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Spreading of correlations and entanglement in the long-range transverse Ising chain
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Whether long-range interactions allow for a form of causality in nonrelativistic quantum models remains an
open question with far-reaching implications for the propagation of information and thermalization processes.
Here, we study the out-of-equilibrium dynamics of the one-dimensional transverse Ising model with algebraic
long-range exchange coupling. Using a state of the art tensor-network approach, complemented by analytic
calculations and considering various observables, we show that a weak form of causality emerges, characterized
by nonuniversal dynamical exponents. While the local spin and spin correlation causal edges are sub-ballistic, the
causal region has a rich internal structure, which, depending on the observable, displays ballistic or superballistic
features. In contrast, the causal region of entanglement entropy is featureless and its edge is always ballistic,
irrespective of the interaction range. Our results shed light on the propagation of information in long-range
interacting lattice models and pave the way to future experiments, which are discussed.
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Long-range interactions may dramatically impact the dy-
namics of correlated systems [1]. In the quantum regime, a
number of basic concepts, such as the equivalence of the ther-
modynamic ensembles [2], the Mermin-Wagner-Hohenberg
theorem [3–5], or the area law for entanglement entropy [6–9],
break down. Long-range interactions may also be respon-
sible for negative heat capacities and anomalous response
functions [10]. The paradigmatic model considers interac-
tions that fall off algebraically with the distance R, as 1/Rα .
Such long-range interactions can now be emulated in quan-
tum simulators [11–15] with artificial ion crystals [13,16–
20], Rydberg gases [21–24], magnetic atoms [25–29], polar
molecules [30–32], nonlinear optical media [33], and solid-
state defects [34–36]. A major asset of these systems is
that they are free of screening effects and the interaction
is truly long range. Moreover, the exponent α can be con-
trolled [16,24].

Another dramatic effect of long-range interactions is
the breakdown of the notion of causality in nonrelativistic
quantum models. For a wide class of lattice models with
short-range interactions, the Lieb-Robinson bound implies
that correlations decay exponentially beyond a limit set by
the system’s maximum group velocity [37–39]. This ef-
fective light-cone effect has been demonstrated for various
models in both experiments [40–42] and numerics [43–49].
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In contrast, for sufficiently long-range interactions, causal-
ity breaks down and information can propagate arbitrarily
fast [50,51]. This is consistent with the absence of known
Lieb-Robinson bounds [38,52,53] and the vanishing of the
characteristic dynamical time scale in the thermodynamic
limit [54]. Conversely, algebraic interactions that decay fast
enough are effectively short range, and one recovers bal-
listic propagation of information [55–57]. The intermediate
regime is, however, strongly debated, and whether a form of
causality emerges remains an open question. Known bounds
in principle allow for super-ballistic propagation [38,52,53]
but they are challenged by numerical simulations, which point
towards a significantly slower propagation [9,50,58–62]. The
latter, however, reported different propagation scaling laws.
Microscopic mean-field theory suggests that these apparent
contradictions may be attributed to the coexistence of several
signals governed by different dynamical scaling laws [63].
This prediction, however, relies on a generic but nonuniversal
form of the correlation functions and ignores beyond-mean-
field effects. Experiments performed with trapped ions have
reported bounded propagation [64,65] but they are limited to
very small systems, which prevents extraction of the scaling
laws and closure of the debate.

The aim of this work is to characterize the spreading of
quantum correlations in the intermediate regime of a long-
range spin system numerically. Specifically, we determine the
scaling laws for the propagation of a variety of observables
in the long-range transverse Ising (LRTI) chain using ma-
trix product state simulations. We find that a weak form of
causality emerges, characterized by generic algebraic scaling
forms t ∼ Rβ , where the specific value of the exponent β de-
pends on the observable. The spin-correlation and local-spin
causal edges are both sub-ballistic, with the same dynamical
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FIG. 1. Phase diagram and dynamical properties of the LRTI
chain in the (h/J, α) plane. The x-Néel phase (shades of blue) is
separated from the z-polarized phase (shades of orange) by a critical
line in black. The three dynamical regimes are shaded differently. As
shown in the insets, the local and quasilocal regimes are character-
ized by distinct algebraic scaling laws for the correlation and spin
edges (CE and SE, respectively), their maxima in space-time (max),
and the entanglement edge (EE), after global or local quench. The
different behaviors of these observables in different regions of the
phase diagram provide clear, experimentally accessible, signatures
of the local and quasilocal regimes.

exponent (βCE = βSE > 1). In the vicinity of the edge, how-
ever, the local maxima propagate differently, i.e., ballistically
(βm = 1) for spin-spin correlations and super-ballistically
(βm < 1) for local spins. In contrast, the Rényi entanglement
entropies always propagate ballistically, irrespective of the
range of interactions, in both the local and quasilocal regime.
The analytic quasiparticle picture, based on linear spin wave
theory (LSWT), accurately reproduces the numerics and pro-
vides a clear interpretation of the numerical results. The
different algebraic space-time patterns of correlation func-
tions provide an unambiguous fingerprint of the dynamical
regimes of the model, suggesting the emergence of a dynami-
cal phase diagram. These correlation patterns can be directly
measured in state-of-the-art experiments.

Model and approach. The dynamics of the LRTI chain is
governed by the Hamiltonian,

Ĥ =
∑

R �=R′

J

|R − R′|α Ŝx
RŜx

R′ − 2h
∑

R

Ŝz
R, (1)

where Ŝ j
R ( j = x, y, z) are the spin-1/2 operators on lattice

site R ∈ [0, N − 1], N is the system size, J > 0 is the cou-
pling energy, and h is the transverse field. It can be realized
on various quantum simulation platforms, including cold
Rydberg gases [24,66,67] and artificial ion crystals, where
the exponent α can be controlled via light-mediated inter-
actions [16,18,19,64,65]. At equilibrium, the phase diagram
of the LRTI chain comprises two gapped phases separated
by a second-order quantum phase transition; see Fig. 1 and
Ref. [7]. For low fields h and rather short-range couplings
(high values of α), the nearest-neighbor antiferromagnetic
couplings dominate and the system forms a staggered Néel-

FIG. 2. Spreading of spin correlations in a global quench, with
system size N = 48. (a) TDVP results for Gz and a quench from
(h/J )i = 50 to (h/J )f = 1 in the quasilocal regime at α = 1.7. The
solid green and dashed blue lines are fits to the CE and the extrema,
respectively. (b) Dynamical exponents βCE (green diamonds) and βm

(blue disks), fitted form results as in panel (a) for Gz (empty symbol)
and Gx (full symbol), and comparison to the LSWT predictions (solid
green and dashed blue lines). (c) Spreading velocities VCE (green
diamonds) and Vm (blue disks), in the local regime and comparison
to the LSWT predictions (solid green and dashed blue lines).

ordered phase along the x direction. For a large field h and
long-range couplings (low values of α), the spin-field interac-
tion is favored and a z-polarized phase is formed.

Out of equilibrium, the LSWT predicts three dynamical
regimes (shaded by different colors in fig. 1) [50,58]: For
α � 2 (local regime), the spin wave excitations are regular
with bounded energies Ek and group velocities Vg(k) = ∂kEk

(k is the momentum). This regime is reminiscent of the short-
range case where correlations spread at finite speed, giving
rise to a linear causality cone [37,38]. For α < 1 (instanta-
neous regime), Ek features an algebraic, infrared divergence.
There is no characteristic time scale and correlations spread
arbitrarily fast. Finally, for 1 � α < 2 (quasilocal regime), Ek

is bounded but Vg(k) diverges as Vg(k) ∼ 1/k2−α . Whether
some form of causality emerges in the quasilocal regime re-
mains debated [50,54,58,60,64,65,68], and, in the following,
we mainly focus on this case.

Except where otherwise indicated, the results discussed
below are obtained using time-dependent variational princi-
ple (TDVP) simulations within a matrix-product state (MPS)
framework [7,50,69]. Convergence of the calculations with
the bond dimension has been systematically checked. Our
results are summarized on the dynamical phase diagram of
Fig. 1. The main features of the observable that we consider
are all described by an algebraic space-time dependence of
their edges and maxima, shown in the insets.

Spin correlations and global quench. We first
consider the spreading of the connected spin correla-
tions, Gj (R, t ) = G0

j (R, t ) − G0
j (R, 0), with G0

j (R, t ) =
〈Ŝ j

R(t )Ŝ j
0(t )〉 − 〈Ŝ j

R(t )〉〈Ŝ j
0(t )〉, along the directions j = x, z.

Figure 2(a) shows a typical TDVP result for Gz(R, t ), for
a global quench in the quasilocal regime, α = 1.7, from
(h/J )i = 50 to (h/J )f = 1, both in the z-polarized phase.
The initial state of the system is the ground state of the
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Hamiltonian with (h/J )i. Similar results are found when
scanning the values of (h/J )i, (h/J )f, and 1 < α < 2. The
correlation pattern shows a series of maxima which propagate
algebraically [notice the log-log scale in Fig. 2(a)]. In the
asymptotic long-time and long-distance limits, they are well
fitted by the scaling law t ∼ Rβm (dashed blue lines). The
correlation edge (CE), which sets the causality horizon,
cannot, however, be inferred from the behavior of the
maxima [47]. To find the CE, we track the points of the
R − t plane where the correlations reach a fraction ε of their
maximum. Scanning ε ∈ [0.01, 0.1], we find that the CE is
well fitted by the algebraic scaling law t ∼ RβCE (solid line),
with βCE nearly independent of ε [70]. Figure 2(b) shows the
results of the fits (empty symbols) versus the exponent α.

The numerical results for Gx(R, t ) have an extra checker-
board structure inside the causal region due to the antiferro-
magnetic coupling in Eq. (1). Once this structure is taken into
account, we can identify a CE and local maxima, and extract
the corresponding exponents. The results are similar to those
found for Gz(R, t ); see filled symbols in Fig. 2(b) [70].

Comparing the fitted dynamical exponents βm and βCE

to the predictions of the LSWT [63], we find an excellent
agreement, as shown in Fig. 2(b). While the maxima spread
ballistically, βm � 1, the CE is sub-ballistic with βCE �
βLSWT = 3 − α > 1. This is characteristic of gapped long-
range models, such as the LRTI model in the z-polarized
phase [63]. It confirms the emergence of a weak, slower-than-
ballistic form of causality for 1 < α < 2.

In the local regime, α � 2, we find that both the maxima
and the CE spread ballistically, βm � βCE � 1. The spreading
velocities are, however, different from each other, which is
characteristic of a nonphononic excitation spectrum. The CE
velocity is VCE � 2Vg(k∗), i.e., twice the maximum group
velocity of the spin waves, while that of the maxima is Vm �
2Vϕ (k∗), i.e., twice the phase velocity Vϕ (k) = Ek/k at the
quasimomentum k∗ where the group velocity is maximum; see
Fig. 2(c).

We have also performed calculations for large quenches.
While the LSWT is well justified only for weak quenches,
we have found that the dynamical exponents it predicts are
extremely robust, even for quenches across the critical line.
We found dynamical scaling laws in very good agreement
with those reported on Figs. 2(b) and 2(c), although the sig-
nal is blurred as compared to weak quenches owing to the
proliferation of quasiparticles when the quench amplitude in-
creases [70].

Local magnetization and local quench. We now consider
the dynamics of another quantity, namely the local magne-
tization 〈Ŝz

R(t )〉, and perform a local quench. We initialize
the system in the ground state of the z-polarized phase and
flip the central spin. Figure 3(a) shows a typical TDVP result
for the quantity 1/2 − 〈Ŝz

R(t )〉 versus the time t and the dis-
tance R from the flipped spin, in the quasilocal regime. The
result displays, as in the case of global quenches, a twofold
algebraic structure. Fitting the maxima (dashed blue line) and
the spin edge (SE, solid green line) as previously, we extract
the dynamical exponents βm and βSE plotted in Fig. 3(b) (blue
disks and green diamonds, respectively). The SE follows the
same sub-ballistic scaling law as the CE in the previous case,
βSE � 3 − α (solid green line). In contrast, the maxima of the

FIG. 3. Spreading of the local magnetization for a local quench,
with system size N = 48. (a) TDVP results for the quantity 1/2 −
〈Ŝz

R(t )〉 versus the time and the distance from the flipped spin
for h/J = 50 and α = 1.8. (b) Dynamical exponents βSE (green
diamonds) and βm (blue disks), fitted form results as in (a) and
comparison to the LSWT predictions (solid green and dashed blue
lines). (c) Spreading velocity VSE (green diamonds) and comparison
to the LSWT prediction in the local regime (solid green line).

local spin spreads faster than those of the spin correlations,
and here we find βm < 1, corresponding to a super-ballistic
propagation.

To understand this behavior, let us first recall that the
standard LSWT generically predicts a super-ballistic prop-
agation of the maxima in gapless systems [63]. Here,
although the LRTI model is gapped, the initial state |�0〉 �
|↑ · · · ↑ ↓↑ · · · ↑〉 of the local quench is orthogonal to the
ground state |�GS〉 � |↑ ↑ · · · ↑〉, and thus lives in the first
excited manifold. The ground state and the gap are thus ir-
relevant, and we may expect super-ballistic propagation of
the maxima consistent with the TDVP results. This argument
applies to any observable for such a local quench. More
specifically, the LSWT applied to 〈Ŝz

R(t )〉 for the local quench
yields βm = α − 1, in very good agreement with the TDVP
results; see Fig. 3(b) [70].

In the local regime (α > 2) we find that 〈Ŝz
R̃

(t )〉 propagates
ballistically. Both this property and the SE velocity extracted
from the TDVP calculations are in good agreement with the
LSWT analysis; see Fig. 3(c). Note that in this regime, we do
not observe maxima propagating at a different velocity. This
is also consistent with the LSWT analysis. In the local regime,
the quantity 〈Ŝz

R(t )〉 is the sum of several contributions, each
with a twofold structure but that are in phase quadrature and
cancel each other. A similar effect has been found for density
correlations deep in the Mott insulator phase of the Bose-
Hubbard model [47,70].

Entanglement entropy. We finally study the spreading of
quantum information after the same local quench. It may
be measured via the Rényi entropies of the reduced density
matrix of a block,

Sn(R, t ) = 1

1 − n
log{tr[ρ̂n(R, t )]}, (2)

with n > 0 and ρ̂(R, t ) = ρ̂A = trB(|�(t )〉〈�(t )|) the reduced
density matrix at time t of the subsystem A = [R, R +
1, . . . , N/2]. The position R is measured from the flipped
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FIG. 4. Spreading of the von Neumann entanglement entropy
Sn=1(R, t ) for the same quench as in Fig. 3(a). (a) TDVP results
for h/J = 50, α = 1.8, and a system size N = 96. The solid green
line marks a power law fit to the EE with ε = 0.5, yielding βn

EE =
0.899 ± 0.005. (b) Dynamical exponents for the EE obtain via TDVP
(cyan downwards triangles) and LSWT (magenta upwards triangles),
with error bars corresponding to the variations with respect to the
threshold ε. (c) Dynamical exponents obtained via LSWT for a larger
system, N = 512.

central spin and B denotes the complementary subsystem; see
inset in Fig. 4(a).

Figure 4(a) shows a typical TDVP result for the von Neu-
mann entropy, n → 1 [71], and the same local quench as
in Fig. 3(a). Similar results are found for the other Rényi
entropies [70]. We find that Sn(R, t ) is a monotonic func-
tion of both position and time, and no local maxima such
as those found previously for the correlation function and
the magnetization are observed. This is consistent with a
causal spreading of information and the expectation that the
entanglement entropy decreases with the size of the smaller
partition (A). The entanglement edge (EE) is clearly visible
in Fig. 4(a) and a fit to the algebraic scaling law t ∼ Rβn

EE

allows us to extract the exponent. Varying the threshold in
a wide range, ε ∈ [0.2, 0.8], we find βn

EE ≈ 1 within error
bars, irrespectively of the interaction range; see cyan points
in Fig. 4(b). The error bars correspond to the variation of
βn

EE with ε, which is due to finite-size effects (see below).
Our results imply that the propagation of entanglement is
close to ballistic in both the local and quasilocal regimes.
This contrasts with the behavior of the one- and two-point
observables considered thus far, which exhibit sub-ballistic
causal edges. It is a direct consequence of the fact that the
bipartite entanglement entropy is a highly nonlocal quantity,
which takes into account all entangled pairs on either side of
the bipartition R [39,72–74].

More precisely, we have analytically computed the en-
tanglement entropy within LSWT [70]. The results are in
good agreement with those extracted via TDVP for the same
system sizes; see Fig. 4(b). The ballistic spreading of entan-
glement is further confirmed by the LSWT results obtained
in much larger systems, with significantly smaller error bars;
see Fig. 4(c). Bipartitioning the quenched initial state within
LSWT yields an entanglement Schmidt rank bounded by 2.
This is consistent with our TDVP results at all times and
the saturation of the entanglement entropies to Sn(R, t →
∞) � log(2) � 0.69; see Fig. 4(c). The two eigenvalues of

the reduced density matrix ρ̂A, λ1(R, t ), and λ2(R, t ) = 1 −
λ1(R, t ), can then be computed analytically. In the asymp-
totic limit and for not too small values of R/t , we find
λ2(R, t ) ∝ t

1
2−α ζ ( 3−α

2−α
, R) ∼ (t/R)

1
2−α , with ζ the Hurwitz zeta

function [75,76]. Hence, the n-order Rényi entropy is a func-
tion of the ratio R/t ,

Sn(R, t ) � 1

1 − n
log{λ1(R/t )n + λ2(R/t )n}. (3)

This confirms the ballistic propagation of the entanglement
entropy (βn

EE = 1) consistent with the results of Fig. 4 for n =
1 and other Rényi orders n [70].

Conclusion. Our results show the emergence of a weak
form of causality in the intermediate regime of the long-range
Ising model, characterized by algebraic propagation laws with
exponents that depend on the observables and the range of
interactions. While local spins and spin correlations both have
a sub-ballistic propagation edge, t ∝ Rβ , with β > 1, the
causal region is characterized by local maxima propagating
super-ballistically and ballistically, respectively. The distinc-
tion between the causal edge and the local maxima, which can
show drastically different dynamical behaviors, is thus pivotal
in the characterization of causality in long-range quantum sys-
tems. In contrast, the propagation of entanglement is ballistic
in both the local and quasilocal regimes, and the causal region
is featureless.

These results call for future experimental and theoretical
work. On the one hand, our predictions are directly relevant to
quantum simulators using, for instance, trapped ions, where
the interaction range can be controlled. While analysis of spin
and correlation spreading in first experiments have been lim-
ited by finite-size effects [64,65], systems with more than 50
ions, comparable to the system size used in our simulations,
are now accessible [77] and Rényi entanglement entropies can
now be measured in trapped ion platforms [78,79] and digital
quantum computers [80]. On the other hand, it would be inter-
esting to further test the robustness of the observed algebraic
scaling laws by quantitatively investigating the dependence
(if any) of the exponents on the strength of the quenches,
the phases of the model, and their values in different models,
such as the long-range XY [9,63], Heisenberg [81,82], and
Hubbard [44,58] models, as well as in dimensions higher than
one. This extended analysis could allow the identification of
dynamical universality classes, i.e., models which share the
same algebraic laws for correlations out of equilibrium.
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