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The planar Hall effect (PHE) is the appearance of an in-plane transverse voltage in the presence of coplanar
electric and magnetic fields. Its hallmark is a characteristic π periodic, i.e., even under a magnetic-field reversal,
angular dependence with the transverse voltage that exactly vanishes when the electric and magnetic fields
are aligned. Here we demonstrate that in two-dimensional trigonal crystals Zeeman-induced nontrivial Berry
curvature effects yield a previously unknown anomalous PHE that is odd in the magnetic field and independent of
the relative angle with the driving electric field. We further show that when an additional mirror symmetry forces
the transverse voltage to vanish in the linear-response regime, the anomalous PHE can occur as a second-order
response at both zero and twice the frequency of the applied electric field. We demonstrate that this nonlinear
PHE possesses an antisymmetric quantum contribution that originates from a Zeeman-induced Berry curvature
dipole.

DOI: 10.1103/PhysRevResearch.3.L012006

Introduction. The Hall effect arises when the conduction
electrons of a solid acquire a transverse velocity either due
to an externally applied magnetic field or an intrinsic or-
dered magnetic structure. The associated Hall conductivity is
encoded in the antisymmetric dissipationless part of the con-
ductivity tensor, which, for a two-dimensional (2D) system, is
given by the single scalar σH = (σxy − σyx )/2. Onsager reci-
procity relations force σH to vanish in time-reversal symmetric
conditions. In addition σH transforms as a pseudoscalar under
a generic spatial point-group symmetry operation. Hence, to
observe a Hall response it is necessary to break beside the
time-reversal invariance all mirror symmetries. These con-
ditions are immediately met in the ordinary classical Hall
effect where an out-of-plane magnetic field is applied. In
this configuration a net Lorentz force grants the electron a
transverse velocity and, consequently, a finite Hall voltage.
On the other hand, a magnetic field coplanar with the driving
electric field cannot generate a Lorentz force bending the
electron trajectories. Nevertheless, transverse currents can and
do still exist in strongly spin-orbit coupled systems displaying
a sizable anisotropy in the magnetoconductance. This magne-
totransport phenomenon, known as planar Hall effect (PHE),
does not contribute to the dissipationless Hall conductivity σH

but manifests itself in the symmetric contribution of the con-
ductivity tensor: It cannot be qualified as a genuine Hall effect.
In the majority of (quasi)-two-dimensional systems, the PHE
has an entirely semiclassical origin and has been shown to
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arise in thin films of ferromagnetic semiconductors [1–3] and
two-dimensional electron gases formed at perovskite oxide
interfaces [4,5]. Band anisotropies have also been proposed
as the source of the PHE in thin films of antiferromagnetic
semiconductors [6]. Moreover the PHE plays a central role
in the transport properties [7–9] of Weyl semimetals [10–19].
In these topological semimetals, the induced transverse Hall
voltage, the applied current, and the magnetic field all lie
on the same plane, precisely in a configuration in which the
conventional Hall effect vanishes. Even more importantly, the
PHE in Weyl semimetals is a prime physical consequence of
the chiral anomaly of Weyl fermions [20–25]. The conducting
surfaces of three-dimensional topological insulators (3DTIs)
[26] have also been recently shown to support a PHE [27,28].
In these materials, an external planar magnetic field conspires
with the spin-momentum locking of the Dirac cones to pro-
duce a strongly directional-dependent net transverse current.
All these studies established a paradigm for the planar Hall
effect: (i) a sin 2θ angular dependence with θ representing the
relative angle between the applied electric and the magnetic
fields and (ii) a magnitude set precisely by the anisotropy in
the longitudinal magnetoresistance. However, a PHE beyond
this paradigm is, in principle, symmetry allowed. Beside time-
reversal invariance, a planar magnetic field can potentially
break all mirror symmetries present in the solid-state struc-
ture. Therefore, a planar magnetic field is entitled to generate
a dissipationless Hall conductance.

In this Letter, we demonstrate that 2D materials with strong
spin-orbit coupling and crystalline trigonal symmetry pos-
sess a previously overlooked anomalous planar Hall effect
(APHE). This effect unique to trigonal crystals, derives di-
rectly from the “bending” of the electron trajectories encoded
in the geometric properties of the electronic wave functions
[29]—the APHE stems from a Zeeman-induced nontrivial
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FIG. 1. Schematic of the conventional and anomalous PHEs in
a two-dimensional trigonal crystal as a function of the relative an-
gle θ between the electric ( �E ) and the magnetic ( �B) fields and the
crystallographic angle α determined by �B and the mirror line M.

Berry curvature profile. Besides possessing the antisymmetric
properties of conventional Hall conductivities, i.e., σxyρyx =
−1, we show that the APHE is independent of the relative
direction between the driving electric field and the in-plane
magnetic field. Therefore, as shown in Fig. 1, these anoma-
lous planar Hall currents persist even when the two fields are
collinear and the conventional planar Hall currents vanish. We
also show that when mirror symmetries constrain the APHE
to vanish (Fig. 1), transverse Hall currents are still present:
They arise in the nonlinear response regime and manifest as
a second-harmonic response to an oscillating electric field. In
strict analogy with the nonlinear Hall effect of time-reversal
invariant materials [30–40], we find that this nonlinear APHE
has a geometric contribution that is directly related to the first
moment of the Berry curvature, the so-called Berry curvature
dipole [31]. This clearly distinguishes the nonlinear response
we discuss here with the one recently shown to exist on the
surface of 3DTIs [28].

We propose graphene and transition-metal dichalcogenides
(TMDs) monolayers [41–43] where transition-metal and
chalcogen atoms form trigonal crystal structures as possible
material platforms that can host both the linear and the non-
linear APHEs in the presence of Rashba spin-orbit coupling
[44]. In these systems, the absence of inversion symmetry
results in massive Dirac cones with a sizable Berry curvature.
We find that the Berry curvature-induced APHE vanishes only
when the magnetic field is perpendicular to a mirror line
of the trigonal crystal. In this situation, however, the finite
Berry curvature dipole being still finite provides a nonlinear
anomalous PHE.

Anomalous planar Hall effect. Within the quasiclassical
Boltzmann picture of transport, the transverse conductivity
σyx in the presence of coplanar electric and magnetic fields

can be written as [8,45]

σyx = e2
∫

d3k

(2π )3
Dτ

(
−∂ feq

∂ε

){[
vy + eB sin θ

h̄
(vk · �k )

]

×[vx + eB cos θ

h̄
(vk · �k )]

}
+ e2

h

∫
d3k

(2π3)

z

k feq,(1)

where feq is the equilibrium Fermi-Dirac distribution. In the
equation above one can distinguish three different contribu-
tions: There is a first purely semiclassical term given by the
weighted integral of the electronic velocities vxvy that remains
finite for strongly spin-orbit coupled and Zeeman spin-split
electronic bands. This term is responsible for the PHE ob-
served in (anti)ferromagnetic semiconductors and at oxide
interfaces. The remaining contributions come about due to
the anomalous velocity of Bloch electrons [46] and are, there-
fore, directly related to the Berry curvature �(k). Specifically
the terms containing the product �(k) · v(k) are responsi-
ble for the PHE in three-dimensional topological semimetals.
Precisely as the classical contribution, the Berry curvature-
induced PHE in Dirac and Weyl semimetals is even in the
applied planar magnetic field, i.e., σxy(B) ≡ σxy(−B) and,
hence, does not satisfy the antisymmetry property of the con-
ventional Hall conductivity. Finally, the last term given by the
integral of the Berry curvature over the Fermi surface of the
occupied states corresponds to the anomalous Hall effect char-
acteristic of time-reversal broken materials that can be singled
out by taking measurements at B ≡ 0. In two-dimensional ma-
terials since vk ⊥ �(k), the PHE is conventionally assumed
to not possess any Berry curvature-induced contribution. Put
differently the PHE of two-dimensional systems should not
represent a topological response function. However, as we will
show below, this conventional wisdom has to be reevaluated
in two-dimensional materials with a trigonal symmetry. The
crux of the story is that the Zeeman spin splitting of the
electronic bands induced by the planar magnetic field triggers
a nonvanishing Berry curvature and, thus, engenders a planar
Hall voltage that is entirely of quantum origin. In the linear-
response regime the consequence of this is twofold. First, this
transverse conductance does obey the antisymmetry property
of the conventional Hall conductance. Second, the transverse
voltage is completely independent of the relative direction
between the two coplanar fields. We dub this topological
response the anomalous planar Hall effect: It can be distin-
guished by the anomalous Hall effect by taking measurements
at both B �= 0 and B ≡ 0, and it can be singled out from the
conventional PHE of two-dimensional systems by aligning the
external magnetic and electric fields, or taking measurements
at both +B and −B.

As the Zeeman-induced Berry curvature obeys the sym-
metry properties of the crystal, point-group symmetries can
force the APHE response to vanish. Consider, for instance,
a two-dimensional system subject to a planar magnetic field
perpendicular to a mirror line of the crystal (α = 0 in
Fig. 1), which, without loss of generality, we assume to
map a point with coordinates {x, y} to {−x, y}. Since the
external planar magnetic field preserves the mirror sym-
metry Mx, the Berry curvature will obey the symmetry
constraint 
z(kx, ky) = −
z(−kx, ky) even when the Zeeman
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spin splitting of the bands is fully taken into account. Fur-
thermore, the Fermi surface must be symmetric with respect
to the mirror line, and, therefore, the integral of the Berry
curvature is forced to vanish. This, however, does not auto-
matically imply the absence of a transverse planar Hall current
when the driving electric field and the external magnetic
field are collinear. The existence of a single residual mirror
line still allows for a finite Berry curvature dipole defined
by

Dbd =
∫

k
f0(∂b
d ), (2)

which will be directed perpendicular to the residual mir-
ror line and, thus, aligned with the magnetic and electric
fields. In analogy with the quantum nonlinear Hall effect
in time-reversal symmetric conditions [31], a finite Berry
curvature dipole causes a two-dimensional crystal subject to
an AC driving electric field Ec = Re(Eceiωt ) to develop an
additional nonlinear current ja = Re( j0

a + j2ω
a e2iωt ) charac-

terized by two Fourier components at zero and twice the
frequency of the applied external field: j0

a = χabcEbE∗
c and

j2ω
a = χabcEbEc. The response function χabc has a quantum

origin in the Berry curvature dipole and can be expressed as
χabc = −εadce3τDbd/2(1 + iωτ ), εadc being the Levi-Civita
tensor and τ the scattering time. This quantum nonlinear
APHE coexists with a semiclassical second-order but Berry-
phase independent contribution to the transverse nonlinear
Hall conductivity [45]. The latter can be distinguished from
the former since the Berry curvature dipole contributes to
the antisymmetric dissipationless part of the nonlinear Hall
conductivity vector, defined as χc = εabχabc/2, whereas the
semiclassical contribution is contained in the symmetric part
of the response [47]. Finally, we emphasize that producing a
nonvanishing dipole does not require a crystalline symmetry
content as low as the one required in time-reversal symmet-
ric conditions. This is because the externally applied planar
magnetic field breaks all rotational and additional mirror sym-
metries, thus, partially relaxing the necessary conditions for a
finite dipole. As a result, the nonlinear Hall currents gener-
ated by the Berry curvature dipole vanish when the external
magnetic field is set to zero, thus, showing that this effect is a
genuine Hall one.

Symmetry analysis. We now show that the (non)linear
APHE naturally arises in strongly spin-orbit coupled 2D crys-
tals with C3v symmetry. First, we note that a planar magnetic
field is invariant under the combined C2T symmetry, where C2

indicates the twofold rotation around the axis perpendicular
to the crystalline plane and T is the internal time-reversal
symmetry. The presence of C2T symmetry then forces the
Berry curvature to be identically zero: 
z(k) ≡ 0. As a result,
only trigonal crystals, which do not contain a twofold rotation
symmetry, can display a planar magnetic-field induced non-
trivial Berry curvature. Another necessary condition for the
appearance of a finite Berry curvature dipole is the presence
of a sizable spin-orbit coupling, which ensures that the crystal
Hamiltonian H0 and the Zeeman coupling term HZ = �B · �σ
do not commute. This prevents the possibility of separating
the Bloch eigenfunctions of the full Hamiltonian H = H0 +
HZ into a spinorial part χs, regulated only by the Zeeman
term, and an orbital wave-function ψorb(kx, ky) where all the

momentum dependence is stored: For eigenstates of that form
the Berry curvature is indeed independent from the Zeeman
coupling and retains the trigonal symmetry of the pristine
crystal also in the presence of the externally applied magnetic
field. This forces the corresponding Berry curvature dipole to
vanish. Finally, we note that the nonlinear PHE can occur only
if the SU (2) spin symmetry in H0 is completely broken. A
residual U (1) spin symmetry—as ensured by a mirror plane
symmetry Mz—would, in fact, imply that H0 commutes with
the spin rotation Uα = eiασz/2. This operator rotates the planar
magnetic field by an angle α according to �B′ = Rα ( �B), but
since Uα does not explicitly contain a momentum dependence,
the two Hamiltonians H( �B) and H′ = U†

αH( �B)Uα ≡ H( �B′)
have the same Berry curvature dipole. On the other hand, the
dipole is forced to be parallel to the external magnetic field
when the latter is orthogonal to a mirror line [48]. If we choose
�B and �B′ to be perpendicular to different mirror lines (any two
among the three of the C3v crystal), the only allowed vector
compatible with such a constraint is the null one. Hence, the
Berry curvature dipole must vanish thereby proving that the
nonlinear planar Hall effect necessitates a complete breaking
of the spin-rotation symmetry.

Having established the occurrence of a quantum nonlinear
PHE when the system is characterized by a residual mirror
symmetry, we now consider the situation in which the external
planar magnetic field is not constrained to be orthogonal to
one of the three mirror lines of the C3v crystal. Since the
presence of the planar magnetic field reduces the point group
to the trivial group C1, the Berry curvature does not obey any
constraint, and, therefore, the net anomalous velocity is not
forced to vanish. This, consequently, leads to the possibility of
a purely Zeeman-induced quantum PHE in the linear-response
regime, which represents an antisymmetric contribution to the
resistivity tensor and, therefore, displays a 2π -periodic angu-
lar dependence. Furthermore, it is important to note that for
the integral of the Berry curvature weighed by the equilibrium
Fermi distribution function to be nonzero, the spin-rotation
symmetry needs to be completely broken—in a crystal with
a Mz mirror plane, the combined MzT symmetry, which is
still preserved with a planar magnetic field, forces the Berry
curvature to be an odd function. Hence, as for its nonlin-
ear counterpart, also the quantum PHE in linear response
can only occur in strongly spin-orbit coupled crystals. It is,
thus, expected to coexist with the conventional Berry-phase
independent contribution to the PHE, which, as stated above,
represents instead a symmetric part of the resistivity ten-
sor. These different symmetry properties of the quantum and
semiclassical contributions to the linear PHE imply that the
semiclassical linear contribution to the PHE can be isolated in
experiments by taking measurements with both positive and
negative B. Instead, since the quantum contribution is inde-
pendent of the angle between the electric and the magnetic
fields, in a configuration where they are parallel it is the only
term that survives.

Model. Next, we show that monolayer graphene with
a (substrate-induced) inversion symmetry-breaking mass as
well as TMDs in their trigonal structure support the existence
of both the APHE and the nonlinear APHE in the presence
of Rashba spin-orbit coupling. To show this, we consider a
general microscopic tight-binding model featuring massive
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Dirac cones on the honeycomb lattice,

Hcry = −t
3∑

i=1

[cos(k · δi)τx + sin(k · δi )τy] ⊗ σ0

+�

2
τz ⊗ σ0 + HR, (3)

where σ and τ refer to the spin and sublattice
degrees of freedom, respectively, and {δ1, δ2, δ3} =
{(0, a/

√
3), (a/2,−a/2

√
3), (−a/2,−a/2

√
3)} are the

nearest neighbors with a the honeycomb lattice constant.
In the Hamiltonian of Eq. (3) the first term containing
nerest-neighbor spin-independent hopping respects the C6v

point-group symmetry of the honeycomb lattice, which is gen-
erated by the threefold rotation symmetry C3v = τx ⊗ eiπσz/6,
the twofold rotation symmetry C2 = τx ⊗ eiπσz/2, and the
mirror symmetry Mx = τ0 ⊗ eiπσx/2. In order to reduce the
crystalline symmetry to be trigonal, we have introduced
the C2 and inversion-symmetry breaking mass ∝�. In
graphene, the latter term is naturally realized by placing
the graphene flake on lattice-matched substrates, such as
hexagonal boron nitride [49,50]. Finally, the last term in
Eq. (3) is a Rashba-like spin-orbit coupling term that fully
breaks the SU (2) spin symmetry and, therefore, allows for
a nonvanishing Berry curvature dipole when an external
planar magnetic field is applied. The Rashba term [51] can
be written as HR = √

3λR
∑3

i=1[sin(k · δi )τx ⊗ (σyδi,1 −
σxδi,2) + cos(k · δi )τy ⊗ (σyδi,1 − σxδi,2)] with the strength
of the Rashba coupling λR that in graphene is controlled by
the strength of the perpendicular electric field and the local
curvature of the graphene sheet [52].

We finally account for the external planar magnetic
field introducing the Zeeman coupling term HZ = B τ0 ⊗
(σx cos α + σy sin α) where α is the angle from the zigzag di-
rection of the honeycomb lattice. For α = 2nπ/6 with n ∈ N
as the magnetic field preserves one mirror symmetry, thus,
allowing only for a Berry curvature dipole. In the absence
of spin-orbit interaction, i.e., for λR ≡ 0, the Zeeman cou-
pling leads to a closing of the half-filling gap at the critical
strength Bc ≡ �/2, above which the system becomes a nodal
semimetal generated by the crossing of two bands belonging
to different spin sectors. A finite value of the Rashba spin-orbit
coupling changes the crossings into anticrossings, and, thus,
the system has a finite half-filling gap as long as the strength of
the applied magnetic field is of the same order of magnitude as
the inversion-symmetry breaking mass �. For larger values of
the applied magnetic-field B � 2�, the half-filling gap closes,
but we will neglect this regime in the remainder.

More importantly, a finite value of λR changes the distri-
bution of the Berry curvature allowing for a nonzero Berry
curvature dipole. This is explicitly demonstrated in Fig. 2
where we show the local Berry curvature, computed using
the method outlined in Ref. [53], both in the absence and
in the presence of the Rashba spin-orbit interaction. We find
that the effect of the Rashba spin-orbit coupling is twofold.
First, it boosts the Berry curvature by reducing the split-
ting between the two conduction and valence bands. Second,
it shifts the dipole distribution away from being centered
around the high-symmetry points K and K ′, hence, allowing

FIG. 2. (a) and (c) Berry curvature 
 and (b) and (d) dipole
density ∂kx 
 of the conduction bands corresponding to the Hamil-
tonian of Eq. (3) in the absence (a) and (b) and the presence (c and
(d) of Rashba spin-orbit coupling (λR/t = 10−2). The magnetic-field
(B/t = 10−3) has been placed along the zigzag direction α = 0,
preserving the mirror symmetry Mx . The two valleys at K and K ′

are related by Mx and, hence, contribute identically to the Berry
curvature dipole. The inversion breaking mass has been taken to
be �/t = 5 × 10−2. In plots (b) and (d) light colors correspond to
positive values whereas darker colors correspond to negative ones.

for an overall finite dipole. Figure 3(b) shows the behav-
ior of the ensuing Berry curvature dipole as a function of
the carrier density for various values of the external planar

FIG. 3. (a) Polar plot of the anomalous planar Hall conductivity
as a function of angle α between the planar magnetic field and the
zigzag direction of the honeycomb lattice. The conductivities σ̃±

APHE

represent, respectively, the positive and negative part of the full
APHE conductivity and are normalized to the maximum at α = π/2.
The parameters used for the plot are as follows: �/t = 5 × 10−2,
B/t = 10−2, λR/t = 10−2. (b) Berry curvature dipole Dx as a func-
tion of the carrier density. Parameters used for the plot are as follows:
�/t = 5 × 10−2, α = 0, B/t = 10−3, λR/t = 10−2.
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magnetic field. We generally find that increasing the external
magnetic-field strength boosts the amplitude of the dipole over
a larger range of carrier density. The dipole also displays a
characteristic nonmonotonous behavior, similar to the one the-
oretically predicted and experimentally observed [34,35,37]
in the time-reversal nonlinear Hall effect with various sign
reversals, which implies that the quantum contribution to the
transverse current changes direction. We note that a similar
nonmonotonous behavior is also found in the semiclassical
symmetric contribution to the nonlinear Hall conductance as
shown in the Supplemental Material [45].

Finally, we have computed the linear quantum contribution
to the PHE for α �= 2πn/6. As shown in Fig. 3(a), we find that
the integral of the Berry curvature weighed by the equilibrium
Fermi distribution contributes to the PHE with an angular de-
pendence that only depends on the relative direction between
the magnetic field and the principal crystallographic direction
and changes sign under a π rotation of the planar magnetic
field, in perfect agreement with our general analysis. This
dependence is different than the semiclassical contribution
σxy = e2τ

∫
k vxvy(−∂ f0/∂εk ) [54], which we find to depend

exclusively on the angle between the coplanar electric and the
magnetic field [45] and follows the usual PHE cos θ sin θ

behavior, thus, vanishing when the applied fields are
aligned.

Conclusions. In short, we have shown that two-
dimensional trigonal crystals with sizable spin-orbit coupling
subject to planar magnetic fields display a previously un-
known planar Hall effect that contributes to the dissipationless
Hall conductance. We dubbed this contribution the anoma-
lous planar Hall effect. This effect is rooted in the geometric
properties of the Bloch states encoded in the Berry curvature
and appears whenever the planar magnetic field does not
leave any residual mirror line. It can be effectively decou-
pled from the conventional PHE since it survives even when
the driving electric field and the planar magnetic field are
aligned. Moreover, we have found that in a configuration in
which the coplanar fields are aligned and perpendicular to
one of the mirror lines of the crystal, transverse Hall currents
still exist and appear at second order in the driving electric
field. The resulting nonlinear anomalous planar Hall effect
has a quantum origin arising from the first moment of the
Berry curvature, the Berry curvature dipole. Finally, we pro-
pose monolayer graphene on commensurate hexagonal boron
nitride substrates as well as transition-metal dichalcognides
with trigonal structures as a possible material platform where
the (non-)linear APHE can be experimentally observed.
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