Therefore, the input dimension of the MLP is 2N and the
output dimension is two for πθ . The value network Vφ has
the same configuration except for having an output dimension
of one rather than two. We note that the discounting factor
γ = 0.999, which indicates the return Gt , can effectively be
considered as the total mean displacement between t and
t + �t/(1 − γ ). Accordingly, Vφ (ψt ) can be interpreted as
the expected current given ψt because the time step size is
�t = 10−3L2/D.

For the N = 1 case, Fig. 1(a) shows that the trained πθ

agrees with the greedy policy (bottom panel), while Vφ is
slightly shifted to the right from potential U (top panel). This
is because, at the top of the potential valley (xmax), the particle
can slide to the right or left with a 50/50 chance, and therefore
the expected current is maximum slightly right of xmax.

For the N = 2 case, as shown in the left panel of Fig. 2(b),
the greedy policy switches on (off) the potential when the
particles are inside (outside) the white contour. On the other
hand, the decision boundary of the trained MLP policy πθ (red
contour) agrees with the policy discovered by Roca et al. [13]
and shows better performance than the greedy policy by
considering the future expected current. For instance, in the
orange dashed area, the instantaneous net current will be
negative because the mean force f (x1, x2) is negative when
the potential is on. But considering each particle with a long-
term view, particles 1 and 2 are located on the downhill of
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FIG. 2. (a) DeepSets architecture for the policy network πθ . H is
the number of hidden units for each layer. (b) Decision boundaries
from a trained MLP (left) and trained DeepSets (right) for N = 2.
The white contour denotes where the mean force f (x1, x2) is zero.
The red contour is pon = 0.5 from the trained policy network πθ . The
color gradient represents the trained value network Vφ . (c) Current
Eα[ẋ] as a function of N for each policy α. Throughout this Letter,
error bars represent the standard deviation of the current measured
from the realized trajectory ensemble over the period t = 50L2/D.

the potential (xmax < x < xmin) and near the minimum (xmin),
respectively; while particle 2 will soon reach xmin and become
trapped in the potential well, particle 1 can keep moving down
along the potential [13].

However, the decision boundary (red contour) and Vφ

(color gradient) are not symmetric over the line x1 = x2 [see
Fig. 2(b), left] because MLP outputs are not permutation
invariant to the order of the elements in the input feature
ψt . To address this issue, we employ a permutation invariant
architecture, called DeepSets [38], for the policy and value
networks. In this architecture [see Fig. 2(a)], each element ϕi

in the input feature ψt is independently fed into a single MLP
(beige), and the outputs of the MLP are averaged over the ele-
ments and then fed to an another MLP. By using DeepSets for
training, the decision boundary and Vφ show perfect symmetry
over the x1 = x2 line [see Fig. 2(b), right].

Now we apply these methods for N = 22, 23, . . . , 213, and
compare the training results with the greedy (blue circles),

threshold (orange squares), and periodic switching (black dot-
ted line) policies in Fig. 2(c). Results show that the trained
MLP policies (green triangles) outperform the greedy and
threshold policies for N < 10, but perform poorly for N >

10 due to the lack of permutation invariance. On the other
hand, the trained DeepSets policies (red triangles) outperform
the other policies for any N > 1 while converging to the
periodic policy as N increases (see Fig. S1, Supplemental Ma-
terial [37]). We have also verified that deep RL works well for
the sawtooth potential (Fig. S2, Supplemental Material [37]).

Time-delayed feedback. In an actual experiment, there is
an inevitable time delay between the measurement and the
feedback due to the calculation time in the feedback algo-
rithm [9–12]. To verify that deep RL is applicable to such
a realistic situation, we consider a feedback time delay τ in
Eq. (1), i.e., α(st ) is replaced by α(st−τ ). In this case, the
maximal net displacement (MND) policy [11], defined by

α(st−τ ) = �

(
N∑

i=1

d (xi(t − τ ))

)
, (7)

where the displacement function is d (x) = xmin + x0 − x for
xmax < x � xmax + L and periodic d (x) = d (x + L), can per-
form better than the greedy policy for τ > 0 with optimal
x0 < 0 [12]. This can be considered as a τ -delayed greedy
policy because it predicts the arrival of the particles at xmin

after τ from x0 + xmin. We train the neural networks for
N = 1, 21, 22, . . . , 25 with time delay τ in the range of 0.00–
0.05L2/D, and compare them with the greedy policy and the
MND policy with optimal x0.

For the time-delayed N = 1 case [see Fig. 3(b), first row],
the results show that the trained MLP policies (gray dia-
monds) agree with the MND policy (orange triangles) and
perform better than the greedy policy (blue circles). For N =
2, the trained DeepSets policies (green triangles) outperform
the greedy policy and are slightly better than the MND policy.

While the actor-critic algorithm assumes that the feedback-
controlled system is a Markov decision process (MDP), the
delayed-feedback process is not a MDP because the next
state st+�t not only depends on the previous state st but also
the history of the on-off information. This problem can be
reformulated as a MDP by augmenting the input feature ψt

with the on-off history [39]. Here, the d-step augmented state
at time t is defined as

It = (αt−τ , αt−τ+�t , . . . , αt−τ+(d−1)�t , ψt ), d = τ/�t .

In order to efficiently handle the augmented state, we build
the policy network with a recurrent neural network (RNN).
We employ an embedding layer to transform the discrete vari-
able α into a continuous variable, and we use a gated recurrent
unit (GRU) [40], a widely used gating mechanism in RNNs
due to its parameter efficiency and good performance on the
sequential data sets, for the RNN. As shown in Fig. 3(a), we
concatenate the output vectors from DeepSets (orange nodes)
and the RNN (blue nodes), where DeepSets and the RNN en-
code the position information ψt and potential on-off history,
respectively. We then feed the concatenated vector to a MLP.
See the Supplemental Material [37] for the configuration de-
tails. As can be seen in Fig. 3(b), the trained RNN policies (red
stars) show slightly better performance than the other policies
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FIG. 3. (a) Architecture of policy network πθ augmented with
an RNN. (b) Time-delayed feedback results for the greedy, MND,
MLP (only for N = 1), DeepSets (for N > 1), and RNN policies
at increasing N . The black dotted lines denote the current of the
periodic switching policy.

for N = 1 and noticeably better performance than the others
for N = 2. And also, the RNN policies outperform the greedy,
MND, and DeepSets policies for the N = 4, 8, 16, 32 cases.

Conclusions and outlook. We have tackled the problem of
finding an improved policy for maximizing the current in the

collective flashing ratchet model through deep RL. Unlike the
previous model-based method [13], the model-free RL ap-
proach used in this study does not require information on the
parameters of the system (e.g., potential, diffusion coefficient,
and others). The deep RL approach makes it is possible to
find state-of-the-art feedback strategies using suitable neural
network architectures through training only in the process
of interacting with the environment. Also, we have demon-
strated that deep RL outperforms the previous strategies in a
time-delayed feedback situation; therefore, we expect that this
study can be effectively applied experimentally.

Although feedback control in the collective flashing ratchet
can induce an effective coupling between noninteracting parti-
cles, molecular motors such as kinesin, for example, explicitly
interact with each other via hard-core repulsion. According
to previous studies on interacting molecular motors [17–19],
their cooperative behavior can enhance transportation ability
several times or more compared to individual motors. Further
research applying deep RL on interacting molecular motors
will be intriguing.

Another interesting future task would be the application
of deep RL to a collective flashing ratchet in which a time-
periodic external driving force acts on the particles [41]. A
ratchetlike mechanism for transportation in the cell membrane
(such as ion pumping [15] or glycerol transportation [16]) can
improve the current via the periodic driving force. Therefore,
investigating whether a deep RL agent can exploit not only
fluctuations in the environment but also time-dependent envi-
ronmental dynamics is expected to aid the understanding of
such biological processes.

In real-world scenarios, there may be measurement or feed-
back errors due to instrument noise [42–44]. Such cases are
not only important in physics, e.g., information thermody-
namics [45], but also in RL for real-world applications [46].
Therefore, it will also be an interesting future work to study
RL from a thermodynamics perspective; we expect that the
collective flashing ratchet model can be utilized as a useful
environment to benchmark RL algorithms in such situations.

The results of all runs and the code implemented in PY-
TORCH [47] are available in the Supplemental Material [37].
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