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Magnon Landau levels in the strained antiferromagnetic honeycomb nanoribbons
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The pseudomagnetic field created by a nonuniform uniaxial strain is introduced into the antiferromagnetic
honeycomb nanoribbons. The formation of magnon pseudo-Landau levels, which appear from the upper end
of the spectrum and whose level spacings are proportional to the square root of the level index, is revealed by
the linear spin-wave theory. The antiferromagnetic order is gradually weakened along the y-direction by the
strain. At large enough strength, the system is decoupled into isolated zigzag chains near the upper boundary
and demonstrates one-dimensional magnetic property there. While the quantum Monte Carlo simulations also
predict such a transition, this exact method gives a critical point deeper in the bulk. We also investigate the
XY antiferromagnetic honeycomb nanoribbons and find similar pseudo-Landau levels and antiferromagnetic
evolution. Our results unveil the effect of a nonuniform uniaxial strain on the spin excitations and may be realized
experimentally based on two-dimensional quantum magnetic materials.
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I. INTRODUCTION

Mechanical strain has become a powerful tool to engineer
the electronic property of graphene and other two-dimensional
(2D) quantum materials [1–4]. The low-energy physics of
graphene is described by the Dirac Hamiltonian, in which
the perturbation of a strain acts as a vector potential with
opposite signs at the two valleys [5,6]. Experimentally, a
controlled uniaxial strain can be readily realized in graphene
using feasible techniques. However, such a strain results in
a constant gauge field, which shift the position of the Dirac
points in opposite directions and can induce a band gap only
at unrealistic large strength [7,8].

A nonzero pseudomagnetic field (PMF), especially a uni-
form one which can mimic the effect of a real magnetic field,
is highly desirable. Since the PMF magnitude is proportional
to the gradient of the strain, a PMF should be created by a
nonuniform strain [9,10]. Guinea et al. first predicted a triaxial
strain can lead to a strong uniform PMF [2]. Later, experimen-
tally more available approaches, such as bending or twisting
graphene [11–14], were proposed to generate an almost uni-
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form PMF. While it is still challenging to directly realize the
above theoretical proposals, the pseudo-Landau levels (PLLs)
induced by PMFs have been observed by scanning tunneling
microscopy in highly localized regions of graphene with non-
planar deformations [15–17].

Recently strain-induced gauge fields have been general-
ized to three-dimensional (3D) Dirac and Weyl semimetals
[18–20], and even neutral quasiparticles such as Bogoliubov
particles in 2D nodal superconductors [21] and magnons
in honeycomb antiferromagnets [22–26]. Although Landau
quantization of neutral quasiparticles is formed by the strain-
induced PMF, its properties are not completely identical to
those in graphene. Specifically, under PMF induced by the
triaxial strain in a honeycomb antiferromagnet, the PLLs ap-
pear at the upper end of the magnon spectrum and are equally
spaced [27,28]. The strain is introduced to the honeycomb
antiferromagnet by analogizing the exchange coupling like the
hopping amplitude in graphene and modifying it in the same
way as the latter. The strain-induced gauge field may not act
on the magnons exactly as it does in graphene. Hence it is
natural to ask whether the different methods used to engineer
a uniform PMF in graphene have the same effect on the spin
excitations in honeycomb antiferromagnets.

In this paper, we study the Heisenberg and XY Hamilto-
nians on the honeycomb lattice under a nonuniform uniaxial
strain utilizing the linear spin-wave theory (LSWT) and quan-
tum Monte Carlo (QMC) method. First, the formation of PLLs
is revealed using LSWT. Then we address the evolution of
the antiferromagnetic (AF) order, which is characterized by

2643-1564/2021/3(4)/043223(10) 043223-1 Published by the American Physical Society

https://orcid.org/0000-0002-9182-3285
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.043223&domain=pdf&date_stamp=2021-12-27
https://doi.org/10.1103/PhysRevResearch.3.043223
https://creativecommons.org/licenses/by/4.0/


SUN, GUO, AND FENG PHYSICAL REVIEW RESEARCH 3, 043223 (2021)

a finite local magnetization and long-range AF correlations.
Both approaches show the AF order is reduced monotonically
in the y-direction and predict a critical position beyond which
the system is described by decoupled one-dimensional (1D)
Heisenberg chains for large enough strain strength. Finally,
we present the results of the XY Hamiltonian under the same
kind of strain. Here the formation of PLLs and the evolution of
the AF order with the strain are very similar to the Heisenberg
case, except that the magnetic order is more robust and per-
sists even at the largest possible strain strength. These results
are closely related to the 2D quantum magnetic materials and
will attract both theoretical and experimental interests.

This paper is organized as follows. Section II introduces
the precise model we will investigate, along with our compu-
tational methodology. Section III presents the magnon Landau
levels in LSWT. Section IV uses LSWT and QMC simulations
to study the evolution of the AF order. Section V demonstrates
the results of the XY Hamiltonian under a uniaxial strain.
Section VI contains further discussion and conclusions.

II. THE MODEL AND METHOD

We consider an AF Heisenberg model on a honeycomb
nanoribbon, which in the absence of strain is written as

H0 = J
∑
〈i j〉

Si · S j, (1)

where J is the AF exchange coupling; Si = (Sx
i , Sy

i , Sz
i ) is

the spin- 1
2 operator on the site i, which obeys commutation

relations, [Sμ
i , Sν

j ] = ih̄εμντ Sτ
i δi j with εμντ the Levi-Civita

symbol, and μ, ν, τ = x, y, z representing spin components.
In the presence of strain, the lattice is deformed and the
Hamiltonian is modified through a simple modulation of the
exchange couplings. For small displacements, we have

J −→ Ji j = J (1 − γ�un), (2)

where γ represents the strength of magnetoelastic coupling;
�un(n = 1, 2, 3) is the relative displacement of the bond,
given by

�un =
∑
i, j

ai
na j

n

a2
0

εi j . (3)

In the above equation, �an are the nearest-neighbor vectors,
and the strain tensor is εi j = 1

2 [∂ jui + ∂iu j] (i, j = x, y) with
the displacement �u(r) = [ux(r), uy(r)] of the lattice site at
position r = (x, y). Here �u(r) is assumed to depend only on
y, which results in εxx = εxy = εyx = 0 and �u1 = εyy,�u2 =
�u3 = εyy/4 [29]. The strain tensor is expected to generate a
pseudogauge field

A = γ

2

(
εxx − εyy

−2εxy

)
. (4)

For our case, only Ax = − γ

2 εyy is nonzero. We take εyy =
c
γ

y, which generates a homogeneous pseudomagnetic field

�B = 1
2 cẑ. We set the bottom of the ribbon as the coordinate

origin of the y-direction, thus y j = 3
2 ( j − 1) + 1

2 for the blue
atoms in the jth zigzag horizontal chain (see Fig. 1). Since
the exchange coupling of the vertical bond decreases more

FIG. 1. (a) Schematic representation of a strained honeycomb
nanoribbon with zigzag boundaries. The nanoribbon is periodic
along the x-direction, and the width in the y-direction is Ly = 8.
(b) Enlarged plot in the vicinity of the upper boundaries of a Ly =
200 honeycomb nanaribbon. The value of the exchange coupling on
each bond is represented by the thickness of the bond and marked
explicitly near the bonds. c/cmax = 1 is used for the strain strength in
(b).

rapidly with y, the maximum strain parameter cmax is deter-
mined by the appearance of zero exchange coupling on the
bonds along the y-direction. For a ribbon with fixed width
Ly, the vertical bonds connecting the blue sites at the up-
per boundary are expected to vanish at the maximum strain
strength, i.e., J (1 − γ�u1) = J (1 − cmaxymax) = 0, where the
maximum y-coordinate is ymax = 3

2 (Ly − 1) + 1
2 . Hence we

have cmax = 1/ymax, which we take as the scale of the strain
parameter c throughout the paper.

In the following discussions, we study the model in Eq.
(1) under the above nonuniform uniaxial strain using LSWT
and stochastic series expansion (SSE) QMC method with
directed loop updates [30,31]. The SSE method expands the
partition function in power series, and the trace is written as
a sum of diagonal matrix elements. The directed loop updates
make the simulation very efficient [32–34]. Our simulations
are on a honeycomb nanoribbon with the total number of
sites Ns = Lx × Ly with Lx = 20, Ly = 200 the linear sizes.
The nanoribbon is periodic (open) along the x(y) direction.
There are no approximations causing systematic errors, and
the discrete configuration space can be sampled without float-
ing point operations. The temperature is set to be β = 200,
which is low enough to obtain the ground-state properties.

III. MAGNON LANDAU LEVELS IN THE
LINEAR SPIN WAVE THEORY

Let us first investigate the physical properties of the
strained model (1) using LSWT, where the spin operators
are replaced by bosonic ones via Holstein-Primakoff (HP)
transformation [35]. The transformation on sublattice A (the
spin is in the positive z-direction) is defined as

S+
i =

√
2Sai, S−

i =
√

2Sa†
i ,

Sz
i = S − a†

i ai. (5)
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FIG. 2. The magnon spectrum of the AF honeycomb nanoribbon:
(a) without the strain and (b) in the presence of a nonuniform uniaxial
strain. Panels (c) and (d) are the corresponding magnon density of
states of (a) and (b), respectively. The strain strength in (b) and (d) is
c/cmax = 1.

On sublattice B (the spin is in the negative z-direction), the
spin operators are defined as

S+
i =

√
2Sb†

i , S−
i =

√
2Sbi, (6)

Sz
i = b†

i bi − S.

Keeping only the bilinear terms, the bosonic tight binding
Hamiltonian reads

H =
∑
〈i j〉

Ji jS(aib j + a†
i b†

j + a†
i ai + b†

jb j ). (7)

Performing a Fourier transformation in the x-direction and
under the basis X †

kx
= (a†

1,kx
, b1,kx , . . . , a†

Ly,kx
, bLy,kx ), the above

Hamiltonian is written as H = ∑
kx

X †
kx

M(kx )Xkx , where
M(kx ) is a 2Ly × 2Ly matrix. By a standard Bogliubov trans-
formation [36,37], the matrix M(kx ) becomes diagonal, and
the magnon spectra are directly obtained.

The open boundaries are created by breaking the bonds
connecting the outmost sites of the zigzag edges. As shown in
Fig. 2(a), a new branch of modes associated with the bound-
aries appear below the bulk spectrum [38]. Their boundary
nature is further revealed by the distribution of the corre-
sponding wave functions, which is mainly localized near the
boundaries. The density of states (DOS) is plotted in Fig. 2(c),
which resembles that of itinerant electrons in graphene. As
expected, the low-energy linear behavior in DOS is due to
the linear dispersion of the magnon excitation in the antiferro-
magnets. Also, the saddle point at kx = 0 leads to a Van Hove
singularity in the magnon spectrum [39].

After the strain is applied, the degeneracy of the energy
levels is removed, and the spectrum becomes much broader
[see Fig. 2(b)]. This change is most evident at kx = π , where
all energy levels are originally degenerate in the absence of
strain (see Appendix A). In particular, the magnon spectrum
is flatted by the strain, and DOS exhibits oscillating behavior.
The appearance of sharp peaks in the magnon DOS should
result from the flat levels, thus this is direct evidence of the
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FIG. 3. (a) The density of states near the upper end of the
magnon spectrum. (b) The PLL energy ωn as a function of the square
root of the level index n. The solid lines represent linear fitting of the
data. Local susceptibility at the center of the unit cell on the (c) A
sublattice and (d) B sublattice. The linear size is Lx = 20, Ly = 200.
In (a), (c), and (d), the strain strength is c/cmax = 1.

formation of the magnon PLLs. As shown in Fig. 3(a), the
magnon PLLs appear from the upper end of the spectrum,
which is in agreement with the recent studies on the Heisen-
berg model under a triaxial strain. However, by fitting the
positions of the peaks, it is found that the PLL energy ωn is
proportional to the square root of the level index n, which is
in great contrast to the equally spaced PLLs in honeycomb
antiferromagnets under a triaxial strain. In addition, the scope
increases when enhancing the applied strain. Except for the
apparent position, these properties are very similar to the Lan-
dau levels of Dirac fermions in graphene [40] (an analytical
understanding is presented in Appendix B).

The appearance of the magnon PLLs can also be reflected
in the local susceptibility, which is defined as [41]

χ i
loc(ω) =

∫ ∞

−∞
dteiωt

〈
Sx

i (t )Sx
i + Sy

i (t )Sy
i

〉
. (8)

In LSWT, the local susceptibility is formulated in terms of
the δ functions peaked at the magnon eigenvalues, and hence
is equivalent to the density of states in characterizing the
flat PLLs. More importantly, the local susceptibility can be
exactly determined by numerical analytic continuation of the
imaginary time spin correlations obtained by the QMC sim-
ulation. The local susceptibilities on A- and B-sublattice sites
deep in the lattice are shown in Figs. 3(c) and 3(d). Indeed,
both of them demonstrate sharp peaks at exactly the same
positions as those in DOS, further confirming the formation
of the magnon PLLs.

IV. THE EVOLUTION OF THE AF ORDER

We next study how the AF order is affected by the strain.
In LSWT, the existence of Néel order is identified by a fi-
nite local magnetization. Since the honeycomb nanoribbon is
translation invariant in the x-direction, the local magnetization
varies only within the unit cell which extends over the entire
width of the ribbon (see Fig. 1). Figure 4 shows the local
magnetization as a function of site index in the unit cell at
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FIG. 4. The distribution of the local magnetization obtained by
LSWT and QMC simulations at the strain strength (a) c/cmax = 0,
(b) 0.5, and (c) 1. Panels (d) and (e) enlarge the curves near the lower
boundary in (a) and (c), respectively. Here the index range is up to
2Ly = 400 (the same with the figures hereafter), which is due to the
existence of the sublattice degree.

several values of the strain strength. In the absence of strain,
the Néel orders near the boundaries are perturbed, and the
values gradually decrease as the sites approach the bound-
aries. Nevertheless, ms(i) is always finite and becomes almost
uniform away from the boundaries, implying the long-range
AF order still is preserved in the presence of open boundaries.
It is noted that the local magnetization on the outmost sites
of the boundary is much larger than that of its nearby sites
[see Figs. 4(d) and 4(e)]. The two outmost sites represent the
two sublattices of the boundary zigzag chain. Although it is
antiferromagnetic along the 1D chain, the magnetic moments
are unequal within the two-site unit cell, resulting in a net
ferromagnetic moment. Hence a ferrimagnetic order is formed
along the zigzag boundary, which has also been revealed in the
Hubbard model on honeycomb nanoribbons [42–46].

After the strain is applied, the value of the local magneti-
zation monotonically decreases with the strain strength. Since
the exchange coupling is gradually reduced in the y-direction,
the magnetization is more affected on the sites father away
from the lower boundary. In particular, at large enough strain
strength and near the upper boundary the local magnetization
decreases rapidly and becomes negative at a critical position,
implying the AF order vanishes hereafter. This behavior is
due to the exchange couplings of the vertical bonds becoming
negligibly small near the upper boundary, and the system can
be regarded as a collection of isolated 1D Heisenberg chains,
resulting in the breakdown of 2D AF order there. In contrast,
the region near the lower boundary is less affected since the
exchange couplings here are least modified. While the LSWT
can qualitatively demonstrate the evolution of the AF order
with the strain, the exact results should be obtained by the
unbiased QMC simulations.

In QMC simulations, the local value of the magnetization
is given by mqmc

s (i), defined as [47]

mqmc
s (i) =

√√√√ 3

N

N∑
j=1

sgn(i, j)
〈
Sz

i Sz
j

〉
, (9)
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FIG. 5. (a) The local magnetization obtained by QMC near the
critical position for various strain strengths. (b) The parallel and
transverse exchange couplings as a function of the zigzag chain
index.

where the sum is over all lattice sites j, and sgn(i, j) = 1(−1)
if i, j belong to the same (opposite) sublattice. Figure 4
plots the values of mqmc

s (i) at the same strain strengths as
those in LSWT. The QMC values are smaller than the LSWT
ones. Also, the difference between the values from the two
approaches increases as the strain is strengthened. In the ab-
sence of strain, the QMC curve slowly increases and gets a
maximum at the central point. In contrast, the LSWT one is
nearly flat in most of the bulk region. Here it is noted that
the QMC and LSWT results are only slightly different, and
most of the values from the two approaches have less than
a 10% difference. This implies the linear approximation in
the HP transformation is pretty accurate, which has also been
found in the existing literature [48,49]. For the strain strength
c/cmax = 1, a clear transition is visible in the QMC curve near
the upper boundary.

Figure 5(a) plots the local magnetization obtained by QMC
near the critical position for various strain strengths. It shows
the crossover from 2D to 1D behavior is continuous, which
may be due to that the exchange coupling varies smoothly
all the way down to a very small value with the coordinate
y [see Fig. 5(b)]. We cannot determine the exact critical strain
after which there appears such a transition. Nevertheless,
since the transition has already become indistinguishable at
c/cmax = 0.9, the critical value should be pretty large. While
such a transition is also predicted by LSWT with ms(i) = 0,
the QMC transition happens a bit deeper in the ribbon than the
LSWT one. These results imply that although the quantum
fluctuation is omitted, LSWT can still give a qualitatively
correct evolution of the AF order.

How the magnetic property is affected by the strain can
also be demonstrated by the spin correlation C(i, j) = 〈Sz

i Sz
j〉.

Figure 6 plots the spin correlation between two sites within the
super unit cell at c/cmax = 1 for the Heisenberg Hamiltonian.
When the reference point i0 is in the middle of the unit cell,
C(i0, j) is always finite for j < i0 ( j is located in the lower
part), but it gradually decreases in the upper part and becomes
nearly zero from a critical position. In contrast, for a reference
point i1 near the upper boundary, C(i1, j) reduces to zero
quickly as j goes away from i1. We also plot C(i, j) with
both i, j on the same zigzag chain, which stays finite even
for the largest distance. These results are consistent with the
occurrence of a crossover from 2D to 1D magnetic properties
at the critical position. Moreover, it is noted in Fig. 5(a)
that the curve begins to decrease in a slower way after the
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FIG. 6. The spin correlation with the reference point fixed at the
middle point i0 of the unit cell: (a) j varies within the unit cell, (b)
j is on the same zigzag chain with i0 (here i0 corresponds to the
j = 1 site). The reference site is changed to a near-boundary site
i1 in (c) and (d), which are the corresponding plots of (a) and (b),
respectively.

critical position. This can be understood in terms of the spin
correlations. Since the vertical exchange coupling has become
negligibly weak near the upper boundary, the spin correlation
in this direction is nearly zero. In contrast, the spin correla-
tions along the zigzag chain are still considerably large, which
actually dominates the local magnetization. The parallel spin
correlations vary slowly with y here, and so does the local
magnetization. Due to the contribution from the parallel spin
correlations, the local magnetization still has a finite small
value.

V. THE STRAINED XY ANTIFERROMAGNETIC
HONYCOMB NANORIBBON

We next consider the spin- 1
2 XY AF Hamiltonian described

by

HXY = J
∑
〈i j〉

(
Sx

i Sx
j + Sy

i Sy
j

)
. (10)

By a rotation of the coordinate system, the above model be-
comes the XZ Hamiltonian [50]:

HXZ = J
∑
〈i j〉

(
Sx

i Sx
j + Sz

i Sz
j

)
,

= J
∑
〈i j〉

(
Sz

i Sz
j + 1

4

∑
μ,ν=±

Sμ
i Sν

j

)
. (11)

Under a nonuniform uniaxial strain, the same modulation of
the exchange coupling with that in Eq. (2) can be made, and
the application of LSWT is straightforward.

Figure 7(a) plots the magnon density of states. Under PMF
induced by the strain, sharp peaks appear from the upper end
of the spectrum, marking the formation of PLLs. Also, the
energies of PLLs are proportion to

√
nc [n is the level index,

and the PMF magnitude is proportional to the strain strength
c; see Fig. 7(b)], which is very similar to the results from the
strained Heisenberg model. However, such properties are in
great contrast to the situation under a triaxial strain, where
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FIG. 7. (a) The magnon density of states near the upper end of
the spectrum of the strained XY Hamiltonian. (b) The PLL energy ωn

as a function of the square root of the level index n. The distribution
of the local magnetization obtained by LSWT and QMC simulations
at the strain strength c/cmax: (c) 0; (e) 0.5; (f) 1. Panel (d) enlarges
the curves of (c) near the lower boundary. In (a), the strain strength
is c/cmax = 1.

PLLs appear from the middle of the spectrum and the peaks
follow the relations ∝ n

1
3 , n

2
3 [28].

We then investigate how the strain affects the AF order.
Similarly, the local magnetization decreases monotonically in
the y-direction near the upper boundary in the presence of
strain. Compared to the Heisenberg case, the values of the
local magnetization are much larger at the same condition.
Also, as shown in Fig. 7(f), even at the largest strain strength
when the y-direction bonds near the upper boundary are con-
siderably weak, the local magnetization always stays finite,
suggesting the long-range AF order is preserved in the whole
system. This implies the XY Hamiltonian is more robust to the
modulation of the exchange couplings induced by the strain
[51]. Qualitatively, the reason is that there are three (two) spin
components in the Heisenberg (XY ) case, thus the quantum
fluctuation is much stronger in the Heisenberg model than that
in the XY one. The related quantity defined in Eq. (9) is also
calculated using the QMC methods. While the QMC results
are qualitatively consistent with those from LSWT, QMC
gives relatively smaller values at the same strain strengths.

VI. CONCLUSIONS

The magnon PLLs and the evolution of the AF order in the
strained AF honeycomb nanoribbons are studied using LSWT
and QMC simulations. After the strain is applied, the magnon
PLLs are formed from the upper end of the spectrum, and their
level spacings are proportional to the square root of the level
index. Since the exchange couplings are linearly weakened by
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the uniaxial strain, the local magnetization decreases mono-
tonically in the y-direction. Specifically, at large enough strain
strength, the y-direction bonds near the upper boundary be-
come negligibly weak such that the system there is decoupled
into isolated zigzag chains, exhibiting 1D antiferromagnetic
property. The XY Hamiltonian under the same kind of strain
demonstrates similar properties except that the AF order is
more robust than the Heisenberg case. The behavior of the XY
case is in great contrast to that under a triaxial strain, where the
PLLs appear from the middle of the spectrum and the peaks
follow a third-root relation.

In the past several years, significant progress has been
achieved in the field of 2D quantum magnetic materials
[52–55]. 2D magnetic order has been observed in various
magnetic van der Waals materials, and most of them form with
the magnetic elements in a honeycomb lattice [56–60]. All the
2D magnetism can, in principle, be described by three funda-
mental models: Ising, XY , or Heisenberg. Strain engineering,
as an important approach to control and manipulate magnetic
states, has been widely adopted in the research of 2D magnetic
materials [61–64]. Thus the new physical phenomena induced
by the engineered strain would definitely be interesting to the
related experiments. Moreover, the present study will con-
tribute to the theoretical understanding of the behavior of the
neutral quasiparticles in pseudomagnetic fields, and proposes
an alternative routine to manipulate magnons, which may have
potential applications in designing new devices in magnon
spintronics [65,66].
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APPENDIX A: THE ANALYTICAL SOLUTION OF THE
MAGNON EIGENVALUES AT kx = π in Fig. 2(a)

In the absence of strain, the Hamiltonian matrix of Eq. (7)
in the momentum space reads as

M(kx ) = JS

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 γkx 0 0 0 0 · · ·
γ ∗

kx
3 1 0 0 0 0

0 1 3 γ ∗
kx 0 0 0

0 0 γkx 3 1 0 0
0 0 0 1 3 γkx 0
0 0 0 0 γ ∗

kx 3 · · ·
... 0 0 0 0

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A1)

where γkx = 1 + e−ikx . At kx = π , we have γkx=π = 0, thus
M(kx ) is a block diagonal. There are two eigenvalues:
2JS, 2

√
2JS, between which the value 2

√
2JS has a large

degeneracy. The strain breaks the degeneracy, and the spec-
trum is broadened at kx = π , as shown in Fig. 2(b).

APPENDIX B: THE ANALYTICAL TREATMENT BASED
ON THE EFFECTIVE HAMILTONIAN NEAR THE

DIRAC POINT

Here we present the analytical treatment of magnon
pseudo-Landau levels in the stained quantum antiferromag-
netic Heisenberg model based on the effective Hamiltonian
near the Dirac point.

1. The low-energy effective Hamiltonian near the Dirac point

After the spin operators are replaced by bosonic ones via
Holstein-Primakoff transformation, we obtain the following
bosonic tight-binding Hamiltonian:

H = J1S
∑
i, j

(a†
i b†

j + aib j + a†
i ai + b†

jb j )

+ J2S
∑
i, j

(a†
i b†

j + aib j + a†
i ai + b†

jb j )

+ J3S
∑
i, j

(a†
i b†

j + aib j + a†
i ai + b†

jb j ). (B1)

In the momentum space, the Hamiltonian becomes H =∑
k �̂

†
kh(k)�̂k with the basis �̂

†
k = (a†

k bk ) and

h(k) = dx(k)σx + dy(k)σy + (J1 + 2J2)Sσ0,

dx(k) = J1S cos ky + 2J2S cos

√
3kx

2
cos

ky

2
,

dy(k) = −J1S sin ky + 2J2S cos

√
3kx

2
sin

ky

2
,

where σx,y are the Pauli matrices, σ0 is the identity matrix,
and Jn = J (1 − γ�un) with �u1 = εyy,�u2 = �u3 = εyy/4.
Writing the momentum near the Dirac point K = ( 4π

3
√

3
, 0) as

k = K + q, and expanding dy(k), dx(k) to linear order of q,
the resulting Hamiltonian is

h(q) = −3

2
JS

[(
1 − 1

4
εyy

)
qx + 1

2
εyy

]
σx

− 3

2
JS

[(
1 − 3

4
εyy

)
qy + qxqy

2

(
1 − 1

4
εyy

)]
σy

+ JS

(
3 − 3

2
εyy

)
σ0. (B2)

The strain tensor is expected to generate a pseudomagnetic
field, and the vector potential is

�A = γ

2

(
εxx − εyy

−2εxy

)
. (B3)

We choose εyy = c
γ

y to get a homogeneous field �B = 1
2 cẑ. In-

troducing p = 1
2 − qx

4 , s = 1 + qx

2 , r = 3
4 + qx

8 , and changing
y → y + s

rc , ky → −i∂y, we get the effective Hamiltonian near
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the Dirac point,

h(qx ) = −3

2
JS
{[

qx + pc
(

y + s

rc

)]
σx + ircy∂yσy

}

+ 3JS

(
1 − 1

2
cy

)
σ0. (B4)

2. A solvable case without the y-dependent term before σ0

We first consider a specific solvable case: the y-dependent
term before σ0 is dropped artificially. The Hamiltonian reads
as

h(qx ) = −3

2
JS
{[

qx + pc
(

y + s

rc

)]
σx + ircy∂yσy

}
+ 3JSσ0.

(B5)

We consider the eigenvalue problem

τzh(qx )

(
φA(y)
φB(y)

)
= E

(
φA(y)
φB(y)

)
, (B6)

where τz is the Pauli matrix. Expanding the above matrix-
vector multiplication, two first-order differential equations are
obtained,

−3

2

[
qx + pc

(
y + s

rc

)
+ rc

(
y∂y + 1

2

)]
φB = (ε − 3)φA,

(B7)
3

2

[
qx + pc

(
y + s

rc

)
− rc

(
y∂y + 1

2

)]
φA = (ε + 3)φB,

(B8)

where ε = E
(JS) .

Eliminating φA by substituting Eq. (B7) into Eq. (B8),
we obtain a second-order ordinary differential equation with
variable coefficient,

y2φ′′
B + 2yφ′

B −
[

p2

r2
y2 + ηy + �

c2r4
− 1

4

]
φB = 0, (B9)

where � = (qxr + ps)2 − 4r2 + r2( 2
3ε)2 and η = p

cr3 (2qxr +
2ps − cr2). We first examine the asymptotic form of the solu-
tion. As y → −∞, the y2 term dominates, so φ′′

B − p2

r2 φB =
0. The general solution is φB = Ae− p

r y + Be
p
r y. Since e− p

r y

diverges at y → −∞, φB ∼ e
p
r y. Similarly, at y = 0, φB ∼

e− 1
2 +

√
�

cr2 . Taking these asymptotic behaviors into considera-

tion, we can write the eigenfunction as φB = e
p
r ye− 1

2 +
√

�

cr2 u(y),
so that the differential equation can be simplified. In terms of
u(y), Eq. (B9) becomes

yu′′ +
(

1 + 2
√

�

cr2
+ 2p

r
y

)
u′

+ 2p

r

(
1 +

√
�

cr2
− qxr + ps

cr2

)
u = 0. (B10)

2 2.2 2.4 2.6

2.992

2.994

2.996

2.998

3

FIG. 8. Comparison between the analytical solution (B12) and
the dispersion obtained by numerically diagonalizing the Hamilto-
nian matrix near one of the Dirac points. Here the y-dependent term
before σ0 in Eq. (B4) is dropped artificially. The strain strength is
c/cmax = 0.5. The linear size used in the numerical diagonalization
is Ly = 200.

Introducing γ = 1 +
√

�
cr2 , α = 1 +

√
�

cr2 − qxr+ps
cr2 , and z =

− 2p
r y, we arrive at the confluent hypergeometric equation,

zu′′(z) + (γ − z)u′(z) − αu(z) = 0. The above differential
equation has a regular singularity at z = 0 and can be solved
by the series expansion method. One solution is

u(z) = 1 + α

γ

z

1!
+ α(α + 1)

γ (γ + 1)

z2

2!
+ · · · , γ �= 0,−1,−2, . . . .

(B11)

To make u(z) a polynomial so that it is finite, α should be 0 or
a negative integer, i.e., α = −n, n = 0, 1, 2, . . . . Then we get
the following expression for the eigenenergy:

En = 3JS

√
1 − 2 + 3qx

8
nc. (B12)

In the limit of small c, we can approximate the eigenenergy
as En ≈ 3JS(1 − 2+3qx

16 nc), which implies the pseudo-Landau
levels are equally spaced with the level index n. We com-
pare the analytical solution with the dispersion obtained by
numerically diagonalizing the Hamiltonian matrix. As shown
in Fig. 8, the results are in very good consistency near the
Dirac point, which further verifies our calculations in the
paper.

3. The differential equation of the full effective Hamiltonian

Expanding the eigenvalue problem of the full effective
Hamiltonian, we obtain two first-order differential equations:

−3

2

[
qx + pc

(
y + s

rc

)
+ rc

(
y∂y + 1

2

)]
φB =

{
ε −

[
3 − 3

2
c
(

y + s

rc

)]}
φA, (B13)

3

2

[
qx + pc

(
y + s

rc

)
− rc

(
y∂y + 1

2

)]
φA =

{
ε +

[
3 − 3

2
c
(

y + s

rc

)]}
φB. (B14)
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Defining α(y) = 3
2 c(y + s

rc ) and eliminating φA in Eq. (B14), we get the following second-order differential equation of φB:{[
y2 + α

(ε − 3)
y2

]
φ′′

B +
[

2y + 2αy − y2α′(y)

(ε − 3)

]
φ′

B

}
− φB

{
y2

r2

[
p2 + p(pα + rα′)

(ε − 3)

]

+ y

[
p(2ps + 2qxr − cr2)

cr3
+ α

p(2ps + 2qxr − cr2)

cr3(ε − 3)
+ α′ (cr2 + 2ps + 2qxr)

2cr2(ε − 3)

]}

− φB

{
(ps + qxr)2

c2r4
− 1

4
+ α

4(ps + qxr)2 − c2r4

4c2r4(ε − 3)

}

= − 4

9c2r2

{
(ε2 − 9) + [(ε + 3) − α]

(ε − 3)

[
2α(ε − 3) + α2

]− α(ε − 3)

}
φB. (B15)

If α = 0 and α′ = 0 is set, the above equation reduces to Eq. (B9). Due to the presence of the y-dependent term before σ0, the
differential equation becomes much more complex. Defining b = 3

2 c/(ε − 3 + 3s
2r ), Eq. (B15) becomes

(y2 + by3)φ′′
B + (2y + by2)φ′

B − A0φB, (B16)

with

A0 = b
(p2 − 1)

r2
y3 +

{
2b[p(ps + qxr) − (s − 2r)]

cr3
+ p2 − 1

r2

}
y2

+
(

4bε2

9c2r2
+ b(ps + qxr)2 − b(s − 2r)2

c2r4
+ b(ps + qxr)

cr2
+ 2[p(ps + qxr) − (s − 2r)]

cr3
+ b

4
− p

r

)
y

+ 4ε2

9c2r2
+ (ps + qxr)2 − (s − 2r)2

c2r4
− 1

4
.

2 2.5 3

2.85

2.9

2.95

3

FIG. 9. Fitting the dispersion in Fig. 2(b) near the Dirac point
with the formula in Eq. (B17). The fitting parameters are a =
0.379, b = 0.0259, c = 0.0549.

We have tried to decouple the solution using the asymptotic
forms at y = 0 and y → −∞. However, the resulting differ-
ential equation does not fit into any standard one. At present,
it is still unclear whether the differential equation (B17) has
an analytical solution.

4. Fitting the dispersion in Fig. 2(b) with a square-root relation

To further verify the square-root relation of PLLs in the
strained Heisenberg Hamiltonian, we fit the dispersion in
Fig. 2(b) near the Dirac point with the following formula:

En/JS = 3.025 − aq2
x − √

n(bqx + c). (B17)

As shown in Fig. 9, the square-root relation offers a pretty
good fit of several leading PLLs.
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