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First order phase transition between two centro-symmetric superradiant crystals
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We observe a structural phase transition between two configurations of a superradiant crystal by coupling a
Bose-Einstein condensate to an optical cavity and applying imbalanced transverse pump fields. The transition
can be interpreted as a transition between two nonpolar, centro-symmetric structures involving a change in
polarization. We find that this first order phase transition is accompanied by transient dynamics of the order
parameter which we measure in real time. The phase transition and the excitation spectrum can be derived from
a microscopic Hamiltonian, in quantitative agreement with our experimental data.
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Structural phase transitions between different crystal con-
figurations play an important role in the description of
materials. They arise from a delicate balance of competing
internal forces and can be complex to describe owing to their
intrinsically nonlinear character. The study of the transition
dynamics is especially challenging due to the very short
timescales determining the process in solid-state systems
[1–4]. Beyond condensed-matter systems, quantum structural
phase transitions have also been studied in ion crystals [5–7]
at effectively zero temperature.

In quantum simulations with ultracold atoms loaded into
optical lattices [8,9], the lattice structure is dictated by the
externally applied laser fields, which is the strength but also
limitation of this approach. For example, the crystallization
process itself, or a structural phase transition between differ-
ent crystal configurations, cannot be studied. Such phenomena
can, however, be addressed with dynamical lattice poten-
tials that emerge inside optical cavities coupled to driven
atoms [10].

In such many-body cavity QED settings, atoms are placed
into an initially unoccupied cavity mode and illuminated
by an external pump laser field. Above a critical pump
strength, the atoms lower the total energy of the system by
crystallizing into a superradiant pattern that supports Bragg
scattering of photons into the cavity mode. The interference
between the classical pump laser field and the emerging
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self-consistent quantized cavity field then gives rise to a
dynamic potential that enforces the atomic pattern forma-
tion. This approach has been used to study diverse aspects
of crystallization phase transitions between an initially un-
ordered phase and a superradiant crystal [10–16], as well as
dynamic instabilities in ring cavity configurations [10,17,18].
Yet first order structural phase transitions between two su-
perradiant configurations of distinct geometry have not been
observed.

The challenge in implementing such transitions in many-
body cavity QED simulations lies in the fact that multiple
cavity modes need to be involved [19]. In this Letter, we
demonstrate that a structural phase transition can also be in-
duced in an experimentally simpler way by coupling to both
quadratures of a single cavity mode. Monitoring the light field
leaking out of the cavity, we observe the associated rapid
jump, the oscillation, and the relaxation of the order param-
eter.

In our experiment, we induce a first order phase transi-
tion between two different emergent crystalline configurations
that arise in the atomic density of a Bose-Einstein conden-
sate (BEC) coupled to a high-finesse optical cavity. The two
crystal structures correspond to distinct minima in the free
energy of the system (Fig. 1). Both structures are centro-
symmetric, each one breaking a discrete Z2 symmetry, and
have different symmetries of the wave function. The differ-
ence between these structures can be directly connected to
the concept of polarization developed in the so-called modern
theory of polarization [20–22]: Interpreting the atomic density
as an electronic density in a real crystal, the centro-symmetric
nature of the structures implies that both are nonpolar. A tran-
sition between the two structures corresponds to a shift of the
symmetry center as shown in Fig. 1. In a real crystal, such a
shift always comes with a corresponding current proportional
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FIG. 1. (a) and (c) The free energy E as a function of the phase φ of the intracavity light field supports two distinct minima. They
correspond to two crystal structures, SR1 and SR2, with different symmetries as sketched in real space in red and green, where dark colors
indicate high atomic densities. The black rectangle indicates the primitive cell of the lattice. The colored circles indicate the symmetry centers
of the respective structures, and the arrows highlight the shift in position. Dashed gray lines indicate the maxima of the individual standing
wave light fields. (b) As the free energy deforms during the experimental sequence, local and global minima swap, and the system undergoes
a first order phase transition. The excess energy from the metastable state results in a damped oscillation of the order parameter around the
new global minimum. (d) Two imbalanced counterpropagating pump beams E± couple the BEC to quadratures Q and P of the intracavity
electric field Ec. Each quadrature generates a different interference pattern of the electric fields. (e) Using a heterodyne detector, we measure
the amplitude |α| and phase φ of the light field leaking from the cavity. From the phase we reconstruct to which quadrature the atoms are
coupled and hence which crystal structure they acquire.

to the change in polarization. In our case this current is given
by the shift of the atomic patterns.

The microscopic origin of the two structures can be under-
stood from the interaction between atoms and light, captured
by the Hamiltonian ĤA−L = −αs Ê† · Ê, where αs is the scalar
atomic polarizability and Ê is the total electric field. The
BEC is placed at the cavity mode center and exposed to an
off-axis pump laser beam [see Fig. 1(d)]. The total electric
field is the sum of the cavity field Êc and the pump field
Ep, Ê = Êc + Ep. The cavity is initially in the vacuum state
but can be populated by Raman processes where photons are
scattered via the atoms from the pump into the cavity and
vice versa. In order to scatter light constructively, the atoms
have to organize in a periodic structure that obeys the Bragg
condition and comes at the cost of kinetic energy. This is thus
possible only above a critical pump power, where the overall
energy is lowered by atomic self-organization [10,23], and
the system becomes superradiant. At the phase transition, the
BEC spontaneously breaks a discrete translational symmetry
[24].

In contrast to previous self-organization studies that relied
on either a standing wave [11,12,14,16] or a running wave
[25–27] pump beam, we employ two unbalanced counterprop-
agating beams [28], that is, Ep = (E+ + E−)/2, with E± =
E±e±ikprez. Here, E± are the electric field amplitudes, ez is the
polarization vector, kp is the wave vector with |kp| = 2π/λ,
and λ is the wavelength of the light. The beam in the −kp

direction is the retroreflected +kp beam, whose focus position
allows us to tune the imbalance parameter γ = (E+/E−)1/2.
The two beams interfere, creating a standing wave with an
offset. The standing wave corresponds to an optical lattice

depth Vp = −αsE+E−, which we use as the control parameter
for the phase transition.

The lattice Hamiltonian is derived from the interaction
HA−L = −αs Ê† · Ê by inserting the total electric field Ê =
Ep + Êc [29]. In the rotating wave approximation, the electric
field of the cavity is given by Êc = E0â cos(kcr)ez, where E0

is the electric field strength of a single cavity photon and â
(â†) is the operator annihilating (creating) a photon in the
cavity mode. The wave vector along the cavity axis is kc, with
|kc| = |kp|. This results in

ĤA−L(r) = Vp cos2(kpr) + V̂c cos2(kcr)

+ V̂1 cos(kpr) cos(kcr) + V̂2 sin(kpr) cos(kcr).
(1)

V̂c = h̄U0â†â is the potential of the quantized cavity lattice,
where U0 is the single-atom dispersive shift, and

V̂1 = 1

2

(
γ + 1

γ

)
(h̄U0Vp)1/2(â + â†),

V̂2 = − i

2

(
γ − 1

γ

)
(h̄U0Vp)1/2(â − â†) (2)

are the amplitudes of the two possible interference lattice
terms between pump and cavity. The terms proportional to
V̂1,2 in Eq. (1) both couple the atomic momentum state k = 0
to the states k± = kp ± kc. However, they couple to spatial
patterns with different parities, either cos(kpr) or sin(kpr).
In a band structure picture, this means that V̂1 couples more
strongly to the second (p) band than to the first (s) band
and vice versa, assuming repulsive optical potentials [30].
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Accordingly, the emerging self-organized phases will have
different spatial structures, as is also shown in Figs. 1(a) and
1(b).

The two possible lattice configurations correspond to the
two minima of the free energy in Fig. 1 and are either 〈V̂1〉 �= 0
and 〈V̂2〉 = 0 or 〈V̂2〉 �= 0 and 〈V̂1〉 = 0. They will be referred
to as superradiant phases SR1 and SR2, respectively. Using the
point of spatial inversion symmetry of the lattice structure of
SR1 as the origin [r = (0, 0)], the spatial inversion reference
point for SR2 is shifted to r′ = (

√
3/2 − 2, 1/2)π/|kp|.

All potentials except Vp have a nonzero value only in
the superradiant phases, i.e., when 〈â〉 �= 0. Specifically, V̂1

and V̂2 are proportional to the orthogonal quadratures Q =
1√
2
〈â† + â〉 and P = i√

2
〈â† − â〉 of the cavity field, respec-

tively [31]. Therefore, using the complex-valued expectation
value of the intracavity field 〈â〉 = α = |α|eiφ as an order
parameter, it is possible not only to observe the transition to
a superradiant phase but also to distinguish SR1 from SR2

via the phase of the light field. In the chosen reference frame
rotating with the pump field, either the real or the imaginary
quadrature of the cavity field will be occupied in SR1 or SR2,
respectively.

We prepare a BEC of N = 4.4(4) × 105 87Rb atoms and
couple it dispersively to a single mode of our optical cavity
[29]. The pump beams have a wavelength of λ = 780.1 nm,
which is blue detuned with respect to the D2 line of 87Rb by
+2π × 69.8(1) GHz such that the atoms experience a repul-
sive potential. At this wavelength, the single-atom dispersive
shift is U0 = 2π × 47.5(1) Hz, and the recoil frequency with
one photon is ωr = Er/h̄ = 2π × 3.77 kHz. We vary the
pump to cavity detuning �c/2π = (ωp − ωc)/2π in a range
of 0 to −10 MHz, where ωp and ωc are the frequencies of the
pump beam and bare-cavity resonance, respectively. The two
counterpropagating pump beams are incident on the atoms at
an angle of 60(1)◦ with respect to the cavity mode.

We record phase diagrams as a function of detuning �c and
pump lattice depth Vp in the following way. We initially fix
the relative coupling strengths of the two counterpropagating
pump beams by choosing γ = 1.28(3). We linearly ramp up
the pump beam lattice depth Vp from 0 to 36(3)Er in 50 ms and
repeat the same experimental sequence for different values of
�c. We record the light field leaking out of the cavity via a
heterodyne detection setup and extract the field amplitude |α|
and the phase φ as functions of Vp and �c. The resulting phase
diagrams [Fig. 2(a)] show three different phases, the normal
(superfluid) phase (SF) and the superradiant phases SR1 and
SR2. In the SF phase, we detect only the vacuum noise of
the cavity mode. In phases SR1 and SR2, nonzero average
intracavity fields are detected. While the phase SR2 extends
to large lattice depths Vp, phase SR1 has a finite extent for
nonzero cavity detunings due to the parity of the Hamiltonian
for positive atomic detuning, where the cavity-atom coupling
gets counteracted by the growing band gap of the pump lattice.
Self-organization by coupling to the p band becomes energet-
ically unfavorable above a certain lattice depth [30]. In the red
pump detuning case, SR1 will extend to large lattice depths,
and SR2 is always unfavored. Blue pump detuning giving a
limited extent to SR1 is thus necessary to make SR2 possible.

The π/2 difference in the phase of the cavity field between
SR1 and SR2 [Fig. 2(b)] is a consequence of the coupling

FIG. 2. (a) and (b) Phase diagram showing the complex order
parameter as the expectation value 〈â〉 = |α|eiφ of intracavity field,
measured as a function of the pump lattice depth Vp and the cavity
detuning �c. From the amplitude |α| we extract the intracavity lattice
depth 〈V̂c〉 = Vc, shown in (a). At the phase transition between the
two superradiant phases Vc changes abruptly. (b) Phase of the light
field mapped to the first quadrant (φ ∈ [0, π/2]) to highlight the π/2
phase jump. (c), (d), and (e) Absorption images of the atomic cloud
after ballistic expansion, showing the momentum distribution of the
atoms. The images are recorded at Vp = 12(1) Er and �c/2π =
−2, −5, −8 MHz, as indicated in the phase diagrams. Dark areas
show high atomic densities. (c) and (d) correspond to the atomic
density distribution of Figs. 1(a) and 1(c), respectively. The arrows
denote the pump and cavity wave vectors h̄kp and h̄kc.

to two orthogonal quadratures, corresponding to the two
interference terms in Eq. (1), each representing one of the
two crystal structures (see Fig. 1). As shown in Figs. 2(c),
2(d), and 2(e), the difference also appears in time-of-flight
images, where one records the momentum distribution of the
atoms. In the normal phase, only the two momenta at ±2h̄kp,
associated with the λ/2 periodicity of the pump lattice, are
visible besides the zero-momentum mode [see Fig. 2(e)].
In SR1, these momentum components are suppressed, but
the momenta ±h̄(kp − kc) are populated, indicating a dom-
inantly one-dimensional density modulation [see Fig. 2(c)].
In SR2, two additional nonparallel momenta ±h̄(kp + kc) are
macroscopically populated, which results in an emergent two-
dimensional modulation.

In the transition from SR1 to SR2, the discontinuity of
the order parameter jumping between two nonzero values is
the first indication of a first order phase transition [32]. We
monitor and plot the amplitude and phase of the cavity field
as functions of time in Figs. 3(a) and 3(b) for different values
of �c. In addition to the abrupt change in both observables
at the phase transition, we record an oscillation of the phase
φ after the transition. It has a single frequency that depends
on �c and Vp and decays within a few oscillation periods [see
Figs. 3(b) and 3(d)].

Our observations can be understood as a transition from a
metastable state to the ground state. We numerically calculate
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FIG. 3. Phase transition and relaxation of the order parameter.
(a) and (b) Cuts of Vc and the φ phase diagram [similar to Figs. 2(a)
and 2(b) but for γ = 1.37(5)], respectively, for different cavity de-
tunings �c/2π = −3.75, −2.75, −1.75 MHz, showing a jump at the
phase transition. The transition points t1,2,3 correspond, respectively,
to Vp = 11(1)Er, 15(1)Er, 25(2)Er . (c) The energy landscape [calcu-
lated from the parameters of the solid data point in (d)] truncated
to the photonic space shows two minima on the different quadra-
ture axes. The system jumps from the local minimum to the global
minimum when the phase transition happens. We extract the normal
mode frequencies from the curvatures of the energy landscape at the
global minimum (see the Supplemental Material), which is plotted
as the theoretical prediction in (d). (d) We take the Fourier transform
of the time trace of the oscillating phase and extract the dominant
frequency. The resulting frequencies are shown as a function of Vp

and accordingly changing �c, following the phase boundary between
SR1 and SR2, and are compared to the numerical model. The gray
shading shows the theoretical prediction including the experimental
uncertainties of the imbalance parameter. The Fourier spectrum of
the solid data point is shown in the inset. Errors indicate statistical
deviation.

the energy landscape of the system from the Hamiltonian
[29]. It is plotted in Fig. 3(c) as a function of the cavity field
quadratures. There are two different minima located at the
quadrature axes, corresponding to the two structural phases.
Small changes in system parameters can turn the local min-
imum into a global minimum and vice versa. After ramping
a control parameter, the system thus can temporarily be in
the local minimum but will eventually fall into the global
minimum. The oscillation in the phase of the light field after
the transition reveals a collective excitation in SR2, induced by
the energy difference between the minima for SR1 and SR2

when the transition takes place. We compare the oscillation
frequencies with the expected frequencies of the phase mode
in SR2 calculated from the curvature of the energy landscape,
which shows good quantitative agreement [see Fig. 3(d)].
Different mechanisms can be envisioned driving the system
from one local minimum into the other. The energetic land-

FIG. 4. Tuning the imbalance parameter γ . (a) Geometry of the
system. We choose the BEC position as the origin of the y axis and
define y0 as the coordinate of the beam focus. Moving the lens in the
y direction translates the focus and allows tuning of γ . The mirror
has a finite reflectivity, which corresponds to a minor shift in y of the
balanced point γ = 1. (b) We extract γ from the experimental data
by comparing the threshold with numerical calculations. This phase
diagram is consistent with an imbalance parameter γ = 1.22(2),
which gives the calculated phase boundary of SR2 shown as the
solid curve. The dashed line is instead the calculated phase boundary
for γ = 1.28(3) as in Fig. 2. (c) Dependence of the pump lattice
depth (blue curve) and imbalance parameter γ (black curve) on the
beam focus coordinate, calculated from the geometrical model of a
retroreflected Gaussian beam. The normalized pump lattice depth
V̄p is relative to the maximum measured value of Vp. Shaded areas
account for the 5% systematic error of the beam waist measurement.
The normalized pump lattice depths (blue circles) are measured
by performing Raman-Nath diffraction calibration for different y0

values. The imbalance parameters γ (black squares) are extracted as
in (b). Error bars account for the standard errors of the least squares
fits and are smaller than the symbol size for the blue data.

scape will pass a spinodal point forcing the transition since
the local minimum is disappearing. Most likely, the transition
will, however, be triggered already before the spinodal point
is reached since the system can overcome a finite energetic
barrier either by tunneling, by thermal activation, or by ad-
ditional fluctuations due to the openness of the system [33].
A comparison between the experimentally observed phase
boundary and numerically calculated phase diagrams indeed
suggests that such mechanisms play an important role (see
Fig. S2 in the Supplemental Material [29]). Pinning down
the dominant process goes, however, beyond the scope of the
current publication.

The properties of the synthetic material we generated can
be tuned widely, which can affect the phase diagram in both
a quantitative way and a qualitative way. Our setup allows us
to continuously tune the imbalance parameter γ by moving
the lens focusing the pump beam onto the atoms (see Fig. 4(a)
and [29]). The expected value of γ can be calculated using
Gaussian optics [see Fig. 4(c)]. We also calculate the lattice
depth Vp as a function of the lens position and compare it with
Raman-Nath diffraction measurements. The highest lattice
depth occurs as expected where the laser beam has its focus
on the mirror.
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So far, we have chosen γ in a range where competi-
tion between both structures appears. However, for smaller
values of the imbalance parameter, the phase SR2 shifts to
larger pump lattice strengths, such that the first order phase
transition effectively vanishes since SR1 and SR2 separate.
We record phase diagrams for different values of γ and ob-
serve the shift of the phase boundaries [see Fig. 4(b)]. Using
the numerical results from our theoretical model [29], we
fit the phase diagram and extract a measured value for γ .
Calculated and fitted values of γ are displayed in Fig. 4(c).
Quantitative agreement eventually is limited by beam
imperfections.

In conclusion, we explored a first order phase transition
between two configurations of a self-organized crystal cou-
pling to a single mode of an optical cavity. The real-time
access to the intracavity field allowed us to study the relax-
ation behavior of this nonadiabatic structural phase transition.
Our work demonstrates that quantum simulations with ul-
tracold atoms not only provide conceptual insights into the
electronic properties of a material [8,9] but, as we demon-
strated here, can also be used to study lattice distortions and
structural phase transitions. The extension of our work to
insulating regimes of dynamic bosonic or fermionic Hubbard
models [34] in lattices exhibiting the same symmetries is
possible. In that case, the atoms can be described by localized

Wannier functions instead of the delocalized wave function of
a Bose-Einstein condensate. An adiabatic displacement of the
atoms then leads to a polarization current that is linked to the
change in Berry connection of the filled band, the integral of
which plays the role of a Zak phase that can be detected in the
phase of the light field leaking from the cavity [35]. Another
direction for future experiments is to use multiple pump beam
modes in order to realize complex crystalline structures, also
featuring the formation of domains. This approach would be
complementary to the use of multimode resonators [19].

Note added. Recently, Ref. [36], which theoretically dis-
cusses a related scheme coupling two density waves of a
Bose-Einstein condensate to two quadratures of a cavity field,
was published.
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