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We show an ab initio construction of the energy density functional (EDF) for electron systems using the
functional renormalization group. The correlation energies of the homogeneous electron gas given in our
framework reproduce the exact behavior at high density and agree with the Monte Carlo data in a wide range of
densities. Our analytic technique enables us to get the correlation energies efficiently for various densities, which
realizes the determination of EDF in the local density approximation (LDA) without any fitting for physically
relevant densities. Applied to the Kohn-Sham calculation for the noble gas atoms, our EDF shows comparable
results to those of other conventional ones in LDA.
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Introduction. Density functional theory (DFT) [1] is a suc-
cessful framework to analyze quantum many-body systems
providing an efficient way known as the Kohn-Sham (KS)
scheme [2], and has been employed in various fields, in-
cluding condensed matter physics, quantum chemistry, and
nuclear physics. DFT is often positioned as a first-principles
method. However, most of the energy density functionals
(EDFs), which govern the accuracy of DFT calculations, are
empirically constructed, and the recipe to systematically con-
struct EDF based on microscopic Hamiltonians has not been
established yet [3–5].

In this Letter, we focus on an attempt for the microscopic
construction of the EDF put forward in Refs. [6,7], which we
call the functional-renormalization-group-aided DFT (FRG-
DFT). This is based on the functional renormalization group
(FRG) [8–11] (for reviews, see, e.g., Refs. [12–16]), which
is an established method for quantum many-body systems.
In FRG, a one-parameter exact flow equation for the effec-
tive action, the quantum counterpart of the classical action,
is utilized to nonperturbatively include quantum or thermal
fluctuations. Owing to the fact that the EDF can be defined
by the effective action �[ρ] with the local density ρ [17–19],
accumulated methods in FRG are expected to be applied to
the construction of EDF.

Applications of the FRG-DFT accomplished recently
include analysis of the ground states in lower-than-(1 + 1)-
dimensional systems [20–23] and (2 + 1)-dimensional
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homogeneous electron gas [24], excited states of a (1 + 1)-
dimensional systems [25], and formalism for superfluid
systems [26]. However, there has been no numerical
application to the (3 + 1)-dimensional systems yet, which
must be achieved to establish the FRG-DFT as a practical
method. In particular, as systems for which DFT is frequently
employed, the electron systems are one of the most important
targets.

The aim of this Letter is the microscopic derivation of
the EDF E [ρ] for the (3 + 1)-dimensional spin-unpolarized
electron systems with the aid of the FRG-DFT. As a first step
of the microscopic construction of the EDF, we consider the
exchange-correlation part in the local density approximation
(LDA) and aim at the construction of the correlation part. To
this end, we apply the FRG-DFT to the (3 + 1)-dimensional
homogeneous electron gas (3DHEG), derive the expression
for the correlation energy per particle εcorr by solving the flow
equation analytically by employing the second-order vertex
expansion, and obtain εcorr(rs) as a function of the Wigner-
Seitz radius rs = [3/(4πρ)]1/3. Our εcorr(rs) reproduces the
exact behavior at the high-density limit given by the result of
Gell-Mann–Brueckner resummation εGB

corr(rs) [27] and agrees
with the results of the diffusion Monte Carlo (DMC) calcula-
tions [28–30] in a wide range of densities.

A concern about the application to (3 + 1)-dimensional
systems may be that the coordinate or momentum integrals
in the FRG-DFT calculation become time consuming. For
3DHEG, however, we find that the dimension of the integrals
can be drastically reduced with analytic techniques, which
enables us to obtain εcorr(rs) densely enough to determine the
EDF without fitting for physically relevant densities. This is in
contrast to other conventional LDA EDFs, most of which are
determined based on empirical choice of the fitting function
for a few DMC data points.

Furthermore, applying the KS calculation of the ground
states of the noble gas atoms, we demonstrate that the EDF
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constructed from our FRG-DFT data shows comparable re-
sults to other conventional LDA EDFs.

In this Letter, Hartree atomic units are employed.
FRG-DFT. We briefly summarize the formalism of FRG-

DFT and our analytic results in the 3DHEG, where electrons
and background ions neutralizing the system interact with
each other via the two-body Coulomb interaction U (x) =
1/|x|. Following Refs. [6,7], we consider the evolution when
the interparticle interaction is gradually turned on. Let us
employ a parameterized two-body interaction Uλ(x) with the
evolution parameter λ running from λ = 0 to 1, and set
Uλ=0(x) = 0 and Uλ=1(x) = U (x) to describe the evolution
from the free to the fully interacting systems. Not only the
electron-electron but also the electron-ion and ion-ion interac-
tions are substituted by Uλ(x) so as to keep the system neutral
and avoid divergence caused by the Hartree energy during the
evolution [24].

The key quantity of the FRG-DFT is the effective action
�λ[ρ] for density ρ. To define it, we start from the action
depending on λ in the imaginary-time formalism:

Sλ[ψ,ψ†] =
∫

X
ψ†(Xε )

(
∂τ − ∇2

2

)
ψ (X )

+ 1

2

∫
X,X ′

U2b,λ(X, X ′)ρ̂
(X )ρ̂
(X ′).

Here, we have introduced X = (τ, x) and
∫

X =∫
dτ

∫
dx with imaginary time τ and spatial coor-

dinate x, U2b,λ(X, X ′) = δ(τ − τ ′)Uλ(x − x′), ψ (X ) =
t [ψ↑(X ), ψ↓(X )] standing for the electron field with spin
↑ and ↓, and ρ̂
(X ) = ρ̂(X ) − ne with the density field
ρ̂(X ) = ψ†(Xε )ψ (X ) and ne = 3/(4πr3

s ) being the densities
of electrons and background ions. The second term includes
the electron-electron, electron-ion, and ion-ion interaction
terms. We have also introduced Xε = (τ + ε, x) with an
infinitesimal ε > 0 so that the Hamiltonian corresponding to
Sλ becomes normal ordered [23]. Then, Sλ defines �λ[ρ] as

�λ[ρ] = sup
J

(∫
X

J (X )ρ(X ) − ln Zλ[J]

)
,

where

Zλ[J] =
∫

Dψ Dψ† e−Sλ[ψ,ψ†]+∫
X J (X )ρ̂(X )

is the generating functional for density correlation functions
and ρ(X ) is an arbitrary density. A notable feature of �λ[ρ] is
that it satisfies the variational principle and gives the ground-
state energy and density [17,19], which means that the EDF
Eλ[ρ] is identified with �λ[ρ] as Eλ[ρ] = limβ→∞ �λ[ρ]/β
with the inverse temperature β = ∫

dτ .
The key equation in the FRG-DFT is the evolution equation

determining �λ[ρ] [7,20,21,23,24]:

∂λ�λ[ρ] = 1

2

∫
X,X ′

∂λU2b,λ(X, X ′)[ρ
(X )ρ
(X ′)

+ �
(2)−1
λ [ρ](Xε′ , X ′) − ρ(X )δ(x − x′)], (1)

where ρ
(X ) = ρ(X ) − ne and �
(2)−1
λ [ρ](X, X ′) being the in-

verse of δ2�λ[ρ]
δρ(X ) δρ(X ′ ) , which satisfies∫

X ′′
�

(2)−1
λ [ρ](X, X ′′)

δ2�λ[ρ]

δρ(X ′′) δρ(X ′)
= δ(X − X ′).

Also, Xε′ is defined in the same manner as Xε, but ε′ → 0 limit
is taken after ε → 0 so that �

(2)−1
λ [ρ](Xε′ , X ′) can be treated

as the density correlation function [23]. The crucial point of
Eq. (1) is that it is written in a closed form of �λ[ρ], which
provides systematic schemes for the derivation of �λ[ρ].

Practically, the functional differential equation [Eq. (1)]
needs to be converted to some numerically solvable equations.
Here, we introduce the vertex expansion [6,7]: The functional
Taylor expansion around a homogeneous density ρ(X ) = ne

is applied to Eq. (1), which yields a hierarchy of differential
equations for density correlation functions [21,23–25]. We
consider the expansion up to the second order and truncate
higher-order terms. The equations up to the second order in
the momentum-space representation read

∂λεgs,λ = 1

2ne

∫
p
∂λŨλ(p)

[∫
ω

eiωε′
G̃(2)

λ
(P) − ne

]
, (2)

∂λG̃(2)
λ

(P) = −∂λŨλ(p)
[
G̃(2)

λ
(P)

]2 + Cλ(P), (3)

where Ũλ(p) is the Fourier transform of Uλ(x) and εgs,λ =
limβ→∞ �λ[ne]/(βN ) with N = ne

∫
dx being the total

particle number is the ground-state energy per particle.
Here, we have introduced P = (ω, p) and

∫
P = ∫

ω

∫
p =∫

dω/(2π )
∫

d p/(2π )3 with the Matsubara frequency ω and
the spatial momentum p,

Cλ(P) = −1

2

∫
P′

∂λŨλ(p′)
[
G̃(4)

λ (P′,−P′, P)

− G̃(2)
λ

(0)−1G̃(3)
λ (P′,−P′)G̃(3)

λ
(P,−P)

]
, (4)

and G̃(n)
λ (P1, . . . , Pn−1) being the connected density corre-

lation function. Since Cλ(P) is composed of higher-order
correlation functions, an approximation for it is required.
Here, we employ the approximation Cλ(P) ≈ Cλ=0(P), with
which Eqs. (2) and (3) can be solved analytically when Uλ(x)
is chosen as Uλ(x) = λUλ=1(x) [24].

Extracting εcorr from εgs,λ=1, we obtain

εcorr(rs) = 1

2ne

∫
P

[ln f (AP, BP ) − AP], (5)

which plays the central role in our construction of the EDF.
Here, we have introduced f (x, y) = cosh y + (x/y) sinh y,
AP := Ũ (p)G̃(2)

λ=0(P), and BP := [Ũ (p)Cλ=0(P)]
1/2

, in which
Ũ (p) = 4π/p2 is the Coulomb interaction in the momentum
representation and Cλ=0(P) is evaluated from the connected
density correlation function in the free system:

G̃(n)
λ=0(P1, . . . , Pn−1) = −2

∑
σ∈Sn−1

∫
P′

n−1∏
k=0

G̃(2)
F,0

(
k∑

i=1

Pσ (i) + P′
)

,

with the symmetric group Sn−1 of order n − 1, the two-
point propagator of free fermions G̃(2)

F,0(P) = [iω − ξ (p)]−1,
ξ (p) := p2/2 − p2

F/2, and the Fermi momentum pF =
(9π/4)1/3/rs.
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Before ending the summary of the formalism, we comment
on the behavior of Eq. (5) at the high-density limit rs → 0.
Through the use of the scaling behavior

G̃(2)
λ=0(P)

∣∣
rs

= r−1
s G̃(2)

λ=0(P)
∣∣
rs=1,

Cλ=0(P)|rs
= Cλ=0(P)

∣∣
rs=1,

with the dimensionless momentum P = (r2
s ω, rs p), the ex-

pansion of Eq. (5) with respect to rs is obtained. From the
expansion, one finds that the exact behavior εGB

corr(rs) is repro-
duced at rs → 0.

Reduction of dimension of multiintegral. A difficulty in the
three-dimensional system may be that the numerical evalua-
tion of multiintegrals with respect to momenta is too costly
to get εcorr(rs) for various rs. We find that this can be circum-
vented, since the dimension of the integral in Eq. (4) can be
drastically reduced in an analytic manner.

Using the expression for G̃(n)
λ=0(P1, . . . , Pn−1) given in the

sentence below Eq. (5) and performing the frequency integral,
Eq. (4) becomes

Cλ=0(P) = 2
∑
s=0,1

(−1)s+1
∫

p′,p′′
Ũ (p′ − p′′ − sp)θp′θp′′

× [D(ω, p, p′ − sp) − D(ω, p, p′′)]2
, (6)

where

D(ω, p, p′) = [iω − ξ (p′ + p) + ξ (p′)]−1
,

and θp = θ ( − ξ (p)) with the Heaviside step function θ (x).
By using Ũ (p) = ∫

dx eip·x/|x| and employing the cylindrical
coordinates in which the direction of the longitudinal axis (z
axis) is parallel to p, Eq. (6) is rewritten as follows:

Cλ=0(P) =
∑
s=0,1

(−1)s+1

2π3

∫ pF

−pF

d p′
z

∫ pF

−pF

d p′′
z Pr (p′

z )Pr (p′′
z )

× [D′(ω, p, p′
z ) − D′(ω, p, p′′

z − sp)]2

× I (Pr (p′
z ), Pr (p′′

z ), |p′
z − p′′

z + sp|). (7)

Here, we have introduced Pr (pz ) = (p2
F − p2

z )1/2,

D′(ω, p, p′
z ) = (iω + pp′

z + p2/2)−1, and

I (a, b, c) =
∫ ∞

0
dr

1

r
J1(ar)J1(br)K0(cr),

where J1(x) and K0(x) are the Bessel function of the first
kind and the modified Bessel function of the second kind,
respectively. Then, the integral in I (a, b, c) can be performed
analytically [31]:

I (a, b, c) = l2
1 (a, b, c) + b2 ln

[
1 − l2

1 (a, b, c)

b2

]

+ c2 ln

[
1 − l2

1 (a, b, c)

c2

]
, (8)

where

l1(a, b, c) = 1

2

[√
(b + c)2 + a2 −

√
(b − c)2 + a2

]
.

Finally, Eq. (7) together with Eq. (8) shows that only a double
integral is required for the calculation of Cλ=0(P). Needless

FIG. 1. Correlation energy par particle, εcorr, of the 3DHEG de-
rived by the FRG-DFT method as a function of rs. The results derived
by the Gell-Mann–Brueckner resummation and the diffusion Monte
Carlo (DMC) calculations are also shown. The DMC results are
obtained by subtracting the kinetic and exchange energies [32,33]
from the total energies given in Refs. [28–30].

to say, the isotropy reduces the dimension of the integral in
Eq. (5).

Results of the correlation energy. The reduction of the
dimension of the integral saves the time for the numerical
calculation and enables one to obtain εcorr for many rs. The
calculation was carried out on 65536 grid points with the
logarithmic mesh in rs ∈ [10−6 a.u., 100 a.u.).

Figure 1 shows εcorr(rs) obtained by the FRG-DFT together
with εGB

corr(rs) and the DMC results [28–30]. As expected from
our analytical discussion, one can see the FRG-DFT result re-
produces the exact behavior at the high-density limit given by
εGB

corr(rs). The FRG-DFT result is also consistent with the DMC
results in a wide range of rs, and in particular the agreement
becomes better as the density increases: The deviations from
the results in Ref. [28] are about 2.0 % at rs = 1 a.u., 6.7 % at
rs = 50 a.u., and 17 % at rs = 100 a.u.

Now we have shown that εcorr(rs) can be obtained in the
framework of the FRG-DFT and becomes accurate as the
density increases, which is one of the main results of this
Letter. In the remaining part, we attempt a construction of the
EDF by use of our εcorr(rs).

Construction of the energy density functional. Since εcorr

are obtained very densely for various rs in our scheme, we can
construct the LDA EDF ELDA

corr [ρ] = ∫
dx ρ(x)εcorr(rs(ρ(x)))

without any fitting for physically relevant densities. This is in
sharp contrast to other conventional EDFs, such as VWN [34],
PZ81 [35], and PW92 [36], which are determined by fitting
the few DMC data obtained by Ceperley and Alder [28].

Our functional, which is referred to as the FRG-numerical-
table functional (FRG-NT), is constructed as follows: In
rs ∈ [10−6 a.u., 100 a.u.), εcorr(rs) are determined by the
interpolation of the FRG-DFT data. For simplicity, we
employ the linear interpolation; the results hardly de-
pend on the choice of the interpolation function. In rs <

10−6 a.u., εcorr(rs) is substituted by εGB
corr(rs). The FRG-DFT

data are extrapolated to rs � 100 a.u. by a fitting function
εcorr(rs) = γ /(1 + β1

√
rs + β2rs) [35]. The fitting parame-

ters are chosen to be γ = 0.0378052, β1 = −0.801035, and

L012015-3



TAKERU YOKOTA AND TOMOYA NAITO PHYSICAL REVIEW RESEARCH 3, L012015 (2021)

TABLE I. Parameters for FRG-PZ. For comparison, the param-
eters of PZ81 [35] are also shown. All the data are shown in the
Hartree atomic units.

PZ81 [35] FRG-PZ

C 0.0020 0.00173055
D −0.0116 −0.0100569
γ −0.1423 −0.175617
β1 1.0529 1.67669
β2 0.3334 0.348219

β2 = −0.0306778, which are obtained by fitting the data in
95 a.u. < rs < 100 a.u.

A remark is in order here: The evaluation of
ε′

corr(rs) = dεcorr(rs)/drs appearing in the KS potential
δELDA

corr [ρ]/δρ(x) = [εcorr(rs) − (rs/3)ε′
corr(rs)]rs=rs (ρ(x)) with

the numerical differentiation may cause numerical errors.
We evade this by performing the analytic differentiation of
Eq. (5):

ε′
corr(rs) = 1

2ners

∫
P

[g(AP, BP ) − 2 ln f (AP, BP )], (9)

where g(x, y) = x + (x cosh y + y sinh y)/ f (x, y). To per-
form the differentiation, we have used G̃(2)

λ=0(P)|rs
=

r−1
s G̃(2)

λ=0(P)|rs=1, Cλ=0(P)|rs
= Cλ=0(P)|rs=1 and rewritten

Eq. (5) in terms of rs and quantities independent of rs. We
calculate ε′

corr(rs) on the same grid for rs as εcorr(rs), and de-
termine ε′

corr(rs) for arbitrary rs in the same manner as εcorr(rs).
Additionally, we prepare a functional, which we name

FRG-PZ, by fitting the FRG-DFT data with the same function
as PZ81:

εcorr(rs) =
{

A ln rs + B + Crs ln rs + Drs rs < 1 a.u.,

γ /(1 + β1
√

rs + β2rs) rs � 1 a.u.,

(10)
for the purpose of comparing our functionals to PZ81 and
discussing the origin of the deviation between EDFs. Here,
A = 0.0311 and B = −0.0480 reproduce εGB

corr(rs) at rs → 0.
The remaining parameters C, D, γ , β1, and β2 are related to
each other through the continuum conditions for εcorr(rs) and
ε′

corr(rs) at rs = 1 a.u:

γ = (1 + β1 + β2)(B + D), (11a)

β2 = −2(A + C)(1 + β1) + Bβ1 + 2D + 3β1D

2(A + B + C + 2D)
. (11b)

Table I lists the values of the parameters obtained by the fitting
with the conditions Eqs. (11a) and (11b).

Benchmark test of the functionals. We apply our EDF to the
KS calculation of the ground-state energies of noble gas atoms
and compare with other conventional EDFs, such as VWN
[34], PZ81 [35], PW92 [36], Chachiyo [37], revChachiyo
[38], and GGA-PBE [39]. The numerical calculation was car-
ried out by use of ADPACK [40].

Figure 2 shows the ground-state energies Egs of Ne, Ar,
Kr, Xe, and Rn atoms obtained by each EDF as ratios to
the results of PZ81 Egs

PZ81. One can see that the functionals
constructed from the FRG-DFT show comparable results to
those of other LDA EDFs for every atom. On the other hand,

FIG. 2. Ratios of the ground-state energies to that given by PZ81
shown as functions of the atomic number Z .

the GGA-PBE results are quite different from those of the
LDA EDFs. This suggests that the results of our functional
reside close to those of the LDA EDF determined by the exact
correlation energy per particle for 3DHEG εexact

corr (rs) as much
as other conventional LDA EDFs, and the differences between
our functional and other LDA EDFs are insignificant for the
accuracy in comparison with the effect of the ignorance of the
gradient.

Origins of the difference among functionals. To further
understand the difference between LDA EDFs, we investigate
the difference of the energy with fixing the density, inspired
by the notion of the functional-driven error [41]. Figure 3
shows 
Egs

F = E [ρPZ81
gs ] − EPZ81[ρPZ81

gs ], i.e., the deviation of
each EDF E [ρ] from PZ81 EPZ81[ρ] at ρ(x) = ρPZ81

gs (x) being
the ground-state density obtained by PZ81. One can see that
the deviations among EDFs are comparable even at the same
density. In the case of LDA, this deviation originates from
εcorr(rs), the error of which is expected to be attributed to
two parts: the reference-driven error and the fitting-driven
error, i.e., the errors caused by the choice of the reference
data and the fitting functions, respectively. By recasting the
difference between EDFs in terms of these two errors, further

FIG. 3. Deviations of energies from that given by PZ81 at a fixed
density ρPZ81

gs (x) for each EDF shown as the ratio to the ground-state
energy obtained by the EDF.
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FIG. 4. Dependence on rs of 
εFRG
corr,ref − 
εDMC

corr,ref (Reference),

εPZ81

corr,fit (Fitting (PZ81)), 
εVWN
corr,fit (Fitting (VWN)), and 
εPW92

corr,fit (Fit-
ting (PW92)).

understanding of the origin of 
Egs
F shown in Fig. 3 will be

obtained.
We roughly assume that εi

corr(rs) standing for εcorr(rs) used
for functional i (= VWN, PZ81, PW92, FRG-NT, FRG-PZ)
is written as

εi
corr(rs) = εexact

corr (rs) + 
εi
corr,ref(rs) + 
εi

corr,fit(rs),

with the reference-driven error 
εi
corr,ref(rs) and fitting-driven

error 
εi
corr,fit(rs). Since FRG-NT does not rely on any fitting

function,


εFRG-NT
corr,fit ≡ 0.

The fact that the same fitting scheme is employed for FRG-PZ
and PZ81 leads to


εFRG-PZ
corr,fit (rs) = 
εPZ81

corr,fit(rs).

We also have


εi
corr,ref(rs) =

{

εDMC

corr,ref(rs) (i = VWN, PZ81, PW92),


εFRG
corr,ref(rs) (i = FRG-NT, FRG-PZ),

where 
εDMC
corr,ref(rs) and 
εFRG

corr,ref(rs) are errors stemming from
the choice of DMC and FRG data, respectively. By use of
these conditions, 
εi

corr,fit(rs) and 
εFRG
corr,ref(rs) − 
εDMC

corr,ref(rs)
are estimated from εi

corr(rs).

Figure 4 shows 
εi
corr,fit(rs) and 
εFRG

corr,ref(rs) −

εDMC

corr,ref(rs). In rs � 10 a.u., the use of fitting affects the
value of εcorr(rs) more than the choice of the reference data
does when these quantities have comparable magnitude in
rs � 10 a.u. This may explain why the comparable results for
each functional are obtained in Fig. 3, since rs � 10 a.u. is
physically relevant for atoms.

Conclusion. We presented an ab initio construction of
the energy density functional (EDF) for three-dimensional
electron systems using the functional-renormalization-group-
aided density functional theory (FRG-DFT). The derived
correlation energies of the homogeneous electron gas agree
with the Monte Carlo results in a wide range of densities,
reproducing the exact behavior given by the Gell-Mann–
Brueckner resummation at the high-density limit. Using the
FRG-DFT data obtained densely for various densities, we
construct the EDF in the local density approximation (LDA)
without using any fitting function for physically relevant
densities. Applied to the KS calculation of the ground-state
energies of the noble gas atoms, our functional shows compa-
rable results to other conventional ones in LDA. Our results
show that FRG-DFT can become a practical method con-
tributing to the nonempirical construction of EDFs of realistic
quantum many-body systems.

Although we have focused on the case of LDA in this
Letter, our formalism is also applicable for the construction of
EDFs incorporating the effect of the gradient of density. There
are some technical ideas to realize the inclusion of gradient
effects, such as the use of the weighted density approximation
or the derivative expansion, which has been developed in the
context of FRG. Based on these ideas, we believe that the
construction of EDFs beyond LDA without any empirical
parameter is achievable. Our formalism and procedure can
also be naturally extended to the case of constructing EDFs in
the local spin density approximation, which will be presented
in a forthcoming paper.
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