
PHYSICAL REVIEW RESEARCH 3, L012004 (2021)
Letter

Impurity-induced double transitions for accidentally degenerate unconventional pairing states
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Nonmagnetic impurities can lift the accidental degeneracy of unconventional pairing states, such as the
(d + ig)-wave state recently proposed for Sr2RuO4. This type of effect would lead to a superconducting double
transition upon impurity doping. In a model calculation it is shown how this behavior depends on material
parameters and how it could be detected.

DOI: 10.1103/PhysRevResearch.3.L012004

I. INTRODUCTION

The ideal proposal for the symmetry of the order parameter
of an unconventional superconductor should have the ability
to explain all its specific experimental signatures. In the case
of Sr2RuO4, this high standard has turned out to be most chal-
lenging. Even the candidate order parameter considered as
promising over a long time, the spin-triplet chiral p-wave state
[1–4], has recently been questioned by contradictory experi-
ments indicating spin-singlet pairing based on NMR Knight
shift measurements [5–7]. Heat transport measurements and
scanning tunneling microscopy quasiparticle interference ex-
periments suggest the presence of line nodes, which was
interpreted as evidence of d-wave pairing [8,9]. Experiments
using uniaxial strain did not observe the splitting of the phase
transition expected for the chiral p-wave state in the measure-
ment of specific heat [10], while muon-spin rotation (μSR)
results show the appearance of intrinsic magnetism indicat-
ing time-reversal symmetry breaking separate from the onset
of superconductivity, consistent with chiral p-wave pairing
[11].

These developments have prompted new proposals for
the pairing symmetries, some of which have recently gained
prominence, such as the even-parity, spin-singlet, time-
reversal symmetry breaking superposition of dx2−y2 and
gxy(x2−y2 ), the (d + ig)-wave state [12–14]. In contrast to the
chiral p-wave state, whose two constituents, the px- and py-
components, are degenerate by symmetry, the (d + ig)-wave
state has to rely on an accidental degeneracy, because dx2−y2

and gxy(x2−y2 ) belong to different representations of the tetrag-
onal point group. The choice of this combination was largely
motivated by ultrasound measurements indicating a multi-
component order parameter in the superconducting phase,
whereby the (d + ig) combination is symmetrywise compat-
ible. On the other hand, the analogous combination (s + id )
wave would be in conflict with the ultrasound data [15].
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An alternative even-parity phase, which had been discussed
in the past, is the chiral d-wave state, dzx + idyz, whose two
components are degenerate analogous to those of the chiral p-
wave phase [13,16–18]. This state involves interlayer pairing
and has a symmetry-imposed horizontal line node at kz = 0,
which would fit well with the interpretation of the magnetic
field angle dependence of the specific heat by Kittaka et al.
[19]. This phase shares much of its phenomenology with the
chiral p-wave state.

Here we examine specifically the (d + ig)-wave scenario
regarding the aspect of degeneracy in view of disorder ef-
fects. While our study is motivated by Sr2RuO4, we do not
attempt to give any quantitative discussion based on a realistic
modeling of this multiband system. Rather we would like to
demonstrate how disorder affects the proposed (d + ig)-wave
state and what generally expected properties could be.

For this purpose, we formulated a single-band model and
apply the self-consistent T -matrix approximation in order to
take the effect of impurity scattering on the superconducting
phase into account. In this way, we examine the behavior of
the two pairing channels, in particular, the splitting of their
transition temperatures.

II. MODEL OF A (d + ig)-WAVE SUPERCONDUCTOR

A. Tight-binding model

We consider a single-band tight-binding model on a two-
dimensional square lattice, which includes nearest-neighbor
(NN) and next-nearest-neighbor (NNN) hopping. In momen-
tum space the Hamiltonian reads

H =
∑
k,s

ξkc†
k,sck,s + Vpair, (1)

where c†
k,s (ck,s) denotes the creation (annihilation) operator

of an electron with spin s =↑,↓ and momentum k = (kx, ky).
The dispersion, which is chosen to qualitatively resemble the
genuinely two-dimensional γ band of Sr2RuO4 for a certain
band filling, is given by

ξk = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky − μ, (2)

with μ as the chemical potential and hopping matrix elements
t = 1 (unit of energy) and t ′ = 0.3 (the lattice constant a is
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FIG. 1. Fermi surfaces for μ = 0.25 (black), μ = 0.925 (gold),
and μ = 1.175 (red). The gap zeros of the d wave are represented by
the diagonal dashed lines (gray). The additional zeros of the g wave
are given by the horizontal and vertical dotted lines (light gray). The
Van Hove points with a diverging density of states are marked by the
black dots.

taken to unity). In Fig. 1 we show the Fermi surface (FS) for
varying chemical potentials to demonstrate how such varia-
tions may influence the behavior of the superconducting phase
qualitatively.

The pairing potential Vpair is restricted to the spin-singlet
channel,

Vpair =
∑

k,k′
s1 ,s2

Vkk′ c†
k,s1

c†
−k,−s1

c−k′,−s2
ck′,s2

, (3)

where the orbital structure is given by Vkk′ . With our focus on
the (d + ig)-wave [20], we introduce

Vkk′ =
∑

a=d,g

Va�a(k)�a(k′), (4)

where the even-parity basis functions are given by their
lowest-order lattice harmonics,

�d (k) = cos kx − cos ky, (5)

�g(k) = sin kx sin ky(cos kx − cos ky). (6)

Within the square lattice approach these correspond to real-
space pairing interactions between the closest sites capable of
resolving the corresponding symmetry, i.e., between nearest-
neighbor (next-to-next-nearest-neighbor) sites for the d-wave
(g-wave) component. After the standard mean-field decou-
pling of the pairing potential, the minimization of the free
energy leads naturally to the quasiparticle gap function

�k =�d (cos kx − cos ky)

± i�g sin kx sin ky(cos kx − cos ky), (7)

which breaks time-reversal symmetry. The coefficients �d,g

are obtained by solving the self-consistency equation,(
�d

�g

)
=

∑
k

Ck

(
Vd 0
0 Vg sin2 kx sin2 ky

)(
�d

�g

)
. (8)

The factor Ck takes the form

Ck = −T
∑

n

(cos kx − cos ky)2

ω̃2
n + ξ 2

k + |�k|2 , (9)

where T is the temperature and the renormalized Matsub-
ara frequencies ω̃n are different from the standard fermionic
ones, ωn = (2n + 1)πkBT , if disorder is present, as defined in
Eq. (13).

B. Disorder-T -matrix approximation

We introduce disorder through nonmagnetic impurities
with a pointlike potential leading exclusively to s-wave scat-
tering. As we would like to explore the whole range of
scattering potential strengths, meaning also the unitary limit
where the potential exceeds the bandwidth, we employ a T -
matrix approach, which includes multiple scatterings at the
same impurity. The T matrix is defined by

Tkk′ (iωn) = Ukk′ +
∑

k′′
Ukk′′G(k′′, iωn)Tk′′k′ (iωn), (10)

where Ukk′ is the impurity potential in k space and G(k, iωn)
the (normal) electron Green’s function. Note that we have
omitted off-diagonal terms involving the anomalous Green’s
function, since they vanish for unconventional states. For
s-wave scattering both Ukk′ and the T matrix are scalar in
momentum space,

Ukk′ = U, Tkk′ (iωn) = T (iωn). (11)

We may restrict ourselves to low impurity concentrations c
such that we can neglect impurity interference effects, because
superconductivity is rather quickly suppressed by disorder,
once the mean free path becomes comparable to the zero-
temperature coherence length. Hence, the self-energy reads

�(iωn) = cT (iωn), (12)

which renormalizes the Matsubara frequencies,

iω̃n = iωn − �(iωn). (13)

Using the renormalized frequencies ω̃n in the self-consistent
gap equation [Eqs. (8) and (9)] enables us to examine the
influence of disorder on the superposition of unconventional
pairing states.

C. Critical temperatures T c,d and T c,g

For two pairing states, which belong to different represen-
tations, such as the d- and g-wave states, the respective bare
critical temperatures, Tc,d and Tc,g, are generally different. In
Appendix A we discuss briefly the related case of the (s + id )
wave.

We now assume that the critical temperatures coincide
in the clean system and enforce this in our model by fine-
tuning the coupling strengths Vd,g in the pairing interaction
accordingly. Focusing on the behavior of the bare critical
temperatures, Tc,d and Tc,g, under the influence of disorder, we
solve the linearized gap equation [Eq. (8)], which decouples
for the two channels. The ratio Tc,d/Tc,g displayed in Fig. 2
(circles) reveals two regimes, if we vary the chemical poten-
tial. For μ = 0.25 (smallest FS) the ratio Tc,d/Tc,g decreases
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FIG. 2. The ratio of the critical temperatures, Tc,d/Tc,g, as a func-
tion of the impurity concentration for different values of the chemical
potential, μ. We normalize the concentration values by cc, which is
the average of the critical concentrations, (cc,d + cc,g)/2. The bare
(renormalized) critical temperatures obtained from the linearized
(full) self-consistent gap equations are given by the dots (squares).

upon growing impurity concentration c, while it increases for
μ = 1.175 (largest FS close to Van Hove points). No change
of the ratio is seen for μ = 0.925. Thus, there is a fine-tuned
FS where the “degeneracy” remains essentially untouched.

The difference in the behavior is reflected in the coherence
lengths of the two pairing states, which depend on the position
of the FS. A simple estimate of the zero-temperature coher-
ence length ξ for a given gap function can be obtained from

ξ 2 =
∑

k

∣∣∇k
�k
Ek

∣∣2

∑
k

∣∣�k
Ek

∣∣2 . (14)

For larger coherence lengths Tc suffers faster suppression with
increasing c. Consistently, we find ξd/ξg ≈ 1.09 for μ = 0.25
and ξd/ξg ≈ 0.96 for μ = 1.175. Intuitively it is clear for
the latter case that the d-wave state can profit from the
larger density of states at the Van Hove points (small Fermi
velocity), while the g-wave state has nodes there. Hence, the
d-wave state incorporates more tightly bound Cooper pairs.
However, on more genuine Fermi surfaces pairing states of
higher angular momentum have in general shorter coherence
lengths for a given critical temperature.

The splitting of the bare critical temperatures implies the
occurrence of two consecutive superconducting transitions:
First, into the superconducting phase and then breaking time-
reversal symmetry. The second transition, however, does not
happen at the lower of the two bare Tc, but at a renormalized
critical temperature, because the second-order parameter has
to nucleate in the presence of the first one. Thus, to determine
the real onset of the second-order parameter we have to solve
the full self-consistency equation [Eq. (8)] for �d and �g.
The renormalization of the critical temperatures, indicated by
squares in Fig. 2, yields a larger splitting of the two transitions
than the ratio Tc,d/Tc,g would suggest. Due to the presence of
the first-order parameter large parts of the states at the FS are
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FIG. 3. The specific heat divided through temperature, C/T , as a
function of temperature T for a finite impurity concentration, c > 0.
The ratio of the critical temperatures is given by Tc,d/Tc,g ≈ 0.90 and
the chemical potential by μ = 0.25.

consumed leaving a strongly reduced density of low-energy
states available for the second-order parameter.

D. Detecting the double transition

There are few ways of observing superconducting double
transitions. Traditionally, specific heat has been a hallmark
of such a feature in many unconventional superconductors.
Thus, we would like to show here that the impurity-induced
split of the transition could leave an observable signature in
the specific heat. We use our Green’s function formalism and
linear response theory [21,22], as shown in Appendix B.

We consider here the situation Tc,g > Tc,d , where the first
transition leads to a g-wave phase and the second to the
time-reversal symmetry breaking (d + ig)-wave phase. Fig-
ure 3 depicts the temperature dependence of the specific heat,
C/T . Clearly a second anomaly is visible below the onset of
superconductivity. For the parameter chosen in our calculation
the second jump is well visible with a size of roughly 20% of
the first one and both transitions are of second order. The jump
size can, however, depend on details of the electronic structure
and the pairing states. Note that C/T reaches a finite value
in the zero-temperature limit due to the finite zero-energy
density of states induced by the disorder.

An alternative way to detect the double transition is the
measurement of ultrasound velocity, which would show two
consecutive steps of renormalization, as for example seen
in UPt3 [23]. An important feature is the violation of time-
reversal symmetry at the second transition introducing the
intrinsic magnetism so far observed at the onset temperature.
This means that the separation of the increase of the μSR
zero-field relaxation rate from the onset of superconductivity
would be a decisive feature, as known from UThxBe13−x [24].
Alternatively, the polar Kerr effect has been recently used to
observe the violation of time-reversal symmetry at the second
transition of UPt3 [25].
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III. CONCLUSION

Our work highlights how nonmagnetic disorder influences
the transition temperatures of accidentally or nearly degen-
erate unconventional pairing channels. Generally, the two
pairing states would show a different suppression of their
critical temperatures under disorder, which would cause a
superconducting double transition. Such a double transition
would be visible as a double jump in the specific heat, as
shown in Fig. 3, or as two anomalies in the ultrasound veloc-
ity. However, since time-reversal symmetry breaking would
only occur at the second transition, μSR zero-field relax-
ation and polar Kerr effect measurements would be optimal
tools to detect whether the appearance of intrinsic magnetic
properties separates from the onset of superconductivity. So
far no such features have been reported despite the fact that
many samples with rather different critical temperatures have
been investigated over time, and, therefore, should be indeed a
target of more systematic measurements. The scenario based
on the (d + ig)-wave phase for Sr2RuO4 relies on fine-tuning
in the clean limit. We show that additional fine-tuning could,
in principle, conserve the accidental degeneracy even under
disorder. Nevertheless, a second means to eliminate such de-
generacy is provided by hydrostatic pressure, since for order
parameters, which are accidentally degenerate, the pressure
dependence of their Tc would be generally different, i.e.,
dTc,d/d p �= dTc,g/d p. This difference is not connected to the
dependence of Tc on disorder such that a further accidental
fine-tuning would be rather unlikely. Finally, we would like
to emphasize that the absence of a splitting of the transi-
tion under both disorder and pressure would be compatible
with both the chiral p-wave (px + ipy) and the chiral d-wave
(dzx + idyz) states, whereby the latter has the advantage of
being straightforwardly consistent with the Knight shift data.
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APPENDIX A: DISORDER EFFECT
ON THE (s + id)-WAVE PHASE

For completeness we address here also an alternative state
proposed, which constitutes the superposition of the extended
s-wave and d-wave states which would not be degenerate by
symmetry. The gap equations read

(
�s

�d

)
=

∑
k

C ′
k

(
Vs�s(k)2 0

0 Vd�d (k)2

)(
�s

�d

)
, (A1)

with

�s(k) = cos kx + cos ky, (A2)

�d (k) = cos kx − cos ky, (A3)

TABLE I. The ratio of critical temperatures of the (s + id ) wave
at μ = 1.175 as a function of the impurity concentration c. The
average of the critical concentrations, cc,s ≈ 0.057 and cc,d ≈ 0.128,
is denoted by cc.

c/cc Tc,s/Tc,d

0.11 0.887
0.16 0.824
0.22 0.755

and

C ′
k = −T

∑
n

1

ω̃2
n + ξ 2

k + |�k|2 . (A4)

As explained in the main text, we calculate the bare critical
temperatures, Tc,s and Tc,d , from the decoupled linearized gap
equations of the two pairing channels. As a representative
case we chose μ = 1.175 (largest FS in Fig. 1) and list the
results for different impurity concentrations in Table I. The
impurity concentration is normalized by the averaged critical
concentration cc = (cs + cd )/2. Assuming degeneracy in the
clean system, we find that the ratio Tc,s/Tc,d is decreasing as
a function of the impurity concentration, which is in line with
the ratio of coherence lengths, ξs/ξd ≈ 1.36. We checked that
the qualitative behavior of Tc,s/Tc,d to decrease under impurity
doping is independent of μ, in contrast to the (d + ig) pairing
state (cf. Fig. 2).

APPENDIX B: CALCULATION OF THE SPECIFIC HEAT
IN DISORDERED SYSTEMS

For the derivation of the specific heat we employ the
Green’s function formalism and linear response theory
[26,27]. We start with the generalized formula for the ground-
state energy of an interacting electron system by Luttinger and
Ward [21,22]. The grand potential can be written as

	s = −T
∑

n

∑
k

{
log

(
ω̃2

n + ξ 2
k + |�k|2

) + �kF †(k, iωn)

+�(iωn)G(k, iωn)
} + 	′, (B1)

with iω̃n = iωn − �(iωn) and

	′ = T
∑

ν

∑
n

∑
k

1

ν
�ν (iωn)G(k, iωn), (B2)

where �(iωn) = cT (iωn) = ∑
ν �ν (iωn). The normal and

anomalous Green’s functions are given by

G(k, iωn) = − iω̃n + ξk

ω̃2
n + ξ 2

k + |�k|2 , (B3)

F †(k, iωn) = �∗
k

ω̃2
n + ξ 2

k + |�k|2 . (B4)

By considering the difference between superconducting and
normal state, 	s − 	n, we ensure that the sum over n con-
verges. After calculating the self-energy self-consistently it
is straightforward to determine the specific heat difference
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through

Cs − Cn

T
= −∂2(	s − 	n)

∂T 2
. (B5)

The derivatives for the displayed results in Fig. 3 have been
taken numerically.
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