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Magnetic soliton: From two to three components with SO(3) symmetry
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Recent theoretical and experimental research has explored magnetic solitons in binary Bose-Einstein con-
densates. Here we demonstrate that such solitons are part of an SO(3) soliton family when embedded within a
full three-component spin-1 manifold with spin-rotational symmetry. To showcase this, we have experimentally
created a type of domain wall magnetic soliton obtained by 90◦ rotations, which consists of a boundary between
easy-axis and easy-plane polar phases. Collisions between SO(3) solitons are investigated by numerically solving
the Gross-Pitaevskii equations, which exhibit novel properties, including rotation and dissipation of soliton spin
polarization.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) of weakly interacting
atoms offer a prominent platform for soliton studies [1–4].
In particular, they have become a versatile arena for research
on vector solitons, where the rich internal hyperfine level
structure of the atoms hosts a great deal of internal symmetry
that allows for the observation of many types of solitons in the
laboratory [5–8]. Indeed, symmetry has the potential to unify
numerous vector soliton observations in the literature [9]. A
powerful example of this is the connection between beating
dark-dark solitons [10,11] and dark-bright solitons [6], which
can be connected to one another via SU(2) rotations. Thus
far such symmetry considerations have been applied only to
solitons in the integrable Manakov limit [12], where the intra-
and interspecies interaction strengths are assumed to be equal.
A far more diverse range of symmetries is possible in quantum
gases with spin-dependent interaction, and their connection to
vector solitons is a topic that has so far been unexplored.

In this work we uncover theoretically and provide exper-
imental evidence for a diverse family of solitons in a spin-1
BEC with antiferromagnetic interactions. The recently ob-
served two-component magnetic solitons [13,14] are shown
to be but one member of this family. We numerically ex-
plore the consequences of SO(3) rotational symmetry for this
family, as well as its breakdown in the presence of a finite
quadratic Zeeman shift. SO(3) symmetry also creates entirely
new possibilities for engineering collisions between solitons
of different spin orientations, which we show numerically to
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have nontrivial spin rotation. To our knowledge these concepts
have been applied only to Manakov systems, although a recent
preprint has explored domain wall physics in the case of
ferromagnetic interactions [15].

II. FORMALISM

Our work is situated in the mean-field description of a
one-dimensional spin-1 BEC relevant to recent experiments
[13,14]. It utilizes three coupled Gross-Pitaevskii equations
(GPEs),

ih̄
∂

∂t
ψm =

(
− h̄2

2M

∂2

∂y2
+ V

)
ψm + qm2ψm

+ g0ntotψm + g2

1∑
n=−1

F · (F̂ )mnψn, (1)

where ψm(y, t ) is the order parameter with magnetic quan-
tum number m = −1, 0,+1. y and t are space and time
coordinates, respectively. M is the atomic mass. V (y) and
q are the spin-independent potential and the quadratic Zee-
man shift, respectively. ntot (y, t ) = ∑1

m=−1 |ψm(y, t )|2 is the
total density. F(y, t ) = ∑1

m,n=−1 ψ∗
m(y, t )(F̂ )mnψn(y, t ) is the

spin density, and F̂ is the spin-1 matrix [16]. g0 and g2

are effective spin-independent and spin-dependent interaction
coupling constants in a one-dimensional system, respectively.
Here we consider only repulsive and antiferromagnetic inter-
action, namely, g0 > g2 > 0.

In the absence of external fields, i.e., V (y) = 0, q = 0,
and assuming the total density is a constant n, the above
equation has a magnetic soliton solution [13,14,17] when
g2 � g0. This condition can be fulfilled in a sodium BEC
where g2/g0 ≈ 0.036 [18]. In a magnetic soliton solution,
the m = 0 component has no population, and the densities of
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m = ±1 are given by

n±1 = n

2
[1 ±

√
1 − U 2sech(

√
1 − U 2ζ )], (2)

where U = V/cs is the soliton velocity V normalized to that of
spin waves, cs = √

ng2/M. ζ = (y − V t )/ξs is the moving co-
ordinate, where the width of the soliton depends upon the spin
healing length ξs = h̄/

√
4Mng2. We can rewrite this solution

in terms of the three-component spinor,

ψMS =
⎛
⎝

√
n+1eiφ+1

0√
n−1eiφ−1

⎞
⎠, (3)

where the wave functions have been written in terms of the
amplitude and phase of each component. In Ref. [17], the
phases φA,B = φ+1 ∓ φ−1 are shown analytically to be

cot φA = − sinh (ζ
√

1 − U 2)/U,

tan (φB + C) = −
√

1 − U 2 tanh (ζ
√

1 − U 2)/U, (4)

where C is chosen to ensure φB(ζ = −∞) = 0. It can be
proven that such a solution is asymptotically valid in the limit
g2 � g0 [19], and we will assume its deviation from the true
solution is negligible.

Under the Cartesian representation [20], a spin-1 spinor
can be decomposed as (ψx, ψy, ψz )t = eiφ (u + iv), where u
and v are two real vectors obeying |u|2 + |v|2 = ntot, while
φ is a global phase chosen to satisfy u · v = 0 and |u| � |v|.
Thus, a spin-1 state can be fully characterized by u and v.
One can show that the spin density F = 2u × v [21,22]; then
v = −(u × F )/(2|u|2), which indicates that the two vectors
F and u can also determine a spin-1 state. In a spin-nematic
state where |F| = 0, the vector u is called the director, whose
direction plays the role of the order parameter [21]. In this
Letter, we will generalize the definition of the director and
call u the director in general cases when |F| 	= 0. Figure 1(a)
shows the spatially varying spin density F and director u for
the magnetic soliton solution of Eq. (3) found by Qu et al.
[17]. The spin density points along ẑ and is localized near
y = 0, while the director rotates from the +y direction to the
+x direction in that same region.

To extract the essential features of various solitons, we
define the spin vector S as the normalized spin density at the
center of the soliton

S ≡ F(ζ = 0)

ntot (ζ = 0)
. (5)

For the magnetic soliton solution (3), the spin vector is given
by S = √

1 − U 2(0, 0, 1)t , whose amplitude is related to the
soliton energy [17] as ε = nh̄cs|S|, while its direction charac-
terizes the direction of polarization, which is the +z direction
in this case.

The spin-1 system described by Eq. (1) conserves the total
spin angular momentum and atom number in the absence of
external fields, i.e., q = 0. Thus, we have the symmetry group
of the system [23],

G = SO(3)F̂ × U(1)φ, (6)

where F̂ and φ denote spin and gauge degrees of freedom.
Exploiting the SO(3) rotational symmetry in the spin degree of
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(c) 

FIG. 1. (a) and (b) Spin density field F and director field u
of (a) a magnetic soliton and (b) a domain wall magnetic soliton
(DWMS), as described in the text. The blue and red arrows are
the spin density and the director, respectively. The blue curves are
the magnetization profile. (c) A vector representation of an SO(3)
soliton. The blue and red arrows are the normalized spin density
F/ntot and director u/ntot evaluated at the center of the soliton,
respectively. The blue disk denotes the x-y plane. The red disk
denotes the plane normal to the spin vector, on which the director
lies. α, β, γ are Euler angles of the SO(3) soliton. The additional
angle π/4 of the red arrow comes from the angle between the x
axis and the director before the rotation. (d)–(g) Examples of SO(3)
solitons with different Euler angles. In all cases the soliton velocity
is U = 0.6. The top and middle rows show the spin density and the
director, respectively. The red dotted, black dashed, and blue solid
lines are vector components in x, y, z, respectively. The bottom row
shows the density distributions of the three components, where the
red dotted, black dashed, and blue solid lines are density distributions
of m = −1, 0, +1, respectively.

freedom, we can construct a new family of solutions to Eq. (1)
from ψMS, namely, the SO(3) soliton solutions,

ψSO(3) = Û (α, β, γ )ψMS, (7)

where Û (α, β, γ ) is the rotation operator acting on the spin
degree of freedom and α, β, γ are the Euler angles. Equation
(7) is the principal result of this Letter. We will adopt the z-y-z
convention such that Û (α, β, γ ) = e−iαF̂z e−iβF̂y e−iγ F̂z .

Figure 1(d) shows a plot of all three components of F
and u, as well as the density profiles of the three spin com-
ponents nm, m = −1, 0, and +1, for an SO(3) soliton with
α = β = γ = 0, i.e., a magnetic soliton. Figures 1(b) and 1(e)
show a special case of the SO(3) soliton when the rotation is
about the y axis for π/2. This solution has its spin aligned
with the x direction. It no longer has a density bump (notch)
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in the m = +1(−1) component but, instead, is a domain wall
separating two sides of the soliton. The director rotates from
the +y direction to the −z direction across the soliton. Cor-
respondingly, on one side of y = 0 is a pure m = ±1 state
asymptotically, while on the other side it is pure m = 0. We
therefore refer to this particular solution with x polarization
as a domain wall magnetic soliton (DWMS).

The SO(3) soliton solution (7) is parametrized by four
free parameters: α, β, γ ,U . In Fig. 1(c) we show the spin
vector and the director at the center of an SO(3) soliton.
Notice that after an SO(3) rotation, the spin vector is given by
S = √

1 − U 2(sin β cos α, sin β sin α, cos β )t ; that is to say,
the first two Euler angles α, β control the azimuthal and polar
angles of the spin vector of an SO(3) soliton, as illustrated in
Figs. 1(d), 1(e) and 1(g). The soliton amplitude is still related
to its velocity as |S| = √

1 − U 2. The energy of an SO(3)
soliton is still nh̄cs|S| thanks to the invariance of energy under
SO(3) rotations. Comparing Figs. 1(e) and 1(f), one can find
that the Euler angle γ has no effect on the spin but modifies
the density distribution and the director of a soliton.

III. EXPERIMENT

Here we report experimental evidence for the DWMS,
one member of the SO(3) soliton family. The experiments
began with a sodium BEC of 5 × 106 atoms in an elongated
dipole trap with oscillation frequencies of (ωx, ωy, ωz ) =
2π × (380, 5.4, 380) Hz. A bias magnetic field of 72 ± 4 mG
was applied along the z direction which defined the quanti-
zation axis. Initially, all atoms were prepared in the m = 0
state. To generate DWMSs, we first applied an rf pulse along
the y direction [see Fig. 2(a)], which effectively rotated the
spin of the BEC by 90◦, resulting in an m = ±1 mixture.
Subsequently, we cast a magnetic shadow using a far-off-
resonance laser beam with a top-hat beam profile, as shown
schematically in Fig. 2(b). As discussed in [13], each edge
of the top hat generated a pair of ±z-oriented SO(3) solitons
propagating in opposite directions. To create the DWMSs, we
instead applied another rf rotation about y by 90◦ immediately
after the magnetic shadow sequence. This realizes DWMSs
[SO(3) solitons with α = 0 and β = ±π/2], which evolve in
the trap for a variable hold time before detection. This method
is successful if the system retains spin coherence between the
two rf pulses. Experimentally, we have found this to be true for
pulse separations up to 200 μ s, limited by ambient magnetic
field fluctuations at the milligauss level.

Figures 2(c)–2(e) display Stern-Gerlach images of the con-
densates for different hold times. Two local relative phase
gradients are imprinted in the condensates, as shown in
Fig. 2(b). Consequently, we expect four domain walls to be
generated, exactly as one sees in the density distributions in
the images taken for 15- and 50-ms hold times. The image
with the 90-ms hold time displays a more complicated pattern.
We believe this is primarily due to the residual quadratic Zee-
man shift of q = 1.43 Hz present in the experiment. A nonzero
value of q has the effect of reducing the symmetry of the
spinor condensate from SO(3) to SO(2) in the spin space [23].
Consequently, the DWMSs are no longer stationary states.

As in our earlier work [13], we compared our results to
numerical simulations of the spin-1 Gross-Pitaevskii equa-
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FIG. 2. (a) Experimental sequence for generation of DWMSs
in spin-1 BECs. Initially, the condensate is prepared in the m = 0
state. Ûy(π/2) represents a spin rotation about y for π/2. MS means
“magnetic shadow.” (b) Magnetic shadow. A circularly polarized and
properly detuned laser beam illuminates the m = ±1 BEC along the
z direction for a short duration. The pulse induces different Larmor
precession rates of the two components, leading to local relative
phase gradients. The laser beam is masked by two knife edges,
resulting in a magnetic shadow on the condensate. (c)–(e) Evolution
of DWMSs in a harmonic trap. The evolution times are (c) 15 ms,
(d) 50 ms, and (e) 90 ms. The top panel shows Stern-Gerlach time-
of-flight images of the condensates after the generation of DWMSs.
The middle panel shows corresponding 1D simulation results with
q = 1.43 Hz, where the time-of-flight effects are added manually
for visual aid. The simulation time is slightly different from the
experimental hold time for reasons discussed in the text. The bottom
panel shows the angle θu between the director and the y axis. In the
simulation the director is always on the y-z plane.

tions. We numerically imprinted a double-edged laser beam
on the m = ±1 BEC and rotated the spin of the BEC by
π/2 along the y axis with an instantaneous pulse. The sys-
tem evolved for 100 ms in the presence of a q = 1.43 Hz
quadratic Zeeman shift, such that q/g2ntot (0) � 0.012. We
find from simulation results in Figs. 2(c) and 2(d) that the
angle θu between the director and y axis shows a π/2 ro-
tation across the generated domain wall structures, which
is the characteristic feature of an SO(3) soliton. The an-
gle of the director in Fig. 2(e) shows no sharp jump for
the outer two DWMSs, indicating the decay of those two
solitons. As shown in the second row of Figs. 2(c)–2(e),
the simulation matches the experiments well qualitatively,
with residual differences attributed to inhomogeneity of
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FIG. 3. Space-time plot of Fx/n of the SO(3) soliton by rotating
π/2 around the y axis with different quadratic Zeeman energies:
(a) q/g2n = 0.02, (b) q/g2n = 0.06, (c) q/g2n = −0.02, and (d)
q/g2n = −0.06. Here the timescale is ts = ξs/cs. The initial condi-
tion is a DWMS given in Fig. 1(e). There are additional magnetic
structures in addition to the DWMS appearing in (b) and (d) than in
(a) and (c), which implies that the rotated soliton decays faster as the
magnitude of quadratic Zeeman energy |q| increases. The emergence
of more magnetic structures at y < 0 (occupied by m = ±1 atoms)
in (b) and at y > 0 (occupied by m = 0 atoms) in (d) indicates that
(b) the antiferromagnetic and (d) the polar part of the DWMS are
unstable.

the phase imprinting beam and its power and imperfect rf
rotation.

IV. STABILITY

Contrary to our initial expectation that the soliton pair
should decay under finite quadratic Zeeman energy q, the
experimentally observed DWMSs show a quasistable nature.
A simple qualitative argument helps us to understand the role
of q in the ensuing dynamics. As the DWMSs created by
each edge of the laser beam propagate away from each other,
they expand the m = ±1 component. For q > 0, as in the
experiment, this increases the system energy at the expense of
soliton kinetic energy. Thus, the quadratic Zeeman shift acts
as a “trap” for the solitons. For small q the trap is insufficient
to contain the solitons but slows them down, so that they
eventually decay into multiple solitonic structures, as shown
in the experimental data and the simulations. For large q, e.g.,
q = 0.3g2n, by contrast, the stability can be enhanced—we
have numerically observed trapping of two DWMSs to form
very stable structures.

Our data clearly show that the pairs of DWMSs can be
quite stable in the trap, propagating freely for timescales of 50
ms or so. Their structure at longer times is clearly influenced
by the nonzero value of the quadratic Zeeman shift present in
the experiment. This is to be expected since the Hamiltonian is
no longer SO(3) invariant. To understand this effect in greater
detail we performed numerical simulations of single-soliton

FIG. 4. Collisions of SO(3) solitons. (a) Initially, the spin vec-
tors, represented as two arrows, are on the x-y plane (the brown
disk) with an angle �αi between them. (b) After the collision,
the spin vectors of the two solitons precess out of the x-y plane,
while both the azimuthal angle difference �α f and the soliton
amplitudes |S f | decrease. (c)–(e) Collisions between two SO(3)
solitons whose parameters are (α = 0, β = π/2, γ = 0,U = −0.6)
and (α = π/2, β = π/2, γ = 0,U = 0.6), respectively. Plotted are
normalized spin densities in the three directions as a function of
space and time. Here the timescale is ts = ξs/cs. The dashed lines
are trajectories of the two solitons for visual aid. (f) Dependence of
soliton amplitudes after collisions on the initial angular difference
�αi. (g) The blue solid and red dashed lines are z components of
the spin vectors of the two solitons after collisions, respectively. (h)
Change in �α as a function of �αi.

dynamics. They highlight the role of spin-exchange collisions
on the soliton stability. Figures 3(a)–3(d) show the magneti-
zation profile of a single DWMS evolving with different q.
The initial state is a single magnetic soliton in a homogeneous
BEC with coherent superposition of m = ±1 that has been
rotated by π/2 along the y axis. Multiple magnetic struc-
tures show up during the evolution of the soliton, indicating
the soliton is unstable and decaying. As the magnitude of
quadratic Zeeman energy |q| increases, an increasing num-
ber of magnetic structures appear, and the DWMS becomes
more unstable. The quadratic Zeeman energy is set up to
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|q|/g2n = 1 in our simulation; the dynamics of the DWMS
is similar to the one in the small-q regime shown in the Fig. 3.
The density profile of this DWMS is shown in Fig. 1(e),
which can be naively understood as the superposition of a
polar part (m = 0 atoms) occupying the y > 0 region and an
antiferromagnetic part (m = ±1 atoms) occupying the y < 0
region, with a small overlap around y = 0. When q > 0, the
magnetic structures emerge mainly in the y < 0 region of the
condensate occupied by the m = ±1 atoms since the spin-
exchange collisions |0〉 + |0〉 → | + 1〉 + | − 1〉 in the polar
part are suppressed by the energy barrier q. However, in the
q < 0 regime, more magnetic structures are populated in the
m = 0 region (y > 0) since the spin-exchange collisions are
energetically favored in the polar part of the soliton.

V. COLLISION

Finally, we return to the study of soliton collisions at
q = 0, where striking properties emerge. We have observed
that the collisions, while only slightly elastic in nature, cause
a nontrivial rotation of the direction of the spin vectors. We
numerically examine these collisions in a uniform system.
Initially, two SO(3) solitons are prepared in the condensate,
separated by 40ξs and moving towards each other with U =
±0.6 (so that the initial amplitudes of the two solitons are the
same, |Si| = 0.8). The spin vectors of the two solitons are on
the x-y plane with an angle �αi between them, as illustrated
in Fig. 4(a). After the collision, as shown in Fig. 4(b), the spin
vectors precess out of the x-y plane and also nod towards each
other. As an example, Figs. 4(c)–4(e) show typical collisional
dynamics of two SO(3) solitons with spin vectors initially
along +x and +y. Spin waves are radiated during the scat-
tering of the solitons, indicating the inelastic nature of such
collisions.

We then examine the dependence of SO(3) soliton colli-
sions on the initial angle �αi between the spin vectors of the
two solitons. Figure 4(f) illustrates the amplitudes of the spin
vectors after a collision as a function of �αi. Since the energy
of an SO(3) soliton is proportional to its spin vector amplitude
|S|, a decrease in |S| indicates energy loss. Although the
collisions with �αi = 0 or π are elastic, in general cases
the solitons have energy loss after a collision, and the loss is

maximized at a certain angle. We suspect the inelastic nature
of SO(3) soliton collisions is due to the nonintegrability of our
system. Figure 4(g) shows the collisions induce a nonzero z
component of the spin vectors. Because of the conservation of
total spin, the z components are opposite for the two solitons
after the collision. The two solitons undergo nutation as well,
where the nutation angle is shown in Fig. 4(h). We remark that
the polarization shift of SO(3) solitons induced by collisions
is quite similar to that of dark-bright-bright solitons in a three-
component Manakov system [24,25]. Spin precession is also
reported for solitons in an integrable spin-1 system [26]. Such
similarities indicate possible universal connections between
different types of solitons carrying spin. Unlike our system,
the integrability of a Manakov system or an integrable spin-1
system guarantees the conservation of energy of solitons after
collisions.

VI. CONCLUSION

In summary, we have constructed and experimentally ob-
served signatures of a family of SO(3) soliton solutions to the
three-component spin-1 GPEs for antiferromagnetic interac-
tions. We hope our work will invoke follow-up experimental
studies of SO(3) soliton collisions. Theoretical problems, e.g.,
the physical interpretation of such collisional behaviors in
nonintegrable systems, remain to be explored. The stability of
SO(3) solitons created under controlled conditions in higher
spatial dimensions is an intriguing avenue for future explo-
ration. Recently, a soliton phase diagram was investigated
in a spin-1 Bose gas [27,28] and includes different types of
solitons. It is interesting to explore such solitons for a unified
view of understanding spinor nonlinear waves beyond mag-
netic solitons.
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