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Experimental tests of multiplicative Bell inequalities and the fundamental role of local correlations
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Bell inequalities are mathematical constructs that demarcate the boundary between quantum and classical
physics. A new class of multiplicative Bell inequalities originating from a volume maximization game (based on
products of correlators within bipartite systems) has been recently proposed. For these new Bell parameters, it is
relatively easy to find the classical and quantum, i.e., Tsirelson, limits. Here, we experimentally test the Tsirelson
bounds of these inequalities using polarization-entangled photons for a different number of measurements (n),
each party can perform. For n = 2, 3, 4, we report the experimental violation of local hidden variable theories. In
addition, we experimentally compare the results with the parameters obtained from a fully deterministic strategy,
and observe the conjectured nature of the ratio. Finally, utilizing the principle of “relativistic independence”
encapsulating the locality of uncertainty relations, we theoretically derive and experimentally test new and richer
quantum bounds for both the multiplicative and the additive Bell parameters for n = 2. Our findings strengthen
the deep correspondence between local and nonlocal correlations, and pave the way for both theoretical (e.g.,
better understanding of nonlocal correlations) and practical (e.g., Bell tests and quantum technologies with
inefficient detectors) applications.
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I. INTRODUCTION

Ever since quantum mechanics was introduced to describe
the subatomic world, the foundational aspects, most no-
tably the nondeterministic nature of experimental outcomes,
have always been a topic of discussion among physicists
and philosophers [1]. In their seminal work [2], Einstein,
Podolsky, and Rosen (EPR) argued for the incompatibility of
quantum theory with the idea of local realism. Since then,
attempts were made to incorporate extra parameters within
the theory, the so-called hidden variables, to “complete” the
quantum formalism [3]. However, in 1964 John Bell showed
that there exist experiments for which any local hidden vari-
able theory must disagree with quantum mechanics about the
predicted outcome [4]. This discrepancy is most conveniently
illustrated by Bell parameters, i.e., measurable quantities
whose values must be bounded to a certain extent in any local
hidden variable theory, but can exceed these bounds accord-
ing to quantum mechanics [5]. Experiments carried out to
test these inequalities [6–9] have always vindicated quantum
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mechanics, thereby showing that local realistic theories do
not present an adequate representation of the physical world.
Recent new experiments have also significantly progressed
towards closing loopholes in a typical Bell experiment, such
as freedom-of-choice, fair-sampling, communication (or lo-
cality), coincidence, and memory loopholes [10–16]. Several
works have attempted to find the extent of Bell parameters
involving quantum correlations [17–19]. However, finding the
classical and quantum (Tsirelson) bounds of these expressions
in general remains a challenging task [18,19]. Recently, Bell
parameters with products of correlators between random vari-
ables shared between two parties, namely Alice and Bob, were
introduced [20] which alleviate the above difficulties. Corre-
sponding to the number of random variables n, measurable by
each of the parties, the multiplicative Bell parameter would be
proportional to a certain volume in the n-dimensional space
(this was shown to result from a specific coordination game
Alice plays with Bob). For the simplest case where Alice and
Bob measure two random variables each, it was also proven
that the bound for classical correlations is strictly less than
that for quantum correlations. Moreover, these multiplicative
Bell inequalities were shown to be more robust to detector
inefficiency than the additive ones [20], which is another use-
ful property of the proposed nonlinear inequalities. In general,
the Tsirelson bound for the multiplicative Bell parameters Bn,
corresponding to measurement n, was shown to be |Bn| � n!.
The Tsirelson bounds were derived from the structure of the
quantum covariance matrix [21], under the assumption of
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“relativistic independence” [22], mathematically expressing
the requirement for locality of uncertainty relations. With
this assumption, which we now put to experimental test, it
was possible to derive the strength of quantum correlations
from first principles and also influence some other research
directions [23–26]. Furthermore, the nonlinear nature of the
proposed inequalities may shed light on the nonpolytopic
structure of the set of quantum correlations. Here, we present
the results of experiments testing the Tsirelson bounds for
the proposed multiplicative inequalities for various n values,
and observe their surprising large n behavior. Moreover, based
on relativistic independence we propose and put to test new
Tsirelson bounds that are richer than those derived in the
past. This shows the interplay between local and nonlocal
correlations, which has both fundamental and applicative im-
plications.

II. THEORY

Let us consider a photon pair entangled in the polarization
degree of freedom,

|ψ〉 = 1√
2

(|H〉A|V 〉B − |V 〉V |H〉B), (1)

where |H〉 and |V 〉 stand for horizontal and vertical linear po-
larization states, and the subscripts A and B represent photon
states for Alice and Bob, two spatially separated observers. In
the multiplicative Bell scenario, the observers have a different
Bell parameter depending upon the number n of different
measurements that each can perform. For a general n the Bell
parameter is defined as

Bn =
n∏

j=1

v j · c j

= (c1n + · · · + cnn)
n−1∏
j=1

(c1 j + . . . + c j j − jc j+1, j ), (2)

where ci j = caib j is the expectation value of the polarization
measurements along ai and b j . c j is the vector comprising
all ci j for a fixed value of j, and v j is the jth column of the
matrix:

V =

⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1 1
−1 1 . . . 1 1

−2 . . .
... 1

. . . 1
...

−(n − 1) 1

⎤
⎥⎥⎥⎥⎥⎦.

A strategy to select the vectors a1 . . . an and b1 . . . bn, so as to
saturate the Tsirelson bounds (|Bn| � n!) is outlined in [20].
The multiplicative Bell parameters, Bn �

∏n
j=1 v j · c j , can be

associated with the additive Bell parameters, B′
n �

∑n
j=1 v j ·

c j , using the following relation:

|Bn| �
(
B′

n

n

)n

, (3)

which is a result of the inequality of geometric and arithmetic

means, i.e., n
√
Bn = n

√∏n
j=1 v j · c j �

∑n
j=1 v j ·c j

n . The latter ex-

pression can be used to find classical upper bounds (not

necessarily tight) over Bn, given the classical bounds over
B′

n. Using the known fact that additive Bell inequalities are
saturated by deterministic strategies [5], one may go over all
such strategies and find the tight classical bounds for B′

n. The
results are as follows:

B′
2 � 2 ⇒ B2 � 1;

B′
3 � 5 ⇒ B3 �

(
5
3

)3 ≈ 4.6; (4)

B′
4 � 8 ⇒ B4 � 16.

B′
2 is the well-known Bell-CHSH parameter [27]. For n = 2

and 4, this method yields B2 = 1 and B4 = 16, which set the
tight classical bounds for these particular values of n. This
scheme does not yield a useful classical bound for n > 4.

Since finding the classical limit for the Bell parameter,
Eq. (2), is suspected to be difficult in general, an independent
and deterministic strategy was proposed for both Alice and
Bob [20], and the corresponding limit was calculated. In this
strategy, Bob always chooses his random variable to be +1,
while Alice’s choice alternates between +1 and −1 for all of
her variables Ai, until i < ic, where ic is some cutoff number;
and for i > ic, she chooses Ai to be +1. The correlations take
the following values:

ci j =
{

(−1)i i � ic
1 i > ic

. (5)

The value for the cutoff ic is taken such that it maximizes
the value for the Bell parameter. Analytically, the value Bn

obtained for this fully deterministic strategy, FDn, can be
explicitly calculated, and its value is

FDn = 2ic
[( ic

2

)
!
]2

(n − ic) i(n−ic−1)
c . (6)

The maximal values obtained from the fully deterministic
strategy for n = 2 and 4 coincide with the classical bounds
obtained in Eq. (4). The ratio of the fully deterministic strat-
egy and Tsirelson bound, i.e., FDn/n!, approaches

√
π/2e as

n → ∞.

III. EXPERIMENT

Paired 0.5-mm-thick type-I bismuth triborate crystals
(BiBO), one rotated by 90◦ with respect to the other, are
pumped by a quasicontinuous wave 100-mW, 355-nm
beam to generate photon pairs (signal and idler) via
spontaneous parametric downconversion (SPDC) at a
degenerate wavelength of 710 nm [28] [see Fig. 1(a)]. A
half-wave plate, placed before the paired crystals, is used to
tailor the photon pair state by controlling the pump beam
polarization state. Due to indistinguishability, the generated
photon pairs are entangled in the polarization degree of
freedom. The polarization of the pump beam and the
orientation of the crystal was tuned so as to obtain the state,
|ψ〉SPDC = 1√

2
(|H〉A|H〉B − |V 〉A|V 〉B). A half-wave plate

was placed in one of the arms, say Bob, so that the horizontal
and vertical polarization states are exchanged and the state in
Eq. (1) was obtained. The 355-nm pump beam is afterwards
filtered out with a long pass filter. The photon pairs are
separated by a 50:50 beamsplitter (BS), and the photons travel
along two different arms. To select two diametrically opposite
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FIG. 1. Experimental scheme and the chosen strategy to perform measurement of multiplicative Bell parameters. (a) Sketch of the setup
used for generating polarization entangled photons and projecting them onto the states chosen by Alice and Bob’s strategies. Entangled photon
pairs are generated after pumping paired BiBO (bismuth triborate) crystals, and then separated by a 50:50 beamsplitter (BS) into two arms
(Alice and Bob). The polarization measurement stage on each side consists of a half-wave plate (HWP) and polarizing beamsplitter (PBS). The
photons are filtered by a 710-nm interference bandpass filter (IF), and coupled into single mode fibers, and then detected using single photon
avalanche diodes whose signals are sent to a coincidence module from which coincidence events can be observed. (b) Real and imaginary
parts of the experimentally reconstructed density matrix of the generated entangled state are shown in the |H〉A|H〉B, |H〉A|V 〉B, |V 〉A|H〉B, and
|V 〉A|V 〉B basis. The generated state fidelity is 
0.977. (c) The projective measurement strategy, i.e., {a1, a2, . . .} and {b1, b2, . . .}, chosen by
Alice and Bob, are shown for n = 2, n = 3, and n = 4 on the polarization Poincaré sphere.

regions of the SPDC cone, we place a pair of irises on each
arm such that they center on the required region. In each arm
projective measurement of the polarization state is performed
by a combination of a quarter-wave plate, a half-wave plate,
and a polarizing beamsplitter (PBS). Bandpass filters of
(710 ± 5) nm are placed before 20× objectives so that only
degenerate photon pairs are coupled into single mode fibers
of core diameter 5 μm. Then, the photons are detected via
a pair of single photon avalanche diode (SPAD) detectors
(Excelitas SPCM-AQRH-14-FC), and are finally counted via
a time-correlated single photon counting system. To achieve
a maximally entangled state of Eq. (1), the angle of the
waveplate before the crystal and the orientation of the crystal
were appropriately adjusted. The coincidence rates depending
upon the difference in the two half-wave plate orientations,
ranged from 5220 s−1 to 34 s−1. The visibilities in the H/V
basis and ±45◦ linear polarization states were (98.2 ± 0.5)%
and (97.3 ± 0.5)%, respectively. Real and imaginary parts of
the generated photons’ density matrix are shown in Fig. 1(b).
The fidelity of the generated state from the reconstructed
density matrix was measured to be 
0.977, confirming the
high quality of the entangled source. Figure 1(c) illustrates
the set of vectors used in projecting Alice and Bob’s quantum
states, i.e.. {a1, a2, a3, . . .} and {b1, b2, b3, . . .}, on the
polarization Poincaré sphere. The number of photon
counts N detected in coincidence along a and b by Alice
and Bob’s detectors was recorded, from which one can
obtain the expectation value of the measurement via ca b =
(N++ − N+− − N−+ + N−−)/(N++ + N+− + N−+ + N−−),
such that N+−, for instance, refers to the joint measurement
where Alice and Bob set their apparatus to measure the
state along the positive and negative direction of a and
b, respectively. Using this approach, as a verification,
the CHSH parameter for our single photon source is

measured and found to be 2.748 ± 0.026 � 2
√

2, which
lies beyond the classical limit of 2. The Bell parameter for
n = 2 is B2 = |(c12 + c22)(c12 − c21)|. The classical and
quantum limits of B2 are, respectively, BClassical

2 � 1 and
BQuantum

2 � 2!. The value for B2 as calculated from our
experiment was B2 = 1.88 ± 0.05, which is beyond the
classical limit 1. For n = 3 the Bell parameter is given by,
B3 = |(c13 + c23 + c33)(c11 − c21)(c12 + c22 − 2c32)|.

The classical limit for B3 lies somewhere between 4 and
4.6. Experimentally the observed value for B3 is 5.85 ± 0.31.
Experimentally measured values for the Bell parameters up
to n = 7 with the Tsirelson bounds and the classical limits
(where applicable) are shown in Table I. The experimentally
measured Bell parameters for higher values of n are plotted
in Fig. 2(a). The primary contribution to the uncertainties
in the Bell parameter is associated with the rotation of the
half-wave plates in the detection state. Since the coincidence
counts were taken by rotating motor controlled waveplates
at intervals of 1◦, the corresponding maximum and the av-
erage uncertainties in the expectation values are 0.0698 and

TABLE I. Classical (BClassical
n ), fully deterministic FDn, and

Tsirelson (BQuantum
n ) bounds for the multiplicative Bell parameters,

and the experimentally (BExperiment
n ) measured values.

n BClassical
n FDn BExperiment

n BQuantum
n (n!)

2 1 1 1.88 ± 0.05 2
3 4–4.6 4 5.85 ± 0.31 6
4 16 16 23.3 ± 1.4 24
5 N.A. 64 115 ± 9 120
6 N.A. 512 687 ± 59 720
7 N.A. 3072 4655 ± 374 5040

L012025-3



DILIP PANERU et al. PHYSICAL REVIEW RESEARCH 3, L012025 (2021)

(a) (b)

FIG. 2. Experimentally calculated multiplicative Bell parameters (MBell). (a) Logarithmic plot of the experimentally calculated Bell
parameters (blue), and theoretical quantum limit of the Bell parameter, i.e., n!, (red). (b) Ratio of the parameters generated from the fully
deterministic strategy FDn taken with the Tsirelson bound n! (red), and with the experimentally observed Bell parameter MBell (blue).

0.044, respectively. The uncertainty associated with photon
counting from Poissonian statistics contributes to maximum
uncertainty of 0.003. Thus the uncertainties, are dominated
by the rotation of the waveplates, which is extremely small,
and not visible in Fig. 2(a). The obtained results are close
to the corresponding Tsirelson bounds. In order to quantify
the results, we plot the ratio between the maximal quantum
bound and the observed parameters [see Fig. 2(b)]. Most of
the obtained results are within 80% of the maximal value. As
a comparison with the fully deterministic strategy (6), the the-
oretical (FDn/n!) and the obtained experimental (FDn/MBell)
ratios are shown in Fig. 2(b) for values of n up to 255. As
the experimentally observed Bell parameters are less than the
actual ones the experimentally calculated values for the ratio
are slightly larger than the theoretical ones.

IV. LOCALITY OF UNCERTAINTY AND
RICHER QUANTUM BOUNDS

Recently it was proposed [22] that the locality of un-
certainty, i.e., the requirement that local uncertainties are
independent of the measurement choices of any other parties,
can give rise to both known and hitherto unnoticed bounds on
nonlocal correlations in any statistically meaningful theory.
For two parties sharing a Bell state, richer bounds for the
CHSH parameter and the multiplicative Bell parameter will

be obtained, employing also the local correlations. Let us first
define the local correlation, say on Alice’s side,

ηA = 〈AiAj〉 − 〈Ai〉〈Aj〉
�Ai�Aj

, (7)

where Ai, and Aj are two local observables for Alice, and
�2

Ak
= 〈A2

k〉 − 〈Ak〉2. In the Appendix we show that these
local correlations on Alice’s side give rise to new, more
elaborate bounds for the standard CHSH and the multi-
plicative Bell parameters, which, respectively, are CHSH �√

2(
√

1 + ηA + √
1 − ηA) and B2 � 1 +

√
1 − η2

A . For the
special case of maximally entangled states, as the one con-
sidered here, the multiplicative Bell parameter is more tightly
bounded as follows, B2 � 2

√
1 − η2

A (for derivation please
see the Appendix). For both bounds, the local correlation
given by ηA determines the extent of the nonlocal correlations
on the right-hand side. It is quite remarkable that the upper
bound depends, after all, on a local quantity. These inequali-
ties are derived based on Alice’s local correlations, but can be
similarly derived for Bob’s, and hence an even tighter bound is
given by their minimum. To experimentally infer these richer
bounds on correlations, we selected two vectors a1 and a2

on Alice’s side that correspond to a particular value of ηA.
Then we randomly selected two vectors on Bob’s side, and
calculated the CHSH and Bell parameters. In Figs. 3(a) and

(a) (b)

FIG. 3. Distribution of both (a) CHSH parameters (upper limit = 2.618) as well as (b) Bell parameters B2 (upper limit =1.428) for
ηA = 0.7.
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(a) (b)

FIG. 4. Distribution of the correlation vectors for (a) ηA = 0.7 and (b) ηA = 0.2. The solid line indicates the region within which the
correlation vectors should fall, and the points are experimentally measured vectors.

3(b), we show the results for both parameters when ηA = 0.7.
The observed values all fall within the bound as predicted by
CHSH �

√
2(

√
1 + ηA + √

1 − ηA) and B2 � 1 +
√

1 − η2
A ,

which lends supports to relativistic independence. The local
correlations, for example, ηA, also put restrictions on the two
particle correlations, which can be defined as

ρi j = 〈AiBj〉 − 〈Ai〉〈Bj〉
�Ai�Bj

. (8)

Geometrically, for a particular ηA the correlation vectors
(ρ0 j, ρ1 j ), j = 0, 1, lie on the ellipse whose major and minor
axes are related to ηA as

e j =
√(

1 ± (−1) j |ηA|√
2

)[
1

(−1) j

]
. (9)

Similar relation holds for the vectors (ρi0, ρi1), i = 0, 1, de-
fined by the local correlation ηB, on Bob’s side. Figure 4
shows the ellipses corresponding to particular values of ηA =
0.7, and ηA = 0.2, along with the experimentally measured
correlation vectors. This is a nonorthodox way of analyzing
nonlocality, which may lead to better quantitative understand-
ing thereof.

V. CONCLUSION

We derived new classical and quantum bounds for the mul-
tiplicative Bell inequalities and experimentally tested them.
Our new theoretical results tested herewith, stem from the
principle of relativistic independence [22] and hence em-
phasize the interesting interplay between local and nonlocal
correlations. The experimental results show that the multi-
plicative Bell parameters go beyond their classical limits, thus
again falsifying local realism. Additionally, they approach the
Tsirelson bound, the upper limit derived from the quantum
covariance matrix and the relativistic independence assump-
tion. We were also able to experimentally observe the tighter
theoretical bounds on the CHSH and the Bell parameter B2,
lending support to the claim that quantum correlations arise
from the locality of uncertainty relations [22]. An additional
practical merit of multiplicative Bell inequalities, is that they

alleviate the detector efficiency requirement [20] for tests of
hidden variable theories. It is challenging for photonic Bell
experiments, such as the one reported here, to reach high
detection efficiencies, but in principle, multiplicative Bell in-
equalities, may provide a simple circumvention of the detector
efficiency loophole. This was shown to be true in the case
of the CHSH inequality [20], which can be violated for ef-
ficiencies above ∼0.83, and might be even more valuable
if applied to the Clauser-Horne [29] and Eberhard [30] in-
equalities which can be violated for efficiencies above 2/3.
If multiplicative Bell inequalities can be derived for these
cases, while maintaining their beneficial treatment of detec-
tor efficiency, they may have various applications, e.g., for
entanglement-based quantum cryptography.
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APPENDIX

Here we derive the richer CHSH and multiplicative Bell
inequalities for n = 2. Let us define the Pearson correlations
in a standard Bell-CHSH experiment as

ρi j
def= 〈AiBj〉 − 〈Ai〉〈Bj〉

�Ai�Bj

, (A1)

where the variances are �2
Ai

= 〈A2
i 〉 − 〈Ai〉2 and �2

Bj
=

〈B2
j 〉 − 〈Bj〉2. In any theory satisfying the generalized uncer-

tainty relation presented in [22], the principle of relativistic
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causality implies[
1 ηA

η∗
A 1

]
�

[
ρ0 j

ρ1 j

]
[ρ0 j ρ1 j], (A2a)

[
1 ηB

η∗
B 1

]
�

[
ρi0

ρi1

]
[ρi0 ρi1], (A2b)

for i, j ∈ {0, 1}, where ηA and ηB are two complex numbers
satisfying |ηA| � 1, |ηB| � 1, and η∗ denotes the complex
conjugate of η. Quantum mechanics satisfies both relativistic
causality and the generalized uncertainty relations [22], for

ηA
def= 〈A0A1〉 − 〈A0〉〈A1〉

�A0�A1

, ηB
def= 〈B0B1〉 − 〈B0〉〈B1〉

�B0�B1

.

(A3)

It was also shown in [22] that following Tsirelson-like
bounds stem from (A2) and (A3),

|CHSH| � min{√
2(

√
1 + Re(ηA) + √

1 − Re(ηA)), 2
√

2
√

1 − Im(ηA)2
}

� 2
√

2,

(A4a)

|CHSH| �
min

{√
2(

√
1+Re(ηB)+√

1−Re(ηB)), 2
√

2
√

1−Im(ηB)2
}

� 2
√

2,

(A4b)

where CHSH
def= ρ00 + ρ10 + ρ01 − ρ11 is the Bell-CHSH pa-

rameter.
For real η, Eq. (A4) transforms to

|CHSH| �
√

2
(√

1 + ηA +
√

1 − ηA
)

� 2
√

2, (A5a)

|CHSH| �
√

2
(√

1 + ηB +
√

1 − ηB
)

� 2
√

2. (A5b)

For the multiplicative Bell parameterB2, using the inequal-
ity of geometric and arithmetic means and using Eq. (A5a),

|B2| = |(ρ00 + ρ10)(ρ01 − ρ11)| �
(ρ00 + ρ10 + ρ01 − ρ11

2

)2

,

|B2| � 1

2

(√
1 − ηA +

√
1 + ηA

)2 = 1 +
√

1 − η2
A.

In [21], it was also proven that

|ρ00 + ρ01| � √
2(1 + d ), (A6)

|ρ10 − ρ11| � √
2(1 − d ), (A7)

where d = 〈{A0, A1}〉/2, and {A0, A1} is the anticommutator
of the local operators A0 and A1. For a maximally entangled
state like the singlet state, the expectation values of the local
operators are zero, and d = ηA. From Eqs. (A6) and (A7),

|B2| = |(ρ00 + ρ01)(ρ10 − ρ11)| � 2
√

1 − η2
A. (A8)

The role of local correlations in determining the nonlocal,
Alice-Bob correlations is evident in all these characteriza-
tions. Using the above definitions, one may also recognize

|ηA|2 = Re(ηA)2 + Im(ηA)2 � 1,

|ηB|2 = Re(ηB)2 + Im(ηB)2 � 1 (A9)

as the Schrödinger uncertainty relations of Alice’s A0 and A1,
and of Bob’s B0 and B1.
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