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Direct evaluation of measurement uncertainties by feedback compensation of decoherence
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It is shown that measurement uncertainties can be observed directly by evaluating the feedback compensation
of the decoherence induced by the measured system on a probe qubit in a weak interaction occurring between
state preparation and measurement. The uncompensated decoherence is described by the measurement uncertain-
ties introduced by Ozawa in Phys. Rev. A 67, 042105 (2003), confirming the empirical validity of measurement
theories that combine the initial information of the input state with the additional information provided by each

measurement outcome.
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As new quantum technologies are being developed, fun-
damental questions may obtain new and unexpected practical
significance. An interesting question concerns the measure-
ment error associated with the observation of a physical
property in an uncertainty limited measurement [1-3]. Since
it is not possible to go back in time to perform a precise mea-
surement of the target observable, the uncertainty principle
itself seems to prevent any observable effects of the measure-
ment error. A mathematical definition of the error based on
the representation of values by their corresponding operators
was proposed by Ozawa [4], but this mathematical definition
has been criticized precisely because it refers to hypotheti-
cal properties that do not appear in the observable statistics
of quantum states [5-9]. In fact, the insistence on concepts
considered to be “useful” in quantum information protocols
might have done more harm than good in the objective and
scientific discussion of the issue. Specifically, the consistency
of Ozawa’s theory with the results of weak measurements and
the fact that the results of error-free measurements can be
anomalous weak values have not been sufficiently recognized
as convincing evidence in favor of either Ozawa’s theory or
the theory of weak values, possibly because it is suspected that
both theories might be misrepresentations of quantum inter-
ference effects [10-15]. It is therefore extremely important to
consider the possibility that some practical effects associated
with a physical property between state preparation and mea-
surement might have been overlooked. In the following, it will
be shown that this is indeed the case: Ozawa’s uncertainties
describe the experimentally observable fluctuations of weak
forces in a quantum interaction, with the optimal estimate
given by the corresponding weak values.
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Taking inspiration from recent implementations of quan-
tum feedback protocols [16-21], the essential idea is to use
the outcome of a measurement as a feedback signal on a
quantum probe that weakly interacted with the system be-
tween state preparation and measurement. In this case, the
uncertainty of the target observable causes a small but de-
tectable amount of decoherence in the probe system. This
decoherence corresponds to a random unitary operation, the
parameter of which is determined by the value of the uncertain
observable. If more information on that observable is obtained
in a quantum measurement, this information can be used to
implement negative feedback to compensate the decoherence
suffered by the probe. It is then possible to directly observe the
uncertainty of the quantum measurement in the amount of un-
compensated decoherence of the probe. A standardized setup
for feedback compensation of decoherence using a qubit as a
probe can thus be used to implement an operational definition
of measurement uncertainty. The measurement uncertainty
determined in this standardized manner is a technically rel-
evant property of the quantum measurement that provides
practical information on the performance of the measure-
ment within a larger quantum circuit. The method proposed
here thus provides an objective benchmark test of measure-
ment uncertainties, independent of any additional theoretical
assumptions.

In the following analysis, I show that the uncompensated
decoherence in the feedback compensation scenario described
above is given by the Ozawa uncertainty of the measurement.
The optimal definition of the measurement outcomes is given
by the weak values of the target observable for each measure-
ment outcome [10,12,13]. Complete feedback compensation
is possible when the weak values of pure state inputs are
all positive and real. Weak values thus provide an accurate
representation of quantum fluctuations in the absence of direct
measurements of the fluctuating observable. The empirical
approach introduced in the present paper demonstrates not
only that Ozawa uncertainties correctly describe the fluctua-
tions of weak forces associated with the target observable but
also that weak values provide the optimal estimate of these
weak forces, revealing that the dependence of weak values on
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FIG. 1. Feedback compensation of the decoherence in a probe
qubit caused by a weak interaction with the noisy property A of a
quantum system. The value of the property A is estimated based on
the measurement outcome m and a corresponding negative feedback
of —A(m) is applied to the probe qubit. The amount of decoherence
observed in the output of the probe qubit is a directly observable
quantitative measure of the error in the estimate A(m) of A.

the measurement context is a fundamental characteristic of all
quantum fluctuations [22,23].

The scenario to be considered is shown in Fig. 1. A probe
qubit is prepared in an eigenstate of X, which means that it is
now maximally sensitive to phase shifts generated by the op-
erator Z. The probe qubit then interacts weakly with the target
observable A of the quantum system under investigation. The
interaction is described by the unitary operator

Osp = exp (—i%A ® z) (1)

The strength of the interaction is given by the control param-
eter 0. In general, the interaction will be realized by applying
external controls that define a time-dependent Hamiltonian.
The control parameter o is defined by the integral of this
time-dependent evolution of the interaction and its value can
be controlled by the same means that are used to control
the precise time dependence of the interaction. It is therefore
possible to vary the strength of the interaction to ensure that
only the lowest order terms in o contribute.

The interaction with the system depends on the value of
the property A in the input state pg of the system. In general,
the statistics of A can be represented by the probabilities of
the eigenstates of A in the state ps. The uncertainty associ-
ated with this probability distribution results in decoherence,
since the phase changes in the probe qubit superposition of
Z = —1 and Z = +1 depend on the random eigenvalue A, of
A. Without any feedback, the uncompensated decoherence can
be expressed by

K)ouw) =Y (alps laycos (224,). @

For sufficiently small values of o, the decoherence is approx-
imately determined by the uncertainty AA? of the property A
in the input state pg. If the expectation value of A is zero,

N 202 2
1 — (X)(out) ¥ —-AA". 3)
h
The decoherence in the probe qubit thus provides us with

direct evidence of the statistical fluctuations of the property
A in the system state Dg.

We can now investigate whether the outcome m of a
quantum measurement performed on the system after its inter-
action with the probe qubit contains any information about the
quantity A before the measurement was performed. Since we
are only interested in the relation between the measurement
outcome m and the quantum statistics before the measure-
ment, it is sufficient to describe the measurement by its
positive operator valued measure {E (m)} which summarizes
the measurement interaction and the readout of the meter in
a single operator acting on the Hilbert space of the system. It
is important to remember that the original system state is not
available after this measurement because of the disturbance
caused by the interaction. If there had not been a weak interac-
tion between the probe qubit and the system, the measurement
outcome m would be the only experimental evidence of the
value of A in the system and there would be no possibility of
knowing how reliable an estimate A(m) of A based on m was.
However, even a weak interaction between the system and the
probe qubit creates a correlation between the phase rotation of
the qubit and the value of A in the system. It is therefore possi-
ble to evaluate the precision of an estimate A(m) by using the
value to compensate the effects of the interaction on the probe
qubit. In particular, the effects of the interaction can only be
undone completely if the estimate A(m) provided the correct
value of A. In this case, the application of a corresponding
unitary operation on the probe qubit will restore maximal
phase coherence to the probe. Any errors in the estimate A(m)
can be observed as phase fluctuations that remain after the
decoherence of the qubit has been compensated by a unitary
operation based on that estimate.

The experimental test of the uncertainty of the estimate
of A is shown in Fig. 1. It consists of a feedback signal
that compensates the effects of the estimated value A(m) on
the probe qubit by implementing the inverse of the unitary
associated with this value,

07(m) = exp {—i%[—A(m)]Z}. (4)

We can combine this operation together with the original in-
teraction to arrive at a more direct expression of the feedback
compensation,

O7(m)0sp = exp [—i%{A —Amie2).  ©)

Since the unitary operation now depends on the measurement
outcome, it is necessary to sum over all the possible outcomes
m to find out the net effect of the different feedback operations
associated with the estimates A(m). The modified expectation
value of the probe qubit output is then given by

(X)(out) = Y " Tr((£(m) @ X)0z(m)Usp(ps ® px—1)

x U0 (m)). (6)

This equation is greatly simplified by the fact that the unitary
operators commute with the Z operator of the probe qubit.
Since the operator X exchanges the eigenstates of Z, the
equation is a sum of two complex conjugate terms in which
opposite eigenvalues of Z appear in the unitary operations
between which the input state is sandwiched. The result is an
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expression that refers only to the Hilbert space of the system,

(X)(out) = Re< Xm: Tr(Es(m) exp {i%[A — A(m)] }/35

X exp{i%[ﬁ—A(m)]})). @)

Note the similarity of this equation with Eq. (2), where the
sum ran over eigenstates of A. In the feedback-compensated
result, the sum must run over the actual measurement out-
comes, and the value of A is still represented by an operator.
Equation (7) evaluates the fluctuations of A without assigning
error-free values of A to each outcome m. For sufficiently
weak interactions, the decoherence that remains after feed-
back compensation is given by

A 202 N " o
L= (R)(out)~ - 37 Tr{Es(m)IA — AGm)IpslA — Atm)))
m (8)

The uncompensated decoherence represents the amount by
which the estimates A(m) differ from the actual phase shifts
induced by the operator A in the interaction with the probe
qubit. The amount of uncompensated decoherence can there-
fore be used to evaluate the error of the estimates A(m).
Comparison with Eq. (3) shows that the quantitative error
corresponds to a quantum uncertainty €4 of the measurement
outcomes A(m) given by

&x =Y _Tr{Es(m)A — Am)IpsIA — A(m)]}.  (9)

m

Remarkably, this formula is identical to the general definition
of measurement errors given by Ozawa in Ref. [4], even
though it describes the directly observable amount of deco-
herence in a feedback compensation scenario. Specifically,
the estimates A(m) represent the measurement results asso-
ciated with the measurement outcomes m originally obtained
by measurements of the meter in Ozawa’s theory. It may be
important to note that Ozawa’s original formulation represents
the measurement by a readout operator acting on a meter sys-
tem after a measurement interaction. Equation (9) is obtained
by eliminating the meter system. This is done by summing
over the eigenstates |m) of the readout in the meter system,
where the operators Eg(m) represent the effects of the mea-
surement interaction on the system conditioned by the readout
of A(m) in the meter. A similar form of Ozawa uncertainties
is commonly used in discussions of joint measurements and
the relation between Ozawa uncertainties and weak values
[10,12,24].

The present feedback scenario is consistent with the ex-
planation of Ozawa uncertainties by Hall in Ref. [25], where
it was shown that the measurement result of Ozawa’s theory
corresponds to an estimate based on the initial information
represented by the input state pg and the final information
represented by the outcomes m of the measurement {E(m)).
However, Hall’s theory did not describe any experimental
consequences of the errors in the estimate. It was generally
assumed that discussions of measurement uncertainties had
to be based on theoretical speculations regarding the unob-
servable error-free values of the physical property A [9,26].
With regard to Ozawa’s proposal, all previous experimental

confirmations were based on theoretical arguments regard-
ing the measurement outcomes obtained with input states
different from the one for which the uncertainty was de-
termined [12,27-29]. It is therefore extremely important to
recognize that, contrary to previous expectations, the present
result shows that Ozawa uncertainties characterize an actual
physical phenomenon associated with a specific combination
of input state pg and measurement {E (m)}. The Ozawa uncer-
tainty of any given measurement is experimentally observable
as uncompensated decoherence following a feedback com-
pensation based on the measurement result A(m) associated
with an outcome of m of the measurement performed on the
system after its interaction with the probe qubit.

There are a number of very important consequences of this
result relating to the previously known properties of Ozawa
uncertainties [10,13,30]. Most importantly, the measurement
results A(m) assigned to the outcomes m can be optimized to
reduce the decoherence to its minimal value. The result of this
optimization corresponds to an assignment of weak values to
the measurement outcomes,

Tr(Ek(m)A/ss)). (10)

Tr(Es(m)ps)

Weak values therefore provide the best estimate for a compen-
sation of decoherence induced by the quantum fluctuations
of A. Note that this result is obtained from the analysis of a
feedback compensation procedure that is independent of the
original definitions of weak values. The emergence of weak
values in the present context shows that weak values represent
empirically valid evaluations of a physical quantity between
state preparation and measurement. They can be defined op-
erationally without any interpretational assumptions about the
physics of quantum measurements, revealing a serious flaw in
arguments that seek to explain weak values in terms of quan-
tum interference effects associated with weak measurements
[14,15]. In addition, the Ozawa uncertainty €4 associated with
the weak values A, (m) provides empirical evidence of how
well these weak values describe the quantity A between state
preparation and measurement. As shown in previous works,
the Ozawa uncertainty drops to zero for projective measure-
ments of pure states if all of the weak values are real,

A(m) = M (11)

(m | ¥)
This condition is satisfied by a wide range of projective
measurements {|m)}, indicating that error-free measurements
can be very different from the conventional projections onto
eigenstates of the operator A. The fluctuations of A in |/) are
not defined by the eigenvalues of A and their probabilities, but
take contextual values depending on the type of measurement
made to complement the information about A already avail-
able in |¢/). This observation may be of particular importance
when the decoherence effects of different noncommuting ob-
servables need to be compensated at the same time. In this
case, the uncertainty relations given by Ozawa in Ref. [4] and
later improved upon by Branciard in Ref. [24] provide the
correct limit of a joint compensation protocol. The analysis
of feedback compensation thus reveals how quantum contex-
tuality works in a wide range of practically relevant situations.

Aopt. (m) = Re(

exa =0 for
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In conclusion, the analysis presented above shows that
feedback compensation of decoherence caused by sufficiently
weak interactions of the system with a probe qubit can be
used as a direct experimental evaluation of the measurement
uncertainty for the outcomes A(m) assigned to each indi-
vidual result m. The analysis of the feedback compensation
scenario shows that the theory derived by Ozawa correctly
describes the amount of uncompensated decoherence. Differ-
ent from previous experimental tests of Ozawa uncertainties
[12,27-29], no tomographic reconstructions are needed and
the experimental evidence permits no other interpretation ex-
cept that the weak force exerted by the system on the probe

qubit fluctuates with the value given by the Ozawa uncer-
tainties. In addition, the optimal feedback is obtained when
the weak values associated with each measurement result are
used as outcomes of the measurement, confirming weak val-
ues as the optimal estimates of physical properties between
preparation and measurement. In the pure state limit where
the Ozawa uncertainties drop to zero, weak values provide
an accurate description of the contextual quantum fluctua-
tions of an observable A [10,13,30]. Feedback compensation
of decoherence thus confirms the empirical validity of both
Ozawa’s generalization of uncertainty and of weak values
without requiring any untestable assumptions.

[1] W. Heisenberg, Uber den anschaulichen Inhalt der quanten-
theoretischen Kinematik und Mechanik, Z. Phys. 43, 172
(1927).

[2] P. Busch, T. Heinonen, and P. Lahti, Heisenberg’s uncertainty
principle, Phys. Rep. 452, 155 (2007).

[3] E. Benitez Rodriguez and L. M. Arevalo Aguilar, A survey of
the concept of disturbance in quantum mechanics, Entropy 21,
142 (2019).

[4] M. Ozawa, Universally valid reformulation of the Heisenberg
uncertainty principle on noise and disturbance in measurement,
Phys. Rev. A 67, 042105 (2003).

[5] Y. Watanabe, T. Sagawa, and M. Ueda, Uncertainty relation
revisited from quantum estimation theory, Phys. Rev. A 84,
042121 (2011).

[6] P. Busch, P. Lahti, and R. F. Werner, Proof of Heisenberg’s
Error-Disturbance Relation, Phys. Rev. Lett. 111, 160405
(2013).

[7] J. Dressel and F. Nori, Certainty in Heisenberg’s uncertainty
principle: Revisiting definitions for estimation errors and dis-
turbance, Phys. Rev. A 89, 022106 (2014).

[8] P. Busch, P. Lahti, and R. F. Werner, Colloquium: Quantum
root-mean-square error and measurement uncertainty relations,
Rev. Mod. Phys. 86, 1261 (2014).

[9] L. A. Rozema, D. H. Mahler, A. Hayat, and A. M. Steinberg,
A note on different definitions of momentum disturbance,
Quantum Stud.: Math. Found. 2, 17 (2015).

[10] A. P. Lund and H. M. Wiseman, Measuring measurement-
disturbance relationships with weak values, New J. Phys. 12,
093011 (2010).

[11] J. Lee and I. Tsutsuim, Uncertainty relations for approximation
and estimation, Phys. Lett. A 380, 2045 (2016).

[12] M. Iinuma, Y. Suzuki, T. Nii, R. Kinoshita, and H. F. Hofmann,
Experimental evaluation of nonclassical correlations between
measurement outcomes and target observable in a quantum
measurement, Phys. Rev. A 93, 032104 (2016).

[13] G. S. Thekkadath, F. Hufnagel, and J. S. Lundeen, Determining
complementary properties using weak-measurement: Uncer-
tainty, predictability, and disturbance, New J. Phys. 20, 113034
(2019).

[14] J. Dressel, Weak values as interference phenomena, Phys. Rev.
A91,032116 (2015).

[15] D. Sokolovski, Weak measurements measure probability am-
plitudes (and very little else), Phys. Lett. A 380, 1593
(2016).

[16] R. Vijay, C. Macklin, D. H. Slichter, S. J. Weber, K. W. Murch,
R. Naik, A. N. Korotkov, and I. Siddiqi, Stabilizing Rabi os-

cillations in a superconducting qubit using quantum feedback,
Nature (London) 490, 77 (2012).

[17] A. Bolund and K. Molmer, Stochastic excitation during the de-
cay of a two-level emitter subject to homodyne and heterodyne
detection, Phys. Rev. A 89, 023827 (2014).

[18] A. Soare, H. Ball, D. Hayes, X. Zhen, M. C. Jarratt, J.
Sastrawan, H. Uys, and M. J. Biercuk, Experimental bath engi-
neering for quantitative studies of quantum control, Phys. Rev.
A 89, 042329 (2014).

[19] H. Wakamura, R. Kawakubo, and T. Koike, State protection by
quantum control before and after noise processes, Phys. Rev. A
96, 022325 (2017).

[20] S. Mavadia, V. Frey, J. Sastrawan, S. Dona, and M. J. Biercuk,
Prediction and real-time compensation of qubit decoherence via
machine learning, Nat. Commun. 8, 14106 (2017).

[21] M. Naghiloo, D. Tan, P. M. Harrington, J. J. Alonso, E. Lutz,
A. Romito, and K. W. Murch, Heat and Work Along Individual
Trajectories of a Quantum Bit, Phys. Rev. Lett. 124, 110604
(2020).

[22] J. Tollaksen, Pre- and post-selection, weak values, and contex-
tuality, J. Phys. A: Math. Theor. 40, 9033 (2007).

[23] H. F. Hofmann, Contextuality of quantum fluctuations charac-
terized by conditional weak values of entangled states, Phys.
Rev. A 102, 062215 (2020).

[24] C. Branciard, Error-tradeoff and error-disturbance relations for
incompatible quantum measurements, Proc. Natl. Acad. Sci.
U.S.A. 110, 6742 (2013).

[25] M. J. W. Hall, Prior information: How to circumvent the stan-
dard joint-measurement uncertainty relation, Phys. Rev. A 69,
052113 (2004).

[26] J. M. Renes, V. B. Scholz, and S. Huber, Uncertainty relations:
An operational approach to the error-disturbance trade-off,
Quantum 1, 20 (2017).

[27] J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa, and Y.
Hasegawa, Experimental demonstration of a universally valid
error-disturbance uncertainty relation in spin measurements,
Nat. Phys. 8, 185 (2012).

[28] F. Kaneda, S.-Y. Baek, M. Ozawa, and K. Edamatsu, Exper-
imental Test of Error-Disturbance Uncertainty Relations by
Weak Measurement, Phys. Rev. Lett. 112, 020402 (2014).

[29] G. Sulyok and S. Sponar, Heisenberg’s error-disturbance uncer-
tainty relation: Experimental study of competing approaches,
Phys. Rev. A 96, 022137 (2017).

[30] H. F. Hofmann, Uncertainty limits for quantum metrology ob-
tained from the statistics of weak measurements, Phys. Rev. A
83, 022106 (2011).

L012011-4


https://doi.org/10.1007/BF01397280
https://doi.org/10.1016/j.physrep.2007.05.006
https://doi.org/10.3390/e21020142
https://doi.org/10.1103/PhysRevA.67.042105
https://doi.org/10.1103/PhysRevA.84.042121
https://doi.org/10.1103/PhysRevLett.111.160405
https://doi.org/10.1103/PhysRevA.89.022106
https://doi.org/10.1103/RevModPhys.86.1261
https://doi.org/10.1007/s40509-014-0027-1
https://doi.org/10.1088/1367-2630/12/9/093011
https://doi.org/10.1016/j.physleta.2016.04.009
https://doi.org/10.1103/PhysRevA.93.032104
https://doi.org/10.1088/1367-2630/aaecdf
https://doi.org/10.1103/PhysRevA.91.032116
https://doi.org/10.1016/j.physleta.2016.02.051
https://doi.org/10.1038/nature11505
https://doi.org/10.1103/PhysRevA.89.023827
https://doi.org/10.1103/PhysRevA.89.042329
https://doi.org/10.1103/PhysRevA.96.022325
https://doi.org/10.1038/ncomms14106
https://doi.org/10.1103/PhysRevLett.124.110604
https://doi.org/10.1088/1751-8113/40/30/025
https://doi.org/10.1103/PhysRevA.102.062215
https://doi.org/10.1073/pnas.1219331110
https://doi.org/10.1103/PhysRevA.69.052113
https://doi.org/10.22331/q-2017-07-25-20
https://doi.org/10.1038/nphys2194
https://doi.org/10.1103/PhysRevLett.112.020402
https://doi.org/10.1103/PhysRevA.96.022137
https://doi.org/10.1103/PhysRevA.83.022106

