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Low-symmetry topological materials for large charge-to-spin interconversion:
The case of transition metal dichalcogenide monolayers
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The spin polarization induced by the spin Hall effect (SHE) in thin films typically points out of the plane. This
is rooted on the specific symmetries of traditionally studied systems, not in a fundamental constraint. Recently,
experiments on few-layer MoTe2 and WTe2 showed that the reduced symmetry of these strong spin-orbit
coupling materials enables a new form of canted spin Hall effect, characterized by concurrent in-plane and
out-of-plane spin polarizations. Here, through quantum transport calculations on realistic device geometries,
including disorder, we predict a very large gate-tunable SHE figure of merit λsθxy ≈ 1–50 nm in MoTe2 and
WTe2 monolayers that significantly exceeds values of conventional SHE materials. This stems from a concurrent
long spin diffusion length (λs) and charge-to-spin interconversion efficiency as large as θxy ≈ 80%, originating
from momentum-invariant (persistent) spin textures together with large spin Berry curvature along the Fermi
contour, respectively. Generalization to other materials and specific guidelines for unambiguous experimental
confirmation are proposed, paving the way toward exploiting such phenomena in spintronic devices. These
findings vividly emphasize how crystal symmetry and electronic topology can govern the intrinsic SHE and
spin relaxation, and how they may be exploited to broaden the range and efficiency of spintronic materials and
functionalities.

DOI: 10.1103/PhysRevResearch.3.043230

I. INTRODUCTION

Unconventional manifestations of spin-orbit coupling
(SOC) are rapidly extending the ability to generate, control,
and carry spin polarization for applications of spin transport
or spin-driven magnetic torques beyond conventional spin-
tronic materials [1–4]. Topological materials form a natural
family to scrutinize in this regard: Their key features often
derive from a large SOC combined with band inversions, and
their topologically protected surface states may prove instru-
mental to enable coherent, dissipationless spin currents over
long-distances [5,6]. Three-dimensional (3D) Weyl semimet-
als (WSM) are defined by the presence of band degeneracy
points near the Fermi energy (EF ) with local linear dispersion
in all directions [7,8]. Layered transition metal dichalco-
genides (TMDs) in the 1T′ (P21/m) or 1Td (Pmn21) phases
accommodate the interesting class of WSM candidates MX2
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(M = Mo, W; X = S, Se, Te), which have been advanced
as platforms for realizing exotic phenomena such as topologi-
cal superconductivity [9–12], nonlinear Hall effect [13–17],
anisotropic spin Hall transport [18], and out-of-plane spin-
orbit torque [19,20]. When thinned toward the monolayer
limit, they transition from the type-II WSM bulk phase to
the quantum spin Hall regime [21–35] with strain-tunable
topological gap [36].

Recently, large charge-to-spin interconversion (CSI) gen-
erated by the spin Hall effect (SHE) has been reported in
multilayers of MoTe2 and WTe2 [37–40]. The CSI efficiency
is quantified in terms of the spin Hall angle (SHA, θxy), which
indicates what fraction of a driving charge current (Jc) can
be converted into spin current (Jα

s ); θxy depends on the mag-
nitude of SOC and is typically no more than a few percent
at room temperature in heavy metals [41]. In traditional SHE
materials, stronger SOC correlates with shorter spin diffusion
length (λs); consequently, achieving long λs concurrently with
large SHA is a long-standing challenge for spintronics. To
date, the best tradeoff obtained with heavy metals amounts
to λsθxy ≈ 0.1–0.2 nm [41–46].

Interestingly, hints of unconventional SHE have been de-
tected in 1T′ [37] and 1Td phases of MoTe2 multilayers [38],
characterized by spin currents carrying spins (S) collinear
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with the charge current, which is unique so far. This is pos-
sible because, in contrast to bulk crystals, the absence of
the glide mirror symmetry in few-layer slabs allows for ad-
ditional nonzero components of the spin Hall conductivity
(SHC) tensor [47], thus breaking away from the traditional
constraint imposing a stringent right-hand rule Jc ⊥ Js ⊥ S).
Furthermore, a remarkably long spin diffusion length (λs) has
been reported in MoTe2 [38], although its actual magnitude
is under debate [37,39,40]. These experimental developments
call for an understanding of the mechanisms governing spin
dynamics in such systems, especially the large CSI efficiency
θxy and what enables large λs, given that these are traditionally
anticorrelated quantities.

While topological materials could be expected to display
large SHE efficiency, primarily driven by a strong SOC and
a large intrinsic SHC, here we show that, in addition, the
reduced symmetry plays a central role by enabling otherwise-
forbidden persistent (i.e., k-invariant) spin textures (PST) that
sustain unusually large spin diffusion lengths. Specifically,
we show that unique symmetry-induced spin textures of elec-
tronic states in MoTe2 and WTe2 monolayers yield a giant
canted SHE where the spin current polarization lies in the yz
plane. CSI efficiencies can be as high as 80% and values of λs

in the range 10–100 nm, up to one order of magnitude larger
than in heavy metals with similar spin Hall efficiency [41].
We unveil that these large values arise from the interplay
of a PST, confirmed by density functional theory (DFT),
and a large spin Berry curvature (SBC), stemming from the
band inversion and hybridization near EF that underlies the
nontrivial topology of these monolayers. Moreover, all spin
transport characteristics are gate tunable, being maximal near
the band edge and allowing a CSI figure of merit of up to
λsθxy ≈ 50 nm. Our findings hinge on DFT, symmetry con-
siderations, and a purpose-built effective tight-binding model
deployed in spintronic simulations using state-of-the-art quan-
tum transport methodologies [48]. Importantly, we discuss
how similarly large spintronic figures of merit can be antic-
ipated, based on the same key physical ingredients, among
several other classes of materials that would be interesting to
explore. This paves the way to uncovering systems endowed
with both large θxy and large λs, breaking free from a chal-
lenging constraint that has hindered spintronic applications.

II. THEORETICAL MODEL

We computed the bandstructures of 1Td-derived monolay-
ers of MoTe2 and WTe2 within DFT (see the Supplemental
Material [49]). Effective Hamiltonians based on maximally
localized Wannier functions were subsequently extracted, al-
lowing straightforward computation of the SHC and spin
textures with no intervening approximations. Yet, such a
Hamiltonian is still too complex to be efficiently deployed
in large-scale transport calculations on system sizes involving
millions of unit cells. We therefore built a k · p Hamiltonian
to describe the two conduction and two valence bands nearest
EF which, at the � point, transform according to the repre-
sentations Bu (valence) and Ag (conduction) of the C2h point
group [23] (see the Supplemental Material [49] for further
discussion). Extension of the symmetry-allowed k · p terms to
the full Brillouin zone yields the following nearest-neighbor

tight-binding representation [49]:

H =
∑

i,s

(� + 4mp + δ)c†
i,sci,s −

∑

〈i j〉,s
(mp + md )c†

i,sc j,s

+
∑

i,s

(� − 4md − δ)d†
i,sdi,s −

∑

〈i j〉,s
(mp − md )d†

i,sd j,s

−
∑

〈i j〉,s

β

2
(l̂ i j · ŷ) c†

i,sd j,s +
∑

i,s

ηc†
i,sdi,s

−
∑

〈i j〉

∑

ss′

i

2
(�ss′ × l̂ i j ) · (ŷ + ẑ)c†

i,sd j,s′ + H.c. (1)

This is an effective four-band Hamiltonian generated by two
orbitals (plus spin) per unit cell on a rectangular lattice, one
arising from the chalcogen py states and the other from metal
dyz orbitals, respectively associated with the ci,s and di,s oper-
ators at each unit cell i (s labels the spin projection). The first
four terms in Eq. (1) describe spin-degenerate valence and
conduction bands with hopping amplitudes set by mp ± md ,
δ parameterizes the degree of band inversion at �, and a
constant � is used to match the position of the conduction
band and EF with those obtained by DFT. In the fifth term,
β accounts for the x-y crystalline anisotropy, with l̂ i j a unit
vector pointing from site i to j; the term ∝ η breaks inversion
symmetry and determines, for example, whether we are de-
scribing a monolayer descended from a 1T′ (η = 0) or 1Td

bulk crystal. The last term embodies the SOC, where � ≡
(
xσx,−
yσy,
zσz ), σx,y,z are the spin Pauli matrices and ŷ,
ẑ are unit Cartesian vectors. The parameters are set by fitting
the energy dispersion and spin texture to the ones obtained
by DFT [49]. To be specific, we henceforth concentrate on
the case of MoTe2, as it is the one where experiments have
recently reported in-plane SHE [37,38]. Nonetheless, because
the Hamiltonian model (1) captures equally well the case of
WTe2 and similar low-symmetry TMDs [49], qualitatively
comparable results can be expected in those monolayers as
well. Additionally, we found very similar results between the
1Td and 1T′ phases and therefore we focus here on the former
while the latter is reported in the Supplemental Material [49].
We favoured the conduction band in the fits and will focus
exclusively on cases where EF lies in the conduction band.

III. NUMERICAL SPIN DYNAMICS CALCULATIONS

In Fig. 1(a), we plot the band structure of the aforemen-
tioned four-band model near EF and one of the time-reversal-
symmetric Q points, where the valence and conduction
extrema occur. The small splitting arises from the small
inversion-symmetry breaking (η 	= 0) that occurs in mono-
layers derived from the Td bulk structure. Since this work
focuses on the scenario where EF lies in the conduction
band, the figure shows a closeup of the conduction electron
pockets; the full DFT band structure and the k · p fit are dis-
cussed in the Supplemental Material [49]. Figure 1(b) shows
the spin texture at the Fermi energy, 〈sα〉EF , with two cru-
cial observations: the existence of an approximate persistent
spin texture through the whole Fermi contour [50–52] and
canted spins with 〈sy〉EF � 〈sz〉EF 
 〈sx〉EF , consistent with
prior studies [15,53].
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FIG. 1. (a) Closeup of the band structure near EF for the four-
band model [Eq. (1)] of Td-MoTe2 monolayer near one of the
time-reversal-symmetric Q points. The blue-shaded region indicates
the energy range covered in the spin transport calculations. Inset:
monolayer crystal structure. (b) Spin texture of one of the bands of
the electron pocket near Q at EF (Fermi broadened with T = 300 K);
the solid line marks the Fermi contour, arrows depict the in-plane
spin projection, and the color indicates the spin projection along z.

We explored the spin transport properties using linear
response theory and the Landauer-Büttiker formalism as im-
plemented in KWANT [54]. We simulated the nonlocal spin
valve illustrated in the inset of Fig. 2, where contacts 2 and
3 are ferromagnetic (FM) to allow injection and detection of
spin-polarized currents [55–57]: FM electrode 2 injects a spin-
polarized current Iα

0 with spins polarized along α ∈ {x, y, z};
this creates a spin accumulation that diffuses along the chan-
nel and is detected as a nonlocal voltage Vnl at electrodes 3 and
4, located a distance L from the source and far from the path
of charge current between electrodes 1 and 2. This effect is
quantified by the nonlocal resistance Rα

nl ≡ Vnl/Iα
0 . The spin

diffusion length for α-pointing spins, λα
s , is obtained from

the decay of Rα
nl with L in the diffusive regime (mean free

path shorter than L). To ensure our results reflect the diffusive

FIG. 2. Rα
nl (solid lines) against the channel length, L, for spins

polarized along x, y, and z. Error bars result from averaging over
150 disorder configurations (w = 50 nm). Dashed lines are fits to
Eq. (10) in Ref. [49]. Left inset: Scheme of the nonlocal spin valve.
Black (red) regions denote the device (leads), with leads 2 and 3
being ferromagnetic. Current Iα

0 flows from lead 2 to 1 and Vnl is
measured between leads 3 and 4. Right inset: Energy dependence of
λy,z

s . The dot-dashed line marks the conduction band minimum.

regime, we add Anderson disorder to the Hamiltonian and
extract statistics only within the appropriate scaling region of
the device conductance [49,58].

Figure 2 shows Rα
nl(L) for the three spin orientations at

EF . We see clear differences in the magnitude of the nonlocal
signals and their relaxation distances for different orientations
of the injected spins, ranging from tens of nanometers to the
subnanometer scale. By fitting the length dependence of Rα

nl
to the solution of the spin diffusion equations (dashed lines
in Fig. 2) [58], we obtained λ

y
s ≈ 30 nm and λz

s ≈ 10 nm,
while λx

s has a negligible value. These values are comparable
with strong-SOC metals such as Pt, β-W or β-Ta [41,43]. It
is significant that the spin diffusion lengths follow the trend
λ

y
s � λz

s 
 λx
s , in correspondence to that of the spin texture

around the Fermi contour at equilibrium. The upper inset of
Fig. 2 shows that this hierarchy holds over the entire range
of energies analyzed, from E = 30 meV to the band edge
at ≈ −110 meV (we measure energies relative to EF of un-
doped MoTe2). Details of how the (persistent) spin texture
impacts λα

s and its scaling with energy are discussed in the
Supplemental Material [49]. Both λ

y
s and λz

s increase about
threefold as EF moves toward the band edge (dot-dashed
line). Moreover, we found that λ

y
s at EF = −140 meV (in the

band gap) increases up to �156 nm, while deeper into the
gap (E = −320 meV) we see no decay in the spin signal,
consistent with the onset of ballistic regime where spin is
transported by topologically protected surface states [49].

The SHE was investigated by computing the spin accu-
mulation and analyzing its polarization, sα , along the three
Cartesian directions α. Charge current along y generates a
transverse spin current parallel to x by the SHE, which results
in spin accumulation at the open lateral boundaries. The effi-
ciency of CSI is characterized by the SHA, defined as the ratio
θα

i j ≡ Jα
s,i/Jc, j , where h̄Jα

s /2e (Jc) is the spin (charge) current
density, e is the electron charge, and i, j ∈ {x, y} denote the
respective current directions. To numerically determine the
SHA, we calculated the spin accumulation response function
per unit of current applied to the lead and fit it to the solution
of the spin drift-diffusion equations:

sα (x)

Jc,y
= −θα

xyλ
α
s

|e|Ds

sinh
(

w−2x
2λα

s

)

cosh
(

w
2λα

s

) , (2)

where w is the device width and Ds is the spin diffusion
coefficient (see the Supplemental Material [49] for details).

Figure 3 shows the averaged spin accumulation along the
channel cross section, sα (x), for each spin orientation. In a
typical SHE scenario, the electrical current, spin current, and
the spin polarization are all mutually orthogonal (for this
geometry, that would generate a finite sz only); however, we
observe a nonzero sy as well due to the absence of a glide
mirror symmetry in 1Td-MoTe2 monolayer. In fact, |sz| ∼ |sy|,
implying that the accumulated spins point obliquely in the
yz plane, with significant projection parallel to the electrical
current. Interestingly, note that the spin accumulation displays
the hierarchy sy � sz 
 sx, echoing the trend seen above for
the spin texture and spin diffusion lengths.

We determine θα
xy by fitting the numerically calculated spin

accumulation to Eq. (2), using the values of Ds extracted
from the two-terminal conductance of this device and λα

s from
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FIG. 3. Spin accumulation (solid lines) as a function of posi-
tion across the channel width, of spins along x, y, and z. Error
bars result from averaging over 200 disorder configurations (w =
50 nm). Dashed lines are fits to Eq. (2). Bottom inset: Scheme of the
two-terminal device, where a current flowing along y creates a spin
accumulation in the x direction. Top inset: Energy dependence of the
spin Hall angles, with the conduction band minimum marked by a
dot-dashed line.

Fig. 2 [49]. The results are displayed in the inset of Fig. 3.
(We note that while the charge conductivity along x and y is
slightly anisotropic, resulting in an equally anisotropic SHA,
|θα

xy| and |θα
yx| are still very similar [49].) At EF , the SHA for

spins pointing along y and z is ≈10% (with opposite sign).
Remarkably, both increase substantially when approaching
the band edge, at which point |θ y

xy| slightly overcomes |θ z
xy|

with values as large as |θ y
xy| ≈ 80%. We also computed the

SHC and the SHA with the Kubo formula and obtain the
same result both qualitatively and quantitatively (supplemen-
tary Fig. 11). The increase of θxy is attributed to hot spots of
SBC near the bottom of the electron pockets [15,38] (Supple-
mentary Figs. 4–6), which directly determine the SHC/SHA
magnitude [18,49,59,60]. Importantly, our combined results

yield a CSI figure of merit λsθxy ≈ 1–50 nm, with the largest
values attained at the band edge and for y-pointing spins. The
upper limit exceeds that of traditional SOC materials (Pt, β-W,
β-Ta, or Au) for which λsθxy ≈ 0.1–0.2 nm [41,43,61], and
is up to two to three times larger than that induced by prox-
imity in graphene [62–64]. Such remarkable figure of merit
stems from the combination of large SBC and the persistent
spin texture near the MoTe2 band edges [49]. These results
represent the expected behavior in the monolayer limit of
recent experiments performed on few-layer MoTe2 [37,38]
and WTe2 [39,40].

IV. EXPERIMENTAL DETECTION

Such a peculiar spin response should become mani-
fest in suitably designed nonlocal spin-precession experi-
ments [37,63,65,66]. To probe this canted SHE, we propose
the device concept pictured in the insets of Fig. 4, which
relies on the reciprocal/inverse SHE (ISHE) [41]. It consists
of a Hall bar comprising a graphene channel and a trans-
versely aligned monolayer TMD crystal. A nonequilibrium
spin accumulation is induced in the graphene channel through
a FM electrode whose magnetization direction determines that
of the spin density injected into graphene underneath. This
generates a pure-spin current that diffuses toward—and is
absorbed by—the remote TMD. It is assumed that the spin
current is absorbed by the TMD at its edge and continues
to follow the diffusion direction, given that the spin resis-
tance in the TMD is two orders of magnitude lower than in
graphene for λ

y
s = 30 nm or λz

s = 10 nm [49]. By ISHE, a
transverse voltage VISHE develops on the TMD, which can be
measured along its length as illustrated in Fig. 4. In experi-
ments, the diffusing spins can be controlled by spin precession
in a noncollinear magnetic field B. To capture this situation,
we generalized the Bloch diffusion equations to account for
anisotropic spin diffusion and calculated VISHE(B) using the
approach described in Ref. [63] (which accurately reproduces
CSI in real devices). Figure 4 shows the precession response
for two selected orientations of the TMD crystal in the
limit of full absorption (RISHE ≡ VISHE/Iy

0 ) [49]. We observe

RISHE

z x

y

RISHE

x

yz
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FIG. 4. Simulated response of the inverse SHE (RISHE) to spin precession for two orientations of the TMD crystal (coordinate axes in the
insets). The device geometry is shown in the insets, with the TMD depicted in yellow and the FM injector in red (magnetization indicated by
an arrow). The polarization of the spin current reaching the TMD (Jα

s ) is controlled externally with a magnetic field, B, oriented either along
the graphene channel (dashed lines) or out-of-plane (solid lines). Typical experimental device dimensions were used in the simulation [49].
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magnitudes of RISHE nearly three orders of magnitude larger
than the values reported for graphene/TMDs [62–64,67] and
graphene/bulk-WSMs [37,39]. This is a direct consequence
of the extremely large SHA predicted here for MoTe2 [68].

The essence of the experiment is that the precession
response depends strongly on the crystal orientation. As evi-
denced in Fig. 2, the spin relaxation in the TMD is anisotropic,
and the CSI depends crucially on both the majority spin ori-
entation and crystalline orientation. In Fig. 4(a), the TMD’s
crystallographic y axis is transverse to the spin propagation.
A magnetic field parallel to z causes spins to precess in the
graphene plane but, according to Fig. 3, only the y spin pro-
jection contributes to the ISHE signal with an efficiency of
|θ y

xy|; RISHE is symmetric with respect to the sign of B because
the magnetization at the FM injector is parallel to y, resulting
in the maximum signal at B = 0. When the field is parallel to
x, the spins acquire a z component (in addition to that in y),
which is asymmetric with respect to B and adds a contribution
to the ISHE with an efficiency of |θ z

xy|; because |θ y
xy| � |θ z

xy|,
the signal remains roughly symmetric. In Fig. 4(b), the crys-
tallographic y axis is parallel to the spin propagation. As the y
and z directions are now orthogonal to the FM magnetization,
the line shapes are antisymmetric. The signal is zero at B = 0
and, by sweeping B from negative to positive along z (x),
the spin component along y (z) changes sign. Therefore, two
combined observations in this proposed experiment represent
a “smoking gun” demonstration of the intrinsic canted SHE
predicted in this work: (i) RISHE(B) should display a different
line shape under different field orientations for a fixed TMD
crystal; and (ii) rotation of the crystal converts the line shapes
from predominantly symmetric to antisymmetric.

V. GENERALIZATION TO OTHER SYSTEMS

Our numerical calculations show that the 1Td and 1T′
phases of monolayer TMDs exhibit a canted spin Hall effect
with large spin diffusion lengths and spin Hall angles. We
precisely pinpoint this to the concurrence of a PST (which
naturally enhances λs) and hot spots of SBC near the band
edge. Additionally, the reduced symmetry has two fundamen-
tal consequences: It allows the extra nonzero components in
the SHC tensor (hence a canted SHE) and it allows the PST
(hence a large λs).

It is important to note that, though we focused here on
the MoTe2 family in order to quantitatively demonstrate all
the above features, the concurrence of PST and large SBC
may now be expected in precisely identifiable space groups
(SG). On the one hand, Tao and Tsymbal [69] have re-
cently shown that robust PSTs (i.e., not relying on fine-tuned
parameters [52]) likely arise in crystals belonging to some
nonsymmorphic space groups; this symmetry-based approach
can be extended to enumerate all compatible crystal families
and the features of their allowed PSTs. On the other hand,
crystal families compatible with SHC components other than
σ z

xy have been also enumerated [47,70], thereby identifying
all the possible material platforms for canted, multicomponent
SHE. Finally, the magnitude of intrinsic SHE depends directly
on the strength of the SOC and on the existence of nonzero
SBC (see our Supplemental Material’). Although both might
be serendipitously large in some materials, topological ma-

terials are preferred for a targeted pursuit. This is because
SOC combined with the underlying band inversions of, e.g.,
topological insulators or topological semimetals, invariably
leads to SBC hot spots [22,71,72]. Since space groups have
also been recently classified according to their compatibility
with different topological phases [73,74], one may systemat-
ically select those topological classes whose symmetries are
simultaneously compatible with PST and canted SHC.

To be more specific, we provide materials that satisfy the
qualities mentioned above, thus making them potential candi-
dates for showing large CSI figures of merit. We focused on
materials from the space groups reported in Ref. [69] as they
present PST. Although they only comprise orthorhombic crys-
tals with no inversion symmetry, we note that extending the
symmetry analysis of Ref. [69] to other crystal systems may
provide greater number of potential SHE materials with PST.
We searched these space groups in the Topological Material
Database [74–77], and among the several topological insula-
tors and semimetals, we searched which of those had already
been experimentally characterized. At least three topological
materials were found: the type-II Weyl semimetal Ta3S2 (SG
39) [78] and AuSn4 (SG 41), which is a topological nodal-line
semimetal [79]. According to the symmetry requirements for
multicomponent SHE [47], the space groups from Ref. [69]
in their bulk form cannot host a canted SHE. However, these
restrictions are lifted in systems with glide mirrors and screw
axis with vertical translation when going to the monolayer
limit, as in 1Td-MoTe2. This is indeed the case for TaIrTe4

(SG 31), a van der Waals material being a Weyl semimetal
in three dimensions but a topological insulator in monolayer
form [80–82]. Overall, we have identified Ta3S2, AuSn4, and
TaIrTe4 as potential compounds for large CSI, with monolayer
TaIrTe4 also being compatible with multicomponent SHE.

VI. POTENTIAL APPLICATIONS

Discovering materials with largest λsθxy has been a
long-standing challenge. This is partly because traditional
understanding of SHE and spin diffusion posits that, while
large SOC boosts the generation of spin current via SHE
(quantified by θxy), it detrimentally reduces the spin diffusion
length [41]. Our extensive and realistic quantum simulations
directly demonstrate that materials hosting low-symmetry-
enabled PST (even if only approximate) break free from that
adverse compromise while, at the same time, displaying a
new canted SHE, which greatly increases the geometrical
flexibility of possible SHE-based devices. These results come
at a time of impressive achievements in using 2D materials
to carry spin currents over long distances and controlling their
flow by electrostatic gating [83–85]. This should allow prompt
exploration beyond our proof-of-principle system, MoTe2,
thereby accelerating the potential delivery of low-power spin-
electronic devices and circuits [86]. For example, the spin
polarization generated by the canted SHE can exert an out-
of-plane antidamping torque in magnets with perpendicular
magnetic anisotropy [19,87,88], which are essential for next-
generation, high-density spintronic applications [2,89].
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VII. CONCLUSIONS

Our models and quantum transport calculations of the spin-
tronic response of 1Td and 1T′ MoTe2 monolayers reveal the
origin of a novel, canted SHE with long spin diffusion lengths,
which reflects the unconventional spin textures allowed by
their reduced symmetry and strong SOC. The obtained CSI
figure of merit λsθxy ≈ 1–50 nm is superior to that of tra-
ditional spintronic materials (Pt, Au, W, and Ta) [41,43] by
up to two orders of magnitude. Given the similar electronic
structures of MoTe2 and WTe2, including the persistent canted
spin texture [90], comparable performance is expected in the
latter. Our findings also call for a careful analysis of SHE mea-
surements, since the interpretation of all-electrical detection in
Hall bars [38,91,92] usually ignores the possibility of multiple
spin Hall components. We show how the presence of canted
SHE can be experimentally identified by reciprocal SHE and
how the different SHC contributions may be isolated in a spin
precession setup.

Having precisely identified the underlying mechanism at
play, these proof-of-principle results based on MoTe2 suggest
equally promising performance in several other identifi-
able material families with concurrent PST and large spin
Berry curvature associated with low crystal symmetry and

nontrivial electronic topology, respectively. We finally men-
tion that a much larger range of possible interesting materials
should be available by engineering proximity effects and
interfacial symmetries, as discussed for van der Waals het-
erostructures [93–95].
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