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Nonreciprocal frequency conversion with chiral A-type atoms
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In this paper, we begin with a model of a A-type atom whose both transitions are chirally coupled to a wave
guide and then extend the model to its giant-atom version. We investigate the single-photon scatterings of the
giant-atom model in both the Markovian and the non-Markovian regimes. It is shown that the chiral atom-wave-
guide couplings enable nonreciprocal, reflectionless, and efficient frequency conversion, while the giant-atom
structure introduces intriguing interference effects to the scattering behaviors, such as ultranarrow scattering
windows. The chiral giant-atom model exhibits quite different scattering spectra in the two regimes and, in
particular, demonstrates non-Markovicity-induced nonreciprocity under specific conditions. These phenomena
can be understood from the effective detuning and decay rate of the giant-atom model. We believe that our results

have potential applications in integrated photonics and quantum network engineering.
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I. INTRODUCTION

Nonreciprocal photon transmissions play significant roles
in fabricating various integrated photonic elements and thus
have important applications ranging from quantum informa-
tion processing to quantum network engineering [1-3]. In
particular, it is beneficial to break the Lorentz reciprocity
at the single-photon level to avoid the harmful backflows
between quantum devices and thereby to protect the signal
sources. In general, nonreciprocal photon transmissions can
be achieved via magneto-optical effects [4-8], optical non-
linearities [9—12], dynamic modulations [13-23], synthetic
magnetism [24-30], and reservoir engineerings [31,32].

On the other hand, the interactions between light and mat-
ter (e.g., atoms) can also be direction dependent: Atoms can
interact differently with photons propagating along different
directions. Such phenomena, known as “chiral quantum op-
tics” in the literature [33,34], provide a new paradigm for
quantum network engineering. To date, significant progress
has been made on the basis of chiral quantum optics,
such as cascaded quantum systems [35-38], deterministic
photon routing [39,40], and nondestructive photon detec-
tion [41]. Moreover, non-Markovian retardation effects, e.g.,
time-delayed quantum feedbacks, have also been widely in-
vestigated in chiral quantum optical systems [42-46]. In
experiments, chiral atom-field interactions can be achieved via
several approaches, such as the spin-momentum locking effect
of light in one-dimensional optical fibers [47—49], inserting
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circulators in superconducting circuits [50-52], topological
engineering [53,54], and synthesizing artificial gauge fields
[55]. In spite of the broken time-reversal symmetry, how-
ever, it has been shown that such chirality is not sufficient to
support nonreciprocal scatterings solely in the absence of in-
trinsic atomic dissipations [56]. To achieve high-performance
nonreciprocal transmissions, one should exploit, for instance,
considerable intrinsic atomic dissipations or atoms with more
transitions chirally coupled to the wave-guide field [39,57,58].

In this paper, we begin with the small-atom model con-
sidered in Ref. [39], where both transitions of a A-type atom
are chirally coupled to the wave guide at a single point. We
briefly review the nonreciprocal single-photon scatterings of
this model, which are allowed even if the intrinsic atomic
dissipation is ignored. This is quite different from the case
of a chiral two-level atom, where the intrinsic dissipations
are indispensable for observing nonreciprocal scatterings. Af-
terward, we extend this chiral A-type atom to its giant-atom
version, where both atomic transitions couple chirally to the
wave guide at two separated points with the separation dis-
tance comparable to the wavelength of the wave-guide field.
In the past few years, nonchiral giant atoms have been well
investigated [59], which demonstrated a series of intriguing
interference effects such as frequency-dependent Lamb shift
and relaxation rate [60], decoherence-free interatomic inter-
actions [61-63], various bound states [64—66], and modified
topological effects [67,68]. Most recently, the concept of
chiral quantum optics has also been brought to giant-atom
structures [69—72], which show the possibility of combin-
ing the advantages of the two paradigms. Here we study
the nonreciprocal single-photon frequency conversion of the
chiral A-type giant atom in both the Markovian and the non-
Markovian regimes, which are defined depending on whether
the propagation time of photons between different atom-wave-
guide coupling points is negligible or not. In both regimes,
the chiral giant-atom model exhibits intriguing interference
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FIG. 1. Schematic diagram of (a) the A-type small atom with
chiral atom-wave-guide couplings at x = 0 and (b) the A-type giant
atom with chiral atom-wave-guide couplings at both coupling points
X = 0 andxz =d.

effects such as ultranarrow scattering windows. In partic-
ular, non-Markovicity-induced nonreciprocal scatterings are
demonstrated under specific conditions.

II. CHIRAL SMALL ATOM

We begin by considering a A-type small atom, where
both the atomic transitions (|g) <> |e) and |f) <> |e)) inter-
act chirally with the wave-guide field at x = 0, as shown in
Fig. 1(a). A similar model has been considered in Ref. [39]
to demonstrate nonreciprocal few-photon scatterings. How-
ever, we briefly review this model here to pave the way for
introducing the giant-atom model in the next section and
facilitate the comparison between the two models. The Hamil-
tonian of such a small-atom model can be written as (i = 1
hereafter)

H =H21+HW +Flint7

Hy = wr| fY{f] + wele)(el,
+00 9

H, = / dx[c}i(x)(a)o + ivga—>cL(x)
_ X

+ c}(x)(wo — ivg;—x>CR(X)],

Hi = [ dx8(x){lg) (ellgrep(x) + grep (x)]

+ 1) {ellErch(x) + &cl ()] + Hoc.), (1

where H, is the free Hamiltonian of the atom, with w; and w,
the energies of the states | f) and |e) with respect to the state
|g), respectively; Hy is the Hamiltonian of the wave guide,

with c,Te(x) [cZ(x)] the creation operator of the right-moving
(left-moving) wave-guide mode at position x and v, the group
velocity; wy is a chosen frequency that is away from the cutoff
frequency, around which the dispersion relation of the wave
guide can be linearized as E = wp + kv, (k is the renormal-
ized wave vector of photons in the wave guide) [73,74]; Hin
describes the interactions between the atomic transitions and
the wave-guide modes, with gz and g, (&¢ and &.) the cou-
pling strengths of the transition |g) <> |e) (| f) <> |e)) with the
right-moving and left-moving wave-guide modes (assumed to
be real), respectively. For simplicity, we assume &g = gg and
&, = g1 in this section. Moreover, we have assumed that the
two lower states |g) and |f) are quasidegenerate, such that
both transition frequencies w, and w, — wy fall into the lin-
earized region around wy [75-78]. The case of nondegenerate
lower states will be discussed in Sec. III D, where the group
velocities corresponding to the two transition frequencies are
different, yet our main results are shown to be insensitive to
such a difference.

In the single-excitation space, the eigenstate of Hamilto-
nian (1) can be written as

=) / dx[Ra (¥)cp(x)

a=g.f

+ Ly (x)c] ()10, @) + 1[0, e), @

where R, (x) [Ly(x)] is the probability amplitude of finding a
right-moving (left-moving) photon in the wave guide at posi-
tion x and the atom finally in the state |«); u, is the probability
amplitude of the atom in the excited state |e). Solving the
stationary Schrodinger equation H|y) = E|vy) with Egs. (1)
and (2), one can obtain

ER,(x) = (wo — ivg— 8 )Rg(x) + gré(x)ue,

(
ELy(x) = (oo + v )L () + g18(x)ue,
(

9
ER;() = (0 + ) — v )Rf(x)—}—gR(S(x)ue,

0
EL¢(x) = (a)o +wr + zvg8 )Lf x) + gré(x)u,,
Au, = gr[Rg(0) + Ry (0)] + gL[Le(0) + L (0)], (3)

where A = E — w, is the detuning between the propagating
photons and the transition |g) <> |e).

We first consider that a single photon is incident from
the left side of the wave guide and the atom occupies the
state |g) initially. If the atom is excited by the photon, then
the atom can spontaneously decay back to |g) and re-emit
a photon with the same wave vector k, or it can decay to
another lower state | f) and re-emit a photon with wave vector
q =k — wys/v, [15-78]. We refer to these two processes as
elastic and inelastic scatterings, respectively, depending on
whether the frequency of the input photon is converted or not.
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For the left-incident photon here, one can assume
Ry(x) = [O(—x) + 11O (x)]e™,
Ly(x) = rnO(—x)e *,
Re(x) = 6O (x)e' ",
Li(x) = r®(—x)e ",

“

where ®(x) is the Heaviside step function; #; and 7| (f, and
rp) are the transmission and reflection coefficients of the elas-
tic (inelastic) scattering processes, respectively. Substituting
Eq. (4) into Eq. (3), one readily obtains

L A+in

' A+i(T,+Tg)’ 5)
—il'g

h =

A+i(Tr+Ty)’

where I'g = g&/v, and I';, = g7 /v, are the radiative decay
rates of |e) induced by the right-moving and left-moving
wave-guide modes, respectively. Note that we only focus on
the two transmission coefficients in this paper, with which it
is enough to understand the underlying physics of our models.

Similarly, for a single photon incident from the right side
of the wave guide (the atom is still assumed in the state |g)
initially), with the ansatz

Ry(x) = /O(x)e™,

Ly(x) = [O(x) + 1O(—x)]e ™™,
Ry(x) = HOx)e'?,

Li(x) = HO(—x)e ",

(6)

the elastic and inelastic transmission coefficients in this case
can be solved as

;o A+ ilg

"TOA+ (TR + T -
3 Ty,

h =

A+i(Tp+TL)

It is clear from Eqgs. (5) and (7) that nonreciprocal scat-
terings (i.e., |f;| # |f1| and/or |t;| # |f2|) can be achieved if
gr # g1 (.e., I'g # I'L), yet this is impossible for the case
of a chiral two-level atom in the absence of intrinsic atomic
dissipations (see Appendix A for more details). Physically,
the nonreciprocity here is because, for an input photon that
can be absorbed by the transition |g) <> |e), the other transi-
tion |f) < |e) effectively serves as a “dissipation channel,”
which makes the elastic-scattering process behaves like that
of a two-level atom with intrinsic dissipations. The excitation
probabilities of the atom are different for photons propagating
along opposite directions due to the chiral atom-wave-guide
couplings, which thus result in nonreciprocal elastic and in-
elastic scatterings.

Figures 2(a) and 2(b) depict the transmission contrasts /; =
Ty — Tyand I, = T» — T5 versus the detuning A and the decay
ratio I'; /Tg, where T} = 7117 and T} = |71]? (T> = |»|* and
T, = |f,|?) are the elastic (inelastic) transmission rates for the
left-incident and right-incident photons, respectively. It can be
seen that the optimal nonreciprocal scatterings (|I;| = |L| =
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FIG. 2. Pseudocolormaps of transmission contrasts (a) /; and
(b) I, of the chiral small-atom model. Profiles of (c) elastic and
(d) inelastic transmission rates with different values of I'; /T'g.

1) occur if 'y, = 0 (or ['g = 0, leading to reversed nonrecip-
rocal scatterings), while the scatterings are totally reciprocal
(I; = I, =0) if 'y = I'g. To show more details, we also plot
in Figs. 2(c) and 2(d) the profiles of the transmission rates of
two cases, i.e., the ideal chiral case with I'; /' = 0 and the
nonideal chiral case with I'; /T'g = 2. In the ideal chiral case,
the elastic (inelastic) transmission rate of the left-incident
single photon shows a standard anti-Lorentzian (Lorentzian)
line shape and efficient frequency conversion with 7, = 1 can
be achieved, whereas for a right-incident photon, the inelastic
scattering is totally suppressed (7> = 0) because the atom
is decoupled with the left-moving wave-guide mode. In the
nonideal chiral case, the atom can still exhibit nonreciprocal
transmissions, yet both the transmission contrasts and the
conversion efficiency are degraded in this case. In view of this,
we focus on the ideal chiral case hereafter in this paper.

III. CHIRAL GIANT ATOM

Now we consider a giant-atom version of the chiral A-
type atom, where both transitions |g) <> |e) and | f) <> |e) are
coupled chirally with the wave-guide modes at two separate
points x; = 0 and x, = d, as shown in Fig. 1(b). The case of
a nonchiral A-type giant atom has been investigated in our
previous work [77], where the optimal frequency conversion
efficiency is still at most one half in spite of the giant-atom
interference effects. In this section, we would like to demon-
strate that while the chiral couplings enable nonreciprocal and
efficient frequency conversion as shown above, the giant-atom
structure brings some intriguing interference effects, espe-
cially in the non-Markovian regime.
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For the giant atom considered here, the interaction Hamil-
tonian becomes

Hu= Y [ drlailellchlenns)

a=g,f "
+ g2.88(x — d)] + ¢} (V)[g1.L8(x)
+¢2.8(x —d)]) + Hee. 8)

Here, g1 r and g g (g1.2 and g21) are the coupling strengths
(assumed to be real again) between the atomic transitions and
the right-moving (left-moving) wave-guide modes at points
x = x; and x = xp, respectively. Similarly to the small-atom
case, we have assumed that both atomic transitions couple
to the right-moving (left-moving) wave-guide mode with the
same strength g; g (g;.1) at each coupling point (j = 1, 2). In
this case, the probability amplitudes of the wave-guide modes
can be written as

Ry(x) = {O(—x) + A[O(x) — O(x — d)]
+ 70k — d)}e™,
Ly(x) = {n®(—x) + B[O(x) — O(x — d)l}e ™, ©))
Ri(x) = (M[O(x) — O(x — d)] + LO(x — d)}e",
Lp(x) = {nO(=x) + N[O(x) — O(x — d)]}e ™
for a left-incident photon and
Ry(x) = {F1O(x — d) + A[O(x) — O(x — d)]}e™,
Ly(x) ={O(x — d) 4+ B[O(x) — O(x — d)]
+71O(—x)le ™, (10)
Ry(x) = (RO — d) + M[O(x) — O(x — d)]}e'",
Li(x) = (N[O(x) — O(x — d)] + HO(—x)}e
for a right-incident photon. Here A and B (M and N) are
the probability amplitudes of finding right-moving and left-
moving photons with wave vector k (g) in the region of x; <
X < xp, respectively, if the photon is incident from the left
side. Similarly, A, B, M, and N are the probability amplitudes

of the right-incident case. Then the transmission coefficients
can be solved as

A+i(Typ+Tor+F)
A+iTig+Tor+T1p+ T +F)

f— —i[[ g + Do g€ @17 4 Ty p(e? + e~ )]’
A+i(Tip+Tor+ T+ o+ Fy)

. A+i(Tig+Tor+F)

A+i(Cig+Tor+TiL+Tor +F)

. —i[[yp + Ty €% £ Ty 1 (e7 4 £i)]

h= ,
? A+i(Tig+Tog+ i+ Doy +Fy)

Hh =

an

with
Fp =g+ To)E? + %),
F_=Tipp(e® —e ™)+ Tipp(e® + %), (12)
Fo=TprE? + %)+ Tipu(e® —e ),
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FIG. 3. Pseudocolormaps of inelastic transmission rate 7, of the
chiral giant-atom model in the Markovian regime with (a) ¢ 9 = ¢,
¢20 =0 and (b) ¢1 0= —¢20 = ¢. Panels (c) and (d) depict the
profiles of 7, with different values of phases, which correspond to
the cases of (a) and (b), respectively. Here we assume I'j g = 'y g,
F]'L = FZ,L = 0, and TF],R = 0.03.

where Fj’ﬂ = giﬁ/vg and Flqug = ,/Fl‘lgr‘zqﬂ (,3 =1L, R),
¢1 =kd = (W, —wo+ A)t and ¢ =qd = (0, — Wy —
wo + A)t are the phases of photons accumulated between
the two atom-wave-guide coupling points, with 7 =d /v,
the corresponding propagation time. Clearly, both ¢ and ¢,
consist of a constant part and a A-dependent part, such that
we define ¢; = ¢10 + TA and ¢ = ¢ ¢ + T A for simplicity
with (,151,0 = (w, — wp)T and P20 = (W, — wf — wp)T. In
this way, we can study single-photon scatterings in both
the Markovian and the non-Markovian regimes depending
on whether the propagation time 7 is negligible or not, as
discussed in detail below. Note that we focus on the ideal
chiral case of I'j ;, = I';, 1, = 0 in this section, which enables
efficient frequency conversion as discussed above.

A. Markovian regime

We first consider the Markovian regime where the prop-
agation time t is small enough (z > ipLip <1 179,80])
such that ¢; =~ ¢; 0 and ¢, = ¢, ¢ are approximately constant;
for small enough t, exp(i¢;) =~ exp(i¢;0) and exp(i¢,) ~
exp(i¢,0) can be obtained with Taylor expansion to the first
order of 7.

Figures 3(a) and 3(b) depict the inelastic transmission rate
T, of a left-incident photon versus the detuning A and the
phase factor ¢ [we assume ¢ 9 = ¢, ¢20 =0 in Fig. 3(a)
and ¢; 0 = —¢2.0 = ¢ in Fig. 3(b)] in the ideal chiral case.
In this case, the elastic transmission rate 77 can be readily
obtained with 7; = 1 — 75, while the transmission rates of a
right-incident photon are 7; = 1 and 7> = 0. One can find that
the pattern in Fig. 3(a) is quite similar to that of a nonchi-
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ral A-type giant atom [77]: (i) The scattering behaviors are
phase dependent with the periodicity of 27; (ii) the frequency
conversion is completely suppressed (i.e., 7o = 0) if ¢; 0 =
(2m + 1) (m is an arbitrary integer) because the transition
|g) <> |e) is decoupled from the wave-guide modes in this
case. Note that the frequency conversion is also unachievable
when ¢, 0 = (2m 4 1) (not shown here). However, perfect
elastic transmission (i.e., 7] = 1) takes place in this case due
to the chiral atom-wave-guide couplings, which is different
from the nonchiral model that shows total reflection [77].

More interestingly, efficient frequency conversion with an
ultranarrow window can be achieved if ¢; 0 = —¢».0 = ¢ and
¢ — m. As shown in Fig. 3(b), the width of the conversion
window decreases gradually as ¢ increases from O to , yet
the peak value of 7, keeps invariant during this process. How-
ever, the scattering behaviors change abruptly at ¢ = 7w where
the frequency conversion is completely suppressed, as shown
analytically in Eq. (11). Then the conversion window reopens
with its width increasing with ¢ and the peak value keep-
ing invariant again. Such ultranarrow scattering windows are
supposed to have applications in, e.g., precise frequency con-
version and sensing and can be understood from the effective
decay rate of the atom, as discussed in detail in Appendix B.

The results above can be seen in a clearer way via the
two-dimensional profiles in Figs. 3(c) and 3(d). For ¢, 9 = ¢
and ¢, = 0, the maximal conversion efficiency decreases
gradually as ¢ increases from O to 7, although the width of the
window can still be suppressed. The position of the conversion
peak is also phase dependent, similar to that of the nonchiral
case, yet the profile becomes slightly asymmetric if ¢ # mx
due to the finite value of 7. For ¢ 9 = —¢2,0 = ¢, however,
both the peak position and the maximal conversion efficiency
keep invariant, while the linewidth decreases markedly as
¢ increases from O until the conversion window disappears
abruptly at ¢ = m as shown above.

B. Non-Markovian regime

Now we turn to consider the non-Markovian regime, where
T is nonnegligible such that the phases ¢; = ¢, o + T A and
¢2 = ¢2.0 + TA strongly depend on the detuning A. Exper-
imentally, this regime corresponds to the case of transmons
coupled with surface acoustic waves [80,81], or the case
where the separation d between the two coupling points is
large enough [79].

Owing to the strong A dependence of ¢ and ¢,, one can
expect in this case more complicated transmission spectra
with staggered peaks and dips, as shown in Fig. 4. Once again,
we plot in Figs. 4(a) and 4(b) the inelastic transmission rate 7,
of a left-incident photon versus the detuning A and the phase
factor ¢ in two cases, i.e., () ¢1.0 = @, P20 = Oand (ii) 1 0 =
—¢2.0 = ¢, respectively, and plot in Figs. 4(c) and 4(d) the
corresponding two-dimensional profiles with some specific
values of ¢. In both cases, the multiple dips with 7, = 0 in
the inelastic transmission spectra arise from the fact that per-
fect elastic transmission occurs whenever ¢ = ¢1 0+ TA =
(2m 4+ 1) and/or ¢ = ¢ 0 + TA = (2m + 1)7. Such non-
Markovian characteristics can also be understood from the
effective detuning shown in Appendix B.

0 0.5 T 4
e —

2
(b)
1.5
1
0.5
0

0 0.5 T,

]
[
(a)
£
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4 -2 0 2 4 4 -2 0 2 4
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’—¢1.(1 =0,¢20 =0 wrereees 10 =0.5m,ppp = 0 === hro="m,020=0
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1.5

&
= 1
0.5
0

A/Tip

FIG. 4. Pseudocolormaps of inelastic transmission rate 7, of the
chiral giant-atom model in the non-Markovian regime with (a) ¢, o =
@, ¢20 =0 and (b) ¢1.0 = —¢2.0 = ¢. Panels (c) and (d) depict the
profiles of 7, with different values of phases, which correspond to
the cases of (a) and (b), respectively. Here we assume I'; g = 'y g,
FI,L = FZ,L = 0, and ‘L’FLR =3.

For the case of ¢ 0 = ¢ and ¢, o = 0 as shown in Figs. 4(a)
and 4(c), as ¢ increases from 0, each conversion dip splits into
two parts, with one moving toward the red-shift direction and
the other keeping still [their positions do not change with ¢
because ¢, = tA = (2m+ 1) is always satisfied there,
which is the condition of perfect elastic transmissions
and vanishing frequency conversions]. The moving dips
can be understood because the values of A that satisfy
¢1 = 2m + 1)w should change gradually with ¢. When
¢ =2mm, the moving and static dips coincide because
¢1 = ¢, in this case. In view of this, one can control the
positions of the conversion dips (or say, the positions of
the elastic transmission peaks) flexibly by tuning the phase
factor ¢ in this case. However, efficient frequency conversion
of T, =1—T, =1 is unachievable for ¢ — 2m+ )7
in this case [see the green dot-dashed line in Fig. 4(c)
for instance]. This can be seen from the condition
A242[T3 g — T 4 008 (¢1+¢2) — T gA(sin ¢y + sin )] =
0 of T, =0 in the ideal chiral regime, which is directly
obtained from Eq. (11). Clearly, this condition cannot be
fulfilled if ¢; =7 + A and ¢, = tA as in Fig. 5(a). On
the other hand, for the case of ¢ o = —¢> o = ¢ as shown in
Figs. 4(b) and 4(d), as ¢ increases from 0, each dip splits into
two parts which move toward opposite directions and merge
with a new one at ¢ = . In this case, efficient frequency
conversion can always be achieved and one can find again an
ultranarrow conversion window with 7, = 1 for ¢ — .

043226-5



LEI DU, YAO-TONG CHEN, AND YONG LI

PHYSICAL REVIEW RESEARCH 3, 043226 (2021)
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FIG. 5. Profiles of transmission contrast /; of the giant-atom
model with different values of 7 and ¢ in the case of (a) ¢ =
¢, $20=0 and (b) ¢10 = —¢20 = ¢. The Markovian and non-
Markovian regimes correspond to the lines with 7I"; x = 0.03 and
' g = 3, respectively. Here we assume I'j g =", and '}, =
F2'L = O

C. Comparison of the two regimes

Finally, we plot in Fig. 5 the transmission contrast I
to compare the nonreciprocal scatterings of the giant-atom
model in the Markovian and non-Markovian regimes. In
particular, we focus on the case of ¢ — (2m + 1)z [¢p10 = ¢,
¢2,0=0 in Fig. 5(a) and ¢1,0 = —¢20 = ¢ in Fig. 5(b)],
which shows a significant difference for the two regimes. It
can be seen that in the Markovian regime, the transmissions
are always reciprocal because perfect elastic transmission
takes place in both directions when ¢; = (2m + 1)7 and/or
¢>» = (2m + 1)x. In the non-Markovian regime, however, ¢,
and ¢, are sensitive to A such that nonreciprocal transmis-
sions are allowed except for some specific values of A. We
would like to refer to such a phenomenon as non-Markovicity-
induced nonreciprocity.

For the case of ¢190=¢ and ¢,o =0, as shown in
Fig. 5(a), the non-Markovicity-induced nonreciprocity is not
perfect (i.e., |I;| < 1) because efficient frequency conver-
sions (vanishing elastic transmissions) are not allowed for
a left-incident photon in this case [see again the green dot-
dashed line in Fig. 4(c)]. For the case of ¢ 0 = —¢2.0 = ¢,
as shown in Fig. 5(b), the nonreciprocal transmissions in
the non-Markovian regime tend to be perfect whenever the
condition of T, = 1, i.e., A2 4+ 2[F%R — F%R cos (¢ + ¢o) —
I RA(Sin ¢ 4 sin ¢p)] = 0, is fulfilled. That is to say, in the
ideal chiral case, perfect nonreciprocal elastic scatterings can
be achieved if efficient frequency conversion is allowed. More
importantly, as discussed above, the nonreciprocal window
can be ultranarrow in this case if ¢ — (2m + 1), which
enables precise filtering (or frequency conversion) in one di-
rection but not in the other direction.

D. Effect of different group velocities

Finally, we would like to demonstrate that the main results
in this paper is almost unaffected even if the two lower states
are not quasidegenerate; in this case, the frequency difference
wy between |g) and | f) is large enough so that the dispersion
relation of the wave guide can be linearized with slightly
different group velocities around the frequencies of the two
lower states. Denoting the two group velocities by v; and
vy, respectively, the Hamiltonians Hy, and Hj,, of the chiral
giant-atom model can be rewritten as

+00
H, = Z / dxl:c;L(x)(a)j + in;—x>Cj,L(x)

j=12Y7

0
+c;,R(x)(a)j - iv_ia)c_,-,k(x)], (13)
and

Iiint = Hl,int + H2,int’

Hijm = / dxlg) elfe] x(lg1 k()

+ 82880 — )] + ¢f ; (D[g1.L8(x)
+g208(x —d)]} + He.,

Hajog = / dx ) el (€} g (0E kOCO)

+E RS — d)] + ¢} (X)[E1L8(x)
+6.8(x —d)]} + He., (14)

where cj., ) [c;’ . (x)] is the creation operator of the right-
moving wave-guide mode with group velocity v;; w; (wy) is
the chosen frequency around which the dispersion relation of
the wave guide can be linearized as w; + vik (wy + v2q) [74]
and satisfies w; + vik = wy + v2q + wy due to the energy
conservation. Note that we do not assume g;r =&z and
gj.. =& in this case. In the single-excitation subspace, the
eigenstate can be rewritten as

+00
V) :/ dx{[Ry(x)c] p(x) + Le(x)c] 1 (0)]]0. )

+[Ry ()5 g(x) + Ly(x)cs ; (110, )} + 1,10, ),
(15)

with which one can analytically calculate the transmission
coefficients with the same procedure above. In particular,
with the assumption of |g;&|>/vi = |£;&|*/va =T;& and
|gj,L|2/v1 = |$j,L|2/v2 = I'j 1, one can obtain identical trans-
mission coefficients as those in Eq. (11), except that the
detuning should be modified as A - A’ = w; — w, + vik.
Moreover, the two different group velocities give rise to dif-
ferent propagation times for photons with wave vector k and
q propagating between the two coupling points. Therefore
the two phases are modified as ¢; = ¢} ( + 1A = ¢ 5 +
dA’/vy and ¢y = @) o + T2 A" = @) o + dA'/va, with @] ; =
(we — w1)71 and ¢ ; = (w, — @y — wy)77 in this case.

Now we assume that v; and v, are slightly different and
plot in Figs. 6(a) and 6(b) the profiles of 7, in the case of
#1 o = —#5¢ = ¢. In Fig. 6, we focus on the non-Markovian
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FIG. 6. Profiles of inelastic transmission rate 7 of the giant-atom
model with different values of 7, and (a) ¢ = 0 and (b) ¢ = 0.97 in
the case of ¢ o = —¢; o = ¢. Here we assume I'y g = Ty, T =
FZ,L = 0, and rll"l_R =3.

regime where the difference between 7, and 7, introduces
nonnegligible influence to the scattering behaviors. One can
find that the single-photon scatterings of the giant-atom model
are insensitive to the time difference, especially for A — 0.
That is to say, the main results in this paper, such as the
ultranarrow scattering windows located at A" = 0, hold even
if the two lower states |g) and | f) are not quasidegenerate.

IV. CONCLUSION AND OUTLOOK

In summary, we have generalized a chiral quantum opti-
cal model, where both transitions of a A-type atom couple
chirally to the wave-guide field, to its giant-atom version by
assuming that the chiral A-type atom interacts twice with the
wave guide at two separated points. We have studied their
nonreciprocal single-photon scatterings that are impossible
for the case of a chiral two-level atom in the absence of
intrinsic atomic dissipations. Compared with the small-atom
case, the chiral giant-atom model exhibits intriguing interfer-
ence effects that are closely related to the propagation time of
photons between the two atom-wave-guide coupling points,
such as ultranarrow scattering windows. In particular, we have
explored the scattering behaviors of the chiral giant-atom
model in both the Markovian and the non-Markovian regimes,
which are defined depending on whether the propagation time
is negligible or not. It has been shown that the scattering
behaviors are quite different in the two regimes, especially
when either of the two atomic transitions is completely sup-
pressed due to the destructive interferences; in this case, the
scatterings are always reciprocal in the Markovian regime,
while the non-Markovicity-induced nonreciprocity with mul-
tiple nonreciprocal scattering windows can be observed in the
non-Markovian regime. The results in this paper provide a
deeper sight into the combination of chiral quantum optics and
giant-atom physics and have potential applications in, e.g.,
integrated photonics and quantum network engineering.

We would like to point out that the investigations of mul-
tilevel giant atoms are still at the initial stage. More peculiar
phenomena can be expected based on the marriage of multi-
level giant atoms and various quantum effects. For instance,
one can consider a A-type giant atom, whose interference
effect arising from its closed-loop level structure may bring
more intriguing effects. Moreover, one can also extend some
exotic effects for two-level giant atoms to their multilevel ver-
sions, such as oscillating bound states in the non-Markovian
regime [64] and decoherence-free interactions between giant
atoms [61-63].
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APPENDIX A: TRANSMISSION COEFFICIENTS OF A
CHIRAL TWO-LEVEL SMALL ATOM

For a chiral two-level small atom with the ground state |g)
and the excited state |e), the Hamiltonian can be written as

H =H,+H, +H,

H, = wle){el,
/ = > (AD)
int =/ dx8(x)[grcr(x)g) (el

+ gjcp(x)lg) (el + Heell,

where gy (g)) is the coupling strength between the atom and
the right-moving (left-moving) wave-guide mode in this case;
H,, is identical with that in Eq. (1).

Once again, with the single-excitation state

+00

¢) = w,|0, e) + / dx[pr(x)cp(x) + ¢r(x)ct (0110, g),

—00

(A2)

where ¢g(x) [¢,(x)] denotes the wave function of the right-
moving (left-moving) wave-guide mode and w, denotes the
probability amplitude of exciting the atom in this case, one
can solve the stationary Schrédinger equation and then obtain

0 ,
Egr() = (@0 = ive ) () + g

0 /
Egu(x) = (00 + iy )g.06) + g we,

Sw, = gror(0) + g1 #1(0), (A3)
with § = E — w, = wy + vk — w,. Assuming
Pr(x) = [O(—x) + 1O(x)]e™,
. (Ad)
PL(x) = rO(—x)e ™
for a left-incident photon and
Pr(x) = FOx)e™,
(AS)

dL(x) = [O(x) + TO(—x)]e **
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for a right-incident photon, the transmission coefficients can
be readily solved as

L2840 —Tp)

284+ +Tp)
264+i(Tx—T7)
264+i(T, +Tp)

(A6)

f=

Clearly, |t|> = |f|? in this case, implying that the single-
photon scatterings here are always reciprocal even if the
atom-wave-guide couplings are chiral. Nevertheless, if the in-
trinsic decay rate « of the atom is nonnegligible (the
dissipation from the atom to the environment outside the
wave guide is taken into account), § = E — w, + ik becomes
complex and thus nonreciprocal scatterings (|¢|> # |f|?) can
be achieved. On the other hand, such a chiral two-level atom
is in fact equivalent to a giant atom with nontrivial phase
difference between its different atom-wave-guide coupling
channels [82,83], which mimics an Aharonov-Bohm cage
that cannot exhibit nonreciprocal transmissions without non-
Hermitian on-site potentials [84—86].

APPENDIX B: EFFECTIVE DETUNING AND DECAY RATE
OF THE CHIRAL GIANT-ATOM MODEL

In this section, we provide an analytical way to understand
the ultranarrow scattering windows in the giant-atom case. For
the chiral giant-atom model considered in this paper, both the
transition frequencies and the total radiative decay rate of the
atom are modified due to the giant-atom interference effects
[60,77]. The effective detuning and decay rate can be given
by the real and imaginary parts of the denominator in Eq. (11),
respectively, i.e.,

At = A — (T'12,r + Tig,)(sin @y + sin¢y),
P =T1p+Tor+T1+T21
+ (T12,p + TMi2,1)(cos ¢y + cos ). (B1)

For the ideal chiral case of I') g =T r=Tg and I'; 1 =
I', . =0, Eq. (B1) can be simplified as

At = A — Tg[sing cosTA 4+ sin TA(1 4 cos ¢)],

o (B2)
Cegt = Tr[2 4+ cosTA(l + cos¢p) —sing sintA],
if ¢1.0 = ¢ and ¢, o = 0, and simplified as
Aeff =A— ZFR cos¢sin 'L'A,
(B3)

Fegr = 2Ir(1 + cosgpcosTA),

if 10 =—¢20=¢.

Clearly, in the case of Eq. (B2), the effective detuning is al-
ways ¢ dependent in both the Markovian and non-Markovian
regimes, as shown in Figs. 3(a) and 4(a). In the case of
Eq. (B3), the effective detuning does not depend on ¢ in the
Markovian regime where tA — 0 always holds, as shown
in Fig. 3(b), whereas in the non-Markovian regime only the
position of the central scattering window (located at A = 0)
does not depend on ¢ due to T A = 0, as shown in Fig. 4(b).

On the other hand, one can find from Eq. (B3) that the
width of the central scattering window that is proportional to
Cetr(A = 0) tends to zero as ¢ increases from 2mm to (2m +
). Although in the case of Eq. (B2), ['et(A = 0) decreases
as well when ¢ increases in the range of [2mm, 2m + 1)m],
there is a nonzero lower bound min[[¢(A = 0)] = 20" g,
with which the ultranarrow scattering windows are not avail-
able.

Finally, we point out that the difference between the scat-
tering spectra in the Markovian and non-Markovian regimes
can also be understood from Eqgs. (B2) and (B3). For tA — 0
in the Markovian regime, the Lamb shifts Ay — A induced
by the giant-atom effects are constant or depend only on ¢. In
the non-Markovian regime, however, the Lamb shifts become
A dependent as well such that the spectra exhibit multiple
windows [80,81].
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