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Gap resonance in the classical dynamics of the current-biased Josephson tunnel junctions
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This paper reports a novel time-domain expression for the current-response kernels of a Josephson tunnel
junction between BCS superconductors with in general different energy gaps, and its use to simulate the classical
dynamics of such junctions. The simulations show a dynamic regime characterized by the resonance between
the Josephson oscillations and the gap oscillations in the asymptotics of the current kernels that has not been
studied previously. The resonance manifests itself as a hysteresis in the dc current-voltage characteristics of the
current-biased junctions in the voltage range above the energy gap, in addition to the usual “inertial” hysteresis
characteristic for tunnel junctions at voltages below the energy gap. Features of the IV curves related to the gap
resonance, including the above-the-gap hysteresis, should manifest themselves in many structures and devices
utilizing high-quality Josephson tunnel junctions with relatively large, but achievable current densities.
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I. INTRODUCTION

A tunnel junction—two conductors separated by a layer of
insulator that is sufficiently thin to allow for charge trans-
fer between the conductors at a rate that is large enough
to produce a noticeable current [1,2]—has a long and still
continuing history as a source of novel phenomena in physics,
and a tool for both practical devices and scientific experi-
ments. Probably the best studied and widely used are the
Josephson tunnel junctions between superconductors, which
exhibit Josephson effect [3,4], a quantum-coherent transfer
of Cooper pairs, which leads to supercurrent flow across
the tunnel barrier. An important feature of this effect, which
makes possible its various applications, is that the Josephson
supercurrent has the same magnitude as the typical current
associated with electron tunneling in the junction [3,5]. This
is possible because the magnitude of the supercurrent, as a
quantum-coherent process, is determined by the amplitude
of tunneling, in contrast to the probability of tunneling for
electron current. The amplitude of the two-electron transfer
of a Cooper pair has the same magnitude as the probability D
of one-electron transmission through a tunnel barrier, and is
very small, D � 1, for typical tunnel barriers.

Josephson tunnel junctions possess several other charac-
teristics, starting with the strongly nonlinear dynamics of the
dynamic junction variables: Josephson phase difference φ(t )
and the voltage V (t ) across the junction, that make them
ideal building blocks for various devices of superconductor
electronics, including digital circuits [6,7]. Another features
of the high-quality tunnel junctions with D � 1, is that there
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is a wide range of voltages V around zero, where the dissi-
pative electron tunneling is strongly or, ideally, completely
suppressed, and the junction dynamics is reduced to the
quantum-coherent Cooper-pair tunneling. Tunnel junctions in
this regime demonstrate various effects of the macroscopic
quantum dynamics of the Josephson phase φ [8–14], which at
present play most important role in the development of super-
conducting quantum computing circuits (see, e.g., [15–19]).
As a less daunting task, the same suppression of the dissi-
pative electron tunneling makes it possible to use Josephson
tunnel junctions for the development of classical circuits for
thermodynamically reversible computing [20].

Classical current response of a Josephson tunnel junction
to an arbitrary fixed time-dependent voltage V (t ) is well un-
derstood for a long time [21,22] and is described in details in
classic textbooks [23,24]. Nevertheless, although the assump-
tion of the fixed bias voltage V (t ) is natural for the theoretical
calculation of the current in the junction, in practice, typical
bias conditions are quite different, with the simplest case
being the current bias. Nonlinear nature of the Josephson
dynamics makes the task of analyzing the junction transport
properties in these realistic situations quite nontrivial even
if the basic voltage-biased current response is known. Since
the general nonlinear dynamics of the Josephson phase φ is
described more naturally in time domain, additional layer of
difficulty is added to this problem by the fact that in the basic
theoretical description [21,22], the current response is more
naturally calculated in the energy (i.e., frequency) represen-
tation. Expression for the current response of a Josephson
tunnel junction directly in time domain was obtained only
for junctions with equal energy gaps of the two electrodes
[25]. This paper suggests a more general expression for the
time-domain current response of a Josephson tunnel junction
between two BCS superconductors with different energy gaps.
This expression makes it possible to analyze more conve-
niently Josephson dynamics of the current-biased junctions
and calculate the current-voltage characteristics of these junc-
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tions. The calculations show a novel “gap resonance” regime
of the Josephson dynamics in current-biased tunnel junctions.

Next section discusses the main result of the first part of
this paper, expression for the time-domain current response of
a tunnel junction, which is derived in Appendix A. Section III
describes the application of this expression to the simulation
of the Josephson dynamics of the current-biased tunnel junc-
tions and calculates the current-voltage characteristics of the
junction under several different conditions. Section IV esti-
mates the junction parameters under which the gap-resonance
regime of the Josephson dynamics is realized, and concludes.
Appendix B gives some details of the numerical procedure
used in the simulations of the junction dynamics.

II. CURRENT KERNELS

Consider a Josephson tunnel junction between the two BCS
superconductors with in general different energy gaps �1 and
�2. If the bias voltage V (t ) between the superconductors has
an arbitrary dependence on time t , the tunnel current IT (t )
that flows in the junction can be expressed through the time-
dependent Josephson phase difference φ(t ) across the junction
(see, e.g., [23,24]):

IT (t ) =
∫ t

−∞
dt ′

[
Ip(t − t ′) sin

φ(t ) + φ(t ′)
2

+ Iqp(t − t ′) sin
φ(t ) − φ(t ′)

2

]
, φ̇(t ) = 2eV (t )/h̄.

(1)

As shown in Appendix A, the pair current Ip and the
quasiparticle Iqp kernels in this equation have the following
analytical form for the tunnel junction with the normal-state
resistance RN :
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·
[
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. (2)

The functions J0,1 here are the Bessel functions of the first
kind, which for z > 0 can be defined by the following relations
[26]:

J0(z) = 2

π

∫ ∞

1

dx sin zx√
x2 − 1

, J1(z) = − d

dz
J0(z), (3)

while the functions A0,1 depend on the temperature T of
the superconductors through the ratios β j ≡ � j/2T , j = 1, 2,

and are defined, also for z > 0, as

A0(z, β ) = − 2

π

∫ ∞

1

dx cos zx√
x2 − 1

tanh βx,

A1(z, β ) = − d

dz
A0(z, β ) = − 2

π

∫ ∞

1

dxx sin zx√
x2 − 1

tanh βx.

(4)

The first, δ′ term in the quasiparticle kernel Iqp (2) accounts for
the normal-state Ohmic contribution IN to the current: IN (t ) =
V (t )/RN .

At low temperatures, when tanh βx ≡ 1, the functions Aj

are reduced to the Bessel functions Yj (z), j = 0, 1, of the
second kind:

Aj (z, β → ∞) = Yj (z).

As a result, in the low-temperature limit, the current kernels
(2) are expressed through the well-studied Bessel functions
only:

Ip(t ) = −π�1�2

2eh̄RN
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[
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)

+Y1

(
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)
J1

(
�2t
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)]
. (5)

This result generalizes to different energy gaps �1 �= �2 the
equations obtained by Harris [25] for equal gaps. Also, one
can check that the pair and the quasiparticle kernels (5) re-
produce the frequency-domain expressions for these kernels
at T = 0 in terms of the elliptic integrals [21,22] in the cases
for which the corresponding integrals of the Bessel functions
[27] are available [see, e.g., Eq. (13) below].

As a brief aside, one can note that the generalization to
different energy gaps implies that Eqs. (1) to (5) can be used
to describe the time-dependent current response of a nor-
mal metal/superconductor (NS) junction in the tunnel limit.
Indeed, for �2 = 0, the pair current Ip vanishes, while in
the limit �2 → 0, the quasiparticle kernel is obtained from
A1(z, β2) evaluated for z, β2 → 0, with z/β2 = 2T t/h̄. For
z → 0 (but z �= 0), the integral A1(z, β2) is determined by the
range of large values of the integration variable, where it is
reduced to

�2A1(z, β2) = −2�2

π

∫ ∞

0
dx sin zx tanh β2xe−εx

∣∣∣
ε→0

= − �2

πβ2

∞∑
n=−∞

(−1)nz/2β2

n2 + (z/2β2)2

= − 2T

sinh(πT t/h̄)
. (6)
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This gives for the current-response kernel of the NS tunnel
junction:

I (NS)
qp (t ) = −h̄

eRN
δ′(t − 0) − πT �

eh̄RN

J1(t�/h̄)

sinh(πT t/h̄)
. (7)

This expression coincides with the D → 0 limit of the general
expression for the time-dependent response of an NS junction
with an arbitrary electron transparency D [28].

The next section describes the application of the expres-
sions for the current kernels presented in this section to
the simulations of the classical Josephson dynamics of the
current-biased junctions. An outline of the derivation of these
expressions is discussed in Appendix A.

III. GAP RESONANCE IN THE DYNAMICS OF THE
CURRENT-BIASED JUNCTIONS

As an application of the current kernels obtained in the
previous section, I now discuss the simulations of the classical
dynamics of a Josephson phase φ across a current-biased
Josephson tunnel junction formed by the BCS superconduc-
tors with in general different gap energies �1 and �2. In
this paper, the simulations are limited to the low-temperature
regime, when the current kernels are given by Eq. (5) con-
taining only the Bessel functions. The “brute-force” approach
to the simulation of the junction dynamics employed here
consists of the direct numerical evaluation of the current ker-
nels (as described in the Appendix B), their direct numerical
integration at each step of the time evolution, and subsequent
solution of the integro-differential equations for the junction
dynamics that are described below. This approach differs from
the existing approaches to the simulation of the Josephson
dynamics in the tunnel-junction model [29–32], which use the
scheme that avoids the need to solve the integro-differential
equations, and in particular, to evaluate the integrals (1) for the
tunnel current at each time step of the Josephson evolution.
The scheme is based on the approximate representation of
the current kernels by the sums of the exponentials, which
effectively makes it possible to take the integrals analyti-
cally. An important advantage of this computation scheme
is that it is very efficient and enables one to treat practical
present-day circuits of superconductor electronics with the
number of junctions that can reach into hundreds of thou-
sands. On the other hand, because of the singular nature of
the current kernels, which are characterized by the very slow
and oscillatory decay with time, this approach can create
some uncertainty as to whether the features observed in the
numerical simulations are real or the consequences of the
approximations used for the current kernels [33]. While the
brute-force scheme adopted in this paper is much slower, it
does not create this uncertainty. The main new result of the
simulations presented below is the demonstration of the “gap
resonance” regime of the junction dynamics, which produces
the hysteresis in the current-voltage characteristics of the
current-biased junction appearing in the range where the dc
component of the voltage V across the junction is above the
gap value Vg = (�1 + �2)/e. In what follows, I present the
results of the detailed numerical simulations of the dynamics
of the current-biased Josephson tunnel junctions that show the

FIG. 1. Current-voltage characteristic of a current-biased
Josephson tunnel junction between two BCS superconductors.
Parameters β and w are defined by Eqs. (9) and (15), respectively.

gap resonance, and provide the semi-quantitative analytical
explanation of the above-the-gap hysteresis.

Classical Josephson dynamics of a Josephson tunnel junc-
tion shunted by an Ohmic resistor RS and biased by in general
time-dependent external current I (t ) (see the equivalent circuit
in the inset in Fig. 1) is governed by the standard set of
coupled dynamic equations for the phase φ across the junction
and the instantaneous voltage V on the junction capacitance C:

φ̇ = 2eV

h̄
, CV̇ = I (t ) − V

RS
− IT (t ). (8)

Here, the tunnel current IT is given by Eq. (1) with the current
kernels (2). Since the calculation of tunnel current IT (1) re-
quires integration over time, the resulting evolution equations
(8) for the phase φ are the integro-differential equations. The
first step towards their numerical solution is to express them in
the dimensionless form. To do this, it is natural to normalize
time t to the frequency � of the gap oscillations, � = (�1 +
�2)/h̄, and the voltage V – to half of the gap voltage Vt =
(�1 + �2)/e. Then, it is convenient to introduce the auxiliary
dimensionless parameters α = 1 + RN/RS characterising the
degree to which the junction is shunted, with α = 1 describing
the unshunted junction, and λ = (�1 + �2)2/(π�1�2) char-
acterising the magnitude of the difference between the two
energy gaps of the junction electrodes. With this definition,
λ = 4/π corresponds to the junction with equal energy gaps.

The main physical parameter that controls the nature of the
phase dynamics in the tunnel junction is the ratio of the time
constant RNC of the junction capacitance to the gap time:

β = �1 + �2

h̄
RNC. (9)

For the purpose of the discussion of the junction dynamics
below, it will be convenient to view β simply as the parame-
ter characterizing the magnitude of the junction capacitance,
ranging from the negligibly small capacitance at β = 0 to
large capacitance for β 	 1. It should be noted, however, that
this view is misleading in one respect. For typical tunnel junc-
tions, the time constant RNC (and therefore β) is independent
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of the junction area, in contrast to the absolute magnitude
of the junction capacitance, because the area dependence of
the junction resistance RN compensates that of the capaci-
tance. Both the time constant RNC and β depend only on
the effective electron transparency of the tunnel barrier that
is characterized usually through the “critical current density”,
decreasing with increasing current density as the inverse of it.

With this set of the dimensionless parameters and vari-
ables, the dynamic equations (8) with the appropriate current
kernels take the form:

βλv̇ = i(t ) − αλv +
∫ ∞

0
dτ

[
ip(τ ) sin

φ(t ) + φ(t − τ )

2

−iqp(τ ) sin
φ(t ) − φ(t − τ )

2

]
, φ̇ = v, (10)

where both times t and τ are normalized to the gap frequency,
and the current kernels are expressed through the Bessel func-
tions:

ip(τ ) = J0(r1τ )Y0(r2τ ) + J0(r2τ )Y0(r1τ ),

iqp(τ ) = J1(r1τ )Y1(r2τ ) + J1(r2τ )Y1(r1τ ). (11)

Here r j are the partial gaps: r j = � j/(�1 + �2), j = 1, 2,
i.e., r1 + r2 = 1.

Conventions adopted above dictate that the current in the
junction is normalized to

IN = π�1�2

2e(�1 + �2)RN
, (12)

e.g., i = I/IN . The normalization current IN is different from
the junction critical current IC , which is expressed in terms of
the complete elliptic integral of the first kind K (m) as (see,
e.g., [23,24])

IC =
∫ ∞

0
dtIp(t ) = 2�1�2

e(�1 + �2)RN
K

( |�1 − �2|
�1 + �2

)
. (13)

For completeness, one should note that the elliptic integral
in Eq. (13) is defined as in Ref. [27], not as in Ref. [26], in
which case the argument of K should be squared. In the case of
equal gaps, the relation between the two currents simplifies to
IN = IC/2.

One of the main qualitative features of the current in a
Josephson tunnel junction are the singularities (peaks and
jumps) of the current components resulting from the singu-
larity of the density of state in the superconducting electrodes
at the edge of the energy gap. In the time domain, this gap-
edge singularity manifests itself in a very slow decay of the
quasiparticle and the pair current kernels. Using the standard
expressions for the leading asymptotic behavior of the Bessel
functions at large arguments, we see that at large time, τ 	 1,
the current kernels (11) simplify to:

−ip(τ ) = iqp(τ ) = 2

π
√

r1r2

cos τ

τ
. (14)

Although this expression is derived for the current kernels
at vanishing temperature, the finite temperature T does not
change the slow-decaying nature of this asymptotic behav-
ior. Using Eq. (4) for the finite-temperature regime, one can
show that the amplitude of the asymptotic (14) decreases
as tanh �/T as a function of temperature T , while its time

dependence remain the same. This means that the problems
of divergence resulting from the slow decay of the current
kernels are not cured by finite temperatures. This conclusion is
qualitatively consistent with the fact that the long-time asymp-
totic behavior (14) of the current kernels is produced by the
singularity of the superconducting density of states at energy
�, which is not affected by the temperature. Not too close to
the superconducting transition, the temperature changes only
the occupation of the states at the gap edge, which leads to
the decrease of the overall magnitude of the asymptotics (14)
without affecting its dependence on time.

Expression (14) for the long-time asymptotics of the cur-
rent kernels shows that the main integral (1) for the tunnel
current is not absolutely convergent. When the evolution of
the Josephson phase is such that the function cos τ in the
asymptotics (1) taken together with the corresponding func-
tions of the Josephson phase in Eq. (1) has a nonvanishing
average over the period of the gap oscillations, the tunnel
current diverges logarithmically because of the slow, 1/τ ,
decay of the current kernels (14) with time. At fixed bias
voltage, this leads to the logarithmic “Riedel” singularity [34]
of the supercurrent amplitude at the gap voltage. Of course, in
real Josephson junctions, this singularity is smeared by several
mechanisms (see, e.g., [35]), the two most basic one being
small static variations of the energy gap over the area of the
junction, and electron-phonon relaxation producing finite life-
time of the quasiparticle energy states in the superconducting
electrodes of the junction. In junctions with finite electron
transparency D (assumed to be vanishingly small in tunnel
junctions), finite D itself directly smears the Riedel singularity
[36]. Smearing of any kind turns Riedel singularity into a
finite “Riedel peak” of the supercurrent, which was actively
studied since the early days of investigations of the Josephson
effect—see, e.g., [37–42]. These investigations showed that
the typical magnitude of the energy gap smearing in tunnel
junctions is quite small, on the order of 0.01 of the energy gap
itself. Different gap smearing mechanisms produce different
specific time dependence of the decoherence factors for the
gap oscillations. For instance, static variations of the gap over
the junction area results in the Gaussian decay of the gap
oscillations, while the finite lifetime of the quasiparticle states,
in the most basic approximation, leads to the exponential de-
cay. For realistic weak smearing of the gap, however, precise
nature of the smearing is not important. In time domain, weak
smearing affects only the long-time asymptotic behavior (14)
of the current kernels. It suppresses the logarithmic diver-
gence of the current by effectively limiting the integration
range in Eq. (1) for the tunnel current to some finite time
t0. As a result, only this cut-off time, and not the precise
time profile of the cut-off is important in the regime of weak
gap smearing, when t0 is much larger than the gap oscillation
period 2π/�.

This means that in order to obtain a well-defined tunnel
current IT (t ), and from this, a consistent description of the
Josephson dynamics of a tunnel junction based on Eqs. (8),
(10), and (11), one needs to include in the model a certain
smearing mechanism of the energy gap, which, in time do-
main, ensures a faster decay of the current kernels than in
the ideal BCS regime described by Eq. (14). Numerical sim-
ulations discussed below assume a model of small Gaussian

043218-4



GAP RESONANCE IN THE CLASSICAL DYNAMICS OF … PHYSICAL REVIEW RESEARCH 3, 043218 (2021)

fluctuations of the gap across the junction area, which pro-
duces an extra Gaussian factor multiplying the current kernels
(2) and improving convergence of the current integrals (1).
When the kernels are expressed through the dimensionless
time τ , as in Eq. (11), the pair kernel is transformed then like
this:

ip(τ ) → e−w2τ 2
ip(τ ), (15)

with the similar transformation of the quasiparticle current
kernel iqp(τ ). Parameter w in Eq. (15) characterizes the
gap smearing, and effectively cuts off the current kernels at
time t0 
 1/(�w). As follows from the experimental results
[37–42], one can use an estimate w 
 0.01, although the
gap smearing strength varies for different junction materials
and structures. Such a Gaussian suppression factor for the
gap oscillations in time-domain implies that the magnitude
of the total energy gap of the junction exhibits small Gaus-
sian fluctuations around the mean value �1 + �2 of relative
magnitude w.

I now discuss the results for the dc current-voltage charac-
teristics (“IV curves”) of a current-biased Josephson tunnel
junction obtained by the direct numerical solution of the
integro-differential equations (10) with the current kernels
(11) regularized according to Eq. (15). Although finite shunt
resistance RS does not make the simulation of the junction
dynamics any more difficult, to avoid extra parameters that
are not relevant to our main purpose, only unshunted junc-
tions are considered below. Figure 1 shows an example of an
IV curve calculated for the typical value of the broadening
parameter, w = 0.01, and a moderate junction capacitance
β = 0.3. The main feature of the IV curve is that it exhibits
two hysteresis loops: one at voltages below the gap voltage
Vg = (�1 + �2)/e, and one – above the gap. The hysteresis
at V < Vg is well understood in terms of the inertia introduced
into the phase dynamics by the junction electric capacitance
C, and is viewed as the characteristic feature of the tunnel-
junction behavior in the Josephson dynamics. Indeed, for large
capacitance and weak dissipation characteristic for tunnel
junctions, the bias current needs to be reduced well below
the critical current in order to stop the time evolution of
the phase. In contrast to the inertial hysteresis, to the best
of author’s knowledge, the above-the-gap hysteresis has not
been analyzed or discussed previously, despite some indirect
evidence in the literature [43,44].

Figure 1 presents an example of the IV curve of
the “asymmetric” junction with different energy gaps,
�1 = 0.5�2. By making similar calculations for other gap
ratios one can see that the difference of the energy gaps of the
two junction electrodes does not have qualitative effects on
the junction current-voltage characteristics. To simplify the
discussion of the results, in what follows, I treat numerically
only the case of equal gaps, �1 = �2 ≡ �. Consistent with
its inertial mechanism, the hysteresis at V < Vg in the IV
curves becomes larger with increasing junction capacitance,
i.e., increasing β. As can be seen from Fig. 2, which shows
the IV curve for vanishing junction capacitance, β = 0, the
hysteresis at V � Vg becomes, by contrast, more pronounced
with decreasing capacitance C. With increasing β, this
hysteresis shrinks, and one can see that for equal gaps and
w = 0.01, it disappears for β > 0.6. Inertial hysteresis at

FIG. 2. Current-voltage characteristic of a current-biased
Josephson tunnel junction with negligible junction capacitance and
equal energy gaps of the electrodes.

V < Vg is indeed smaller in Fig. 2, but does not vanishes
completely, as might have been expected for vanishing
capacitance. The most probable reason for this is the reactive
component of the tunnel current that results in a complex time
evolution of the phase, which gives a nonvanishing effective
correction to the junction capacitance. To understand the
origin of the hysteresis at V � Vg, one can note from Fig. 2
that one, “vertical”, side of the hysteresis is very close the gap
voltage, V 
 Vg. This suggests that the hysteresis is related to
the Riedel singularity of the supercurrent in a tunnel junction.
This consideration is supported by the IV curves calculated
for the junction dynamics with reduced pair component
of the tunnel current (something that can be achieved in
principle, e.g., with the help of a magnetic field) or increased
broadening parameter w. As one can see from Fig. 3, in
both cases, above-the-gap hysteresis is indeed suppressed.
Reduction of the pair component of the current leads also to
a smaller inertial hysteresis because of the reduced junction
critical current. All this makes the junction IV curve shown in
Fig. 3(a) very close to just the dependence of the quasiparticle
component of the tunnel current on voltage in the regime of
the fixed dc bias voltage V . Extra (but still small) broadening
of the gap singularity illustrated in Fig. 3(b) does not affect
the inertial hysteresis while reducing the hysteresis at V � Vg.
This confirms that the latter hysteresis has the same origin as
the Riedel peak of the supercurrent at fixed bias voltage.

To develop a more detailed understanding of this hystere-
sis, it is helpful to look at the time evolution of the Josephson
phase φ(t ) on the vertical branch of the hysteresis, V 
 Vg.
An example of this evolution is shown in Fig. 4, which
plots φ(t ) for the junction with vanishing capacitance, β = 0,
biased on the vertical branch of the hysteresis: I = 2.0IC ,
V 
 2�/e. One sees from this plot that the phase evolves in a
step-like manner, with the junction spending large fraction of
the Josephson oscillation period with φ(t ) 
 (π/2)mod(2π ).
Since V 
 Vg in this regime, the Josephson frequency ωJ =
2eV/h̄ is simply related to the gap oscillations frequency,
ωJ = 2�, and as shown below, the integral of the asymptotics
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FIG. 3. Current-voltage characteristics of a current-biased
Josephson tunnel junction: (a) with suppressed supercurrent:
ip(τ ) → 0.1ip(τ ), and (b) with increased broadening of the gap
singularity.

of the pair current indeed gives a nonvanishing contribution to
the dc tunnel current.

In more details, we assume the simplest model of the phase
evolution qualitatively consistent with the actual staircase-like
time dependence shown in Fig. 4:

φ(t ) = π

2
+ 2πn(t ), (16)

where n(t ) is an integer that increases by 1 with each period
2π/ωJ of the Josephson oscillations. For such time depen-
dence of the phase, sin φ(t ) ≡ 1, while sin[φ(t ) − φ(t ′)]/2 ≡
0. This means that besides the Ohmic component, only the
pair current gives nonvanishing contribution to the total tunnel
current, and

sin
φ(t ) + φ(t ′)

2
= sin φ(t ) cos

φ(t ) − φ(t ′)
2

= cos π [n(t ) + n(t ′)] = (−1)n(t )+n(t ′ ).

Under the assumption that the Riedel singularity is
smeared only weakly, the pair component of the tunnel current
is dominated in time domain by its large-time asymptotics
(14). In this approximation, expression for the pair current in

FIG. 4. Typical time evolution of the Josephson phase across the
current-biased Josephson tunnel junction on the vertical branch of the
above-the-gap hysteresis. The plotted phase evolution corresponds to
the point I = 2.0IC , V 
 2�/e on the IV curve shown in Fig. 2. Note
that the time t in this plot is normalized to the total gap frequency, i.e.,
the period of the gap oscillations is 2π . The period of the Josephson
oscillations, which have the frequency that is twice large than the gap
frequency, is π , consistent with the plot.

dimensional form is:

I (t ) =
√

�1�2

eRN

∫
dη

η
cos �η sin

φ(t ) + φ(t − η)

2
, (17)

where the lower limit of the integral is set by condition of
validity of the long-time asymptotics of the Bessel functions
to η 
 �−1, while the upper limit is determined by the width
of the Riedel singularity, e.g., by Eq. (15): η 
 (w�)−1. For
small width of the Riedel singularity, w � 1, the integral
in Eq. (17) can be found in two steps. First, one averages
out the rapidly-varying terms of frequency � in Eq. (17) by
integrating over one period of the gap oscillations neglecting
the slow-varying factors, including the factor 1/η. Then, one
integrates the slow-varying terms with frequencies on the
order of w�, with high-frequency terms already averaged out.

On the vertical branch of the above-the-gap hysteresis, the
deviation δV of the dc voltage V across the junction from the
gap value is small. As will be seen soon, it is proportional to
the width of the Riedel singularity, δV ≡ V − Vg ∝ w. This
means that the deviation of the Josephson frequency from
2� is also small, and can be neglected when evaluating the
integral (17) for the pair current over one period of the gap
oscillations:

I ′(t ) =
√

�1�2

eRN

�

2π

∫ 2π/�

0
dη cos �η (−1)n(t )+n(t−η)

= 2

π

√
�1�2

eRN
| sin �t |. (18)

In this expression, it is assumed that the time t is counted
starting at one of the jumps of the staircase-like evolution of
the Josephson phase (Fig. 4). To get the full magnitude of the
pair current for the phase (16) we now need to take the second
step and integrate the current (18) over the full range of the
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gap oscillations in Eq. (17). In the approximation discussed
above, the corresponding integral is∫ ∞

�−1

dη

η
cos[(� − ωJ/2)η]e−w�η = ln[w2 + (δV/Vg)2]−1/2.

Combining these two results, we obtain an expression for the
pair current on the vertical side of the above-the-gap hysteresis
in the approximation (16) for φ(t ):

I ′(t ) = 2

π

√
�1�2

eRN
ln[w2 + (δV/Vg)2]−1/2| sin �t |. (19)

Although, obviously, the assumption (16) of the sharp
steps in the evolution of the phase φ(t ) and the resulting
time dependence (19) of the pair current do not provide an
exact self-consistent solution of the evolution equations (8),
they describe the main qualitative feature of the smoother
self-consistent evolution obtained by direct numerical solution
of Eqs. (8) and shown in Fig. 4. The staircase-like Josephson
phase in Fig. 4 produces a finite dc component of the
supercurrent in the junction, an estimate of which is obtained
from Eq. (19):

I = 8

π2
IR, IR ≡

√
�1�2

2eRN
ln[w2 + (δV/Vg)2]−1/2. (20)

By contrast, for fixed bias voltage V across the junction,
the regime that approximately describes the higher-voltage
branch of the above-the gap hysteresis, the pair current does
not have a dc component. If the phase evolves simply as
φ(t ) = φ0 + ωJt , the nonvanishing contribution to the pair
current Eq. (17) comes from the term:

sin
φ(t ) + φ(t ′)

2
= sin φ(t ) cos

ωJ (t ′ − t )

2
.

The same calculation as done above for the phase (16) shows
then that the current (17) in this regime is

I ′(t ) = IR sin φ(t ), (21)

and indeed averages to zero over time t . This also shows that
the current IR introduced in Eq. (20) has the meaning of the
supercurrent amplitude in the junction voltage-biased in the
vicinity of the Riedel singularity.

In summary, the difference between the vanishing and fi-
nite dc components of the pair current for the “fixed-voltage”
linear evolution of the phase on one branch of the hysteresis,
and the staircase-like evolution (Fig. 4) on the other branch,
explains the mechanism of the above-the-gap hysteresis in the
current-bias Josephson tunnel junctions. This means that the
hysteresis is closely related to the logarithmic gap singularity
of the supercurrent in tunnel junctions. Since the magnitude
of the dc component (20) of the supercurrent varies with the
dc voltage V across the junction on the scale wVg, for small
smearing w of the gap singularity, the side of the hysteresis
near the gap voltage looks nearly vertical (Fig. 2), with the
voltage V pinned down to the gap voltage Vg. Also, from the
point of view of this explanation, the fact that the hysteresis
is suppressed with increasing junction capacitance is natural,
since qualitatively, the capacitance makes the phase evolution
more linear, suppressing the steps responsible for the dc part
of the supercurrent.

IV. CONCLUSION

In summary, a novel expression for the time-domain cur-
rent kernels of a Josephson tunnel junctions between two
ideal BCS superconductors with in general different energy
gaps is derived and used to simulate the dynamics of the
current-biased junctions. The simulations make it possible
to study in detail the current-voltage characteristics of such
junctions and reveal their qualitatively new features, the main
one—an additional hysteresis at voltages above the gap volt-
age of the junction. The hysteresis is related to the Riedel
singularity of the junction supercurrent and is explained in
terms of the step-like time dependence of the Josephson oscil-
lations at the gap voltage, that can be viewed as characteristic
feature of the resonance between the Josephson oscillations
and the gap oscillations with frequency � = (�1 + �2)/h̄
in the pair current kernel of the junction, where �’s are the
energy gaps of the two junction electrodes. This regime of
the gap resonance exists in the junctions with the relatively
short RC time constant, β ≡ �RNC � 0.6, where RN is the
normal-state resistance, and C – capacitance of the junction.
In typical Josephson tunnel junctions, RC time constant is
nearly independent of the junction area, and characterizes the
“critical current density” j. Since β is proportional to the
gap frequency, the condition that β is not too large is more
difficult to fulfill in junctions employing superconductors with
large energy gaps, like niobium that is used frequently to
produce the large-scale circuits of superconductor electron-
ics. Aluminum junctions, which are also quite standard, have
significantly smaller gap � 
 0.2 meV, so that the gap fre-
quency is � 
 0.6 THz and reaching the regime of the gap
resonance, β � 0.6 requires junctions with the time constant
RNC about 1 ps. High critical current density can be reached
in tunnel junctions with insulator layer thickness below 1 nm.
Combined with the relative dielectric constant ε 
 8 of the
standard aluminum oxide tunnel barrier, this gives the elec-
tric capacitance per unit area C 
 7 × 10−14 F/μm2, and
RNC 
 1 ps for the resistance of unit area 15 Ohm μm2. This
translates into a critical current density j 
 2 kA/cm2 that
should be achievable in junctions, which still preserve both the
high-quality tunnel barriers and superconducting electrodes
with sharp edges of the energy gap.
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APPENDIX A

This Appendix presents the derivation of the expressions
for the current kernels discussed in Sec. I. Since the calcula-
tion of the tunnel current in a Josephson junction is described
in details in the literature, only the steps leading specifically
to Eqs. (2) are outlined.
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Using the standard method of the tunnel Hamiltonian, the
current IT (t ) in a Josephson tunnel junction can be expressed
as in Eq. (1) with the current kernels determined as follows.
First, the standard evaluation of the pair creation/annihalation
terms in the two junction electrodes (see, e.g., [23]) defines
the pair-current kernel:

Ip(t ) = 2�1�2

πeh̄RN
Im[F1(t )F2(t )],

Fj (t ) =
∫

dξ

ξ
f (ξ )ρ j (ξ )e−iξ t/h̄, ρ j (ξ ) = |ξ |θ(

ξ 2 − �2
j

)
√

ξ 2 − �2
j

.

(A1)

Here ξ is the energy of the quasiparticle states of the BCS
Hamiltonian, f (ξ ) is the Fermi distribution function at tem-
perature T , and ρ j (ξ ) is the superconducting density of states
in the jth electrode. Taking into account in Eq. (A1) that

Im[e−iξ t/h̄e−iζ t/h̄] = − sin
ξ t

h̄
cos

ζ t

h̄
− cos

ξ t

h̄
sin

ζ t

h̄
,

and

f (ξ ) + f (−ξ ) = 1, f (ξ ) − f (−ξ ) = − tanh(ξ/2T ),

one directly obtains Eqs. (2) and (4) for Ip(t ).
Similarly to Eq. (A1) for the pair kernel, equation for the

quasiparticle current kernel Iqp(t ) is

Iqp(t ) = 2

πeh̄RN
Im[G1(t )G2(t )],

Gj (t ) =
∫

dξ f (ξ )ρ j (ξ )e−iξ t/h̄. (A2)

The same transformations of Eq. (A2) as for the Eq. (A1)
would give

Iqp(t ) = 2

πeh̄RN

∫ ∞

0
dξdζρ1(ξ )ρ2(ζ )

·
(

sin
ξ t

h̄
cos

ζ t

h̄
tanh

ξ

2T
+ cos

ξ t

h̄
sin

ζ t

h̄
tanh

ζ

2T

)
,

(A3)

and reproduce directly the integral part of the quasiparticle
kernel (2) in terms of the function J1(z) and A1(z, β ). This
conclusion, however, misses the normal-state Ohmic contri-
bution to the current determined by the singular part of the
integrals for J1(z) and A1(z, β ), which are not properly con-
vergent. A more accurate transformation of the expression for
Iqp requires to explicitly separate the singular part of these
integrals, something that can be achieved by subtracting the
normal density of states [equal to 1 in the conventions of
Eqs. (A1) and (A2)] from the superconducting ones:

ρ1ρ2 = (ρ1 − 1)(ρ2 − 1) + (ρ1 − 1) + (ρ2 − 1) + 1 (A4)

in Eq. (A2).
Then, one needs to do the calculation similar to that for

the pair current kernel (A1) individually for each term in the
expansion (A4). For the last, normal-state term, repeating the
steps similar to those in Eq. (6), one obtains

GN (t ) ≡
∫

dξ f (ξ )e−iξ t/h̄ = iπT

sinh[(πT t/h̄) + i0]
. (A5)

With this result, Eq. (A2) shows that the normal-state contri-
bution to the quasiparticle current kernel is

IN (t ) = 2

πeh̄RN
Im[GN (t )]2

= −2πT 2

eh̄RN
Im

1

sinh2[(πT t/h̄) + i0]
,

= 2T

eRN

d

dt
Im coth[(πT t/h̄) + i0] = − 2h̄

eRN
δ′(t ). (A6)

This expression can be transformed into the corresponding
part of Eq. (2). To provide the context for this transformation,
it should be mentioned that all current kernels discussed in
this paper are obtained by the perturbation theory in tunneling,
which leads to Eq. (1) for the current. Although the structure
of the perturbation theory itself ensures through Eq. (1) that
the current response to the bias voltage has the causal struc-
ture, the perturbative current kernels do not have this property.
As can be seen from the integral form of the current kernel
components (3) and (4) (not the final form in terms of the
Bessel functions) the kernels Ip(t ), Iqp(t ) have the property

Ip(−t ) = −Ip(t ), Iqp(−t ) = −Iqp(t ).

They do not vanish for t < 0 as would be natural for the causal
response, and as indeed happens in the nonperturbative calcu-
lations (see, e.g., [28]). For the regularized “superconducting”
part of the current kernels this is a formal property, since only
the t > 0 parts enter expression for the current. The singular
nature of the normal part (A6), however, makes it necessary
to resolve the singularity using the relation

2
∫ ∞

0
dtδ(t ) = 1 =

∫ ∞

0
dtδ(t − 0).

Equation (2) is written in the form that avoids this discussion.
The next term in Eq. (A4) one should deal with is ρ − 1,

i.e.,∫
dξ f (ξ )[ρ(ξ ) − 1]e−iξ t/h̄ =

∫ ∞

0
dξ [ρ(ξ ) − 1]

(
cos

ξ t

h̄

+ i sin
ξ t

h̄
tanh

ξ

2T

)
.

Written in dimensionless form (x = ξ/�, z = �t/h̄), its real
part is

�

∫ ∞

0
dx

[xθ (x − 1)√
x2 − 1

− 1
]

cos zx, (A7)

and is absolutely convergent. The second term in the brackets
in this expression affects the value of the integral only at
z = 0: ∫ ∞

0
dx cos zxe−εx

∣∣∣
ε→0

= πδ(z),

while the first term is the derivative of the integral (3) for J0(z).
This gives us the following expression for J1(z) for z > 0:

J1(z) = − 2

π

∫ ∞

1
dx

x cos zx√
x2 − 1

.
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For z = 0, the value of J1(0) = 0 is determined by the full
integral (A7) with removed divergence.

Making use of Eq. (6), one can express the dimensionless
form of the imaginary part of the ρ − 1 term as∫ ∞

0
dx

[xθ (x − 1)√
x2 − 1

− 1
]

sin zx tanh βx = −π

2
(A1 + S),

(A8)
where A1 is defined in Eq. (4) and

S = 1

β sinh(πT t/h̄)
.

Since the total integral (A8) is absolutely convergent, we

know that (A1 + S)|z→0 = 0, i.e., A1 diverges in the same way
as S for small t .

Combining the results for the real and imaginary parts of
the ρ − 1 term we get∫

dξ f (ξ )[ρ(ξ ) − 1]e−iξ t/h̄ = −π�

2
[J1(z) + i(A1 + S)].

(A9)
Also, Eq. (A5) for GN (t ) can be written as

GN (t ) = π�

2

[2h̄

�
δ(t ) + iS(t )

]
. (A10)

Using Eqs. (A9) and (A10) to evaluate the contributions to the
quasiparticle current kernel (A2) of all three terms (besides
the normal-state term) in the expansion (A4), one gets the
following total:

π2�1�2

4
Im

{
[J1 + i(A1 + S)]|�1 [J1 + i(A1 + S)]|�2

−[J1 + i(A1 + S)]|�1

[
2h̄

�
δ(t ) + iS

]∣∣∣∣
�2

−[J1 + i(A1 + S)]|�2

[
2h̄

�1
δ(t ) + iS

]∣∣∣∣
�1

}

= π2�1�2

4

{
J1

(
�1t

h̄

)
A1

(
�2t

h̄
, β2

)

+J1

(
�2t

h̄

)
A1

(
�1t

h̄
, β1

)}
,

where in the last line we took into account that (A1 + S) = 0
for t = 0 ensuring that the products (A1 + S)δ(t ) vanish. To-
gether with the normal-state contribution (A6) this equation
gives the quasiparticle current kernel (2).

APPENDIX B

The main element of the numerical procedure used to
simulate the Josephson dynamics of the current-biased tunnel
junctions in Sec. III is the calculation of the Bessel functions
that determine the current kernels (5), and through them, the
time-dependent current response of the junction. The four
Bessel functions that enter the expressions (5) for the current
kernels were calculated from the standard expressions. For
small values of the dimensionless argument x, one can use
the power-series expansions (see, e.g., [26])

Jn(x) =
∞∑

m=0

(−1)m

m!(n + m)!

( x

2

)2m+n
, (B1)

The current kernels (5), include only the first two functions,
n = 0, 1. In practice, expansion (B1) gives converging results
for x � 30. Keeping up to m = 100 terms in the series one
can obtain J0,1 with accuracy better that 10−4 in this range
of the argument, as one can check either by comparison to a
different, asymptotic expansion of these functions discussed
below, or, by comparison with the numerical tables in [26] for
the values of x for which the tables are available.

For the Bessel functions Yn(x) of the second kind, the
power-series expansion similar to Eq. (B1) is

Yn(x) = 2

π
Jn(x)

(
ln

x

2
+ γ

)
− 1

π

n−1∑
m=0

(n − 1 − m)!

m!

·
( x

2

)2m−n
− 1

π

∞∑
m=0

(−1)m(x/2)2m+n

m!(n + m)!

(
n+m∑
k=1

1

k
+

m∑
k=1

1

k

)
,

(B2)

FIG. 5. Two Bessel functions of the first kind calculated from
Eqs. (B1) for x � 30 and from Eqs. (B3) and (B4) for x > 30. The
inserts show that even on a fine scale (on the order of 10−2), the
two expansions, power series at small arguments and the asymptotic
expansions at large arguments, agree very well, without a noticeable
transition.
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where γ = 0.5772156649 is Euler’s constant. The discussion
of Eq. (B1) above applies to Eq. (B2) as well. The power series
of up to m = 100 terms converges for x � 30 and gives Y0,1

with accuracy better that 10−4 in this range, as one can check
by comparison to the asymptotic expansion of these functions.

Very slow convergence of the Bessel functions, which de-
cay at large argument x only as x−1/2, implies that the integrals
in Eq. (1) that determines the tunnel current do not con-
verge by themselves under some conditions. For the realistic
strength of the gap-smearing mechanisms, which ensure con-
vergence of these integrals, one needs to integrate the current
kernels over the time range that extend to x ∼ 100 in dimen-
sionless units. This means that the power-series expansions
for the Bessel functions discussed above are not sufficient,
and one needs to use also the asymptotic expansions for large
x. Moreover, to ensure that the asymptotic expansions match
with sufficient accuracy the power-series expansions in the
range 10 � x � 30, where they are both applicable, one needs
to go beyond the leading terms in the expansions. Keeping
three terms should give the asymptotics with the accuracy on
the order of 10−5 in the relevant range of the argument x.
Then, for the four functions that enter the current kernels (5),
the appropriate asymptotic expansions are [45]:

J0(x) =
(

2

πx

)1/2{
P cos

(
x − π

4

)
+ Q sin

(
x − π

4

)}
,

Y0(x) =
(

2

πx

)1/2{
P sin

(
x − π

4

)
− Q cos

(
x − π

4

)}
,

P = 1 − 9

128x2
+ 3675

215x4
, Q = 1

8x
− 75

1024x3
, (B3)

and

J1(x) =
(

2

πx

)1/2{
P′ cos

(
x − 3π

4

)
+ Q′ sin

(
x − 3π

4

)}
,

Y1(x) =
(

2

πx

)1/2{
P′ sin

(
x − 3π

4

)
− Q′ cos

(
x − 3π

4

)}
,

P′ = 1 + 15

128x2
− 4725

215x4
, Q′ = − 3

8x
+ 105

1024x3
.

(B4)

Four Bessel functions that determine the current response
(1) of a Josephson tunnel junction between the two ideal
BCS superconductor with in general different energy gaps at
zero temperature are shown in Figs. 5 and 6. The functions
are calculated from the power series (B1)and (B2) for small
arguments, x � 30, and from the asymptotic expansions (B3)
and (B4) for large arguments, x > 30. The main point illus-
trated by these plots, explicitly by the insets, is the agreement
between the small-argument and large-argument expansions

FIG. 6. Two Bessel functions of the second kind calculated from
Eqs. (B2) for x � 30 and from Eqs. (B3) and (B4) for x > 30.
Similarly to Fig. 5, the inserts show that even on a fine scale on the
order of 10−2, the two methods agree very well, without a noticeable
transition.

with very high accuracy. This accuracy is better than 10−4, as
can roughly be estimated from these plots.

With the Bessel functions calculated accurately and in the
arbitrary large range of the arguments as described above,
Eqs. (10) and (11) that govern the Josephson dynamics of the
current-biased junctions can be solved directly by the simplest
numerical procedures, integration of the current kernels at
each time step to find the tunnel current, and then propagation
of the values of the Josephson phase and the voltage actoss the
junction according to the evolution equations. The results of
these simulations are presented in Sec. III.
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