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Excited-state quantum phase transitions depend on and reveal the structure of the whole spectrum of many-
body systems. While they are theoretically well understood, finding suitable signatures and detecting them in
actual experiments remains challenging. For instance, in spinor gases, excited-state phases have been identified
and characterized through a topological order parameter that is challenging to measure in experiments. Here we
propose the Raman-dressed spin-orbit-coupled gas as a novel platform to explore excited-state quantum phase
transitions. In a weakly coupled regime, the dressed system is equivalent to a spinor gas with tunable spin-spin
interactions. Through this equivalence we are able to identify excited-state phases in the Raman-dressed Bose
gas. The phases are characterized by the behavior of the spatial density modulations, or stripes, induced by
spin-orbit coupling, and can in principle be measured in current state-of-the-art experiments with ultracold atoms.
Conversely, we show that the properties of the excited phase can be exploited to prepare stripe states with large
and stable density modulations.
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I. INTRODUCTION

Harnessing quantum matter with light is at the heart
of quantum technology [1,2]. Artificial spin-orbit coupling
(SOC) in ultracold atom gases is a prominent example [3–5].
Spinor gasses dressed by Raman coupling [6,7] interact dif-
ferently [8], host stripe phases [9,10] with supersolidlike
properties (see also [11], for dipolar gases realization see
[12–14]), or even realize a topological gauge theory [15]. Here
we propose to use Raman-dressed spin-orbit-coupled gases
for studying dynamical [16] and excited [17] quantum phase
transitions in spinor Bose-Einstein condensates (BECs).

In analogy to ground-state quantum phase transitions
[18,19], dynamical and excited-state quantum phase transi-
tions involve the existence of singularities, respectively, in
the time evolution and in the energy (or an order parame-
ter) of an excited energy level, and can extend across the
excitation spectra. Dynamical phase transitions have been
demonstrated in quench experiments with cold atoms in op-
tical lattices [20–22] and cavities [23], trapped ions [24,25],
and with superconducting qubits [26]. At the same time,
excited-state quantum phase (ESQP) transitions have been
shown to occur in a variety of models [27–35], and have
been observed in superconducting microwave Dirac billiards
[36]. Recently, dynamical and ESQP transitions have been
theoretically [37,38] and experimentally [39,40] studied in
spin-1 BECs with spin-changing collisions.
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In [41] we showed that the Raman-dressed spin-1 SOC
gas at low energy can be understood as an artificial spin-1
gas with tunable spin-changing collisions that can be adjusted
with the intensity of the Raman beams. For weak Raman
couplings and zero total magnetization, the dressed system is
well described by a one-axis-twisting collective spin Hamilto-
nian [42–44]. The realization of the same model in undressed
spinor condensates has led to the observation of various quan-
tum many-body phenomena [45], including the formation of
spin domains and topological defects [46–56], and the genera-
tion of macroscopic entanglement [57–69], with prospects for
metrological applications [70].

The map to pseudospin degrees of freedom (see Fig. 1)
highlights the potential advantage of SOC dressed gases for
engineering quantum many-body physics: the enhanced tun-
ability of the system and the built-in entanglement between
the emerging collective spin structures and the orbital degrees
of freedom. In this work we employ these unique features
to identify a novel excited-stripe (ES) phase of the spin-1
SOC gas. The phase is in correspondence to the broken-
axisymmetry (BA′) excited phase of the effective collective
spin model, discussed in [38], which is characterized by a
topological order parameter, and can extend over the whole
spectrum of the Hamiltonian. In the SOC gas, ES phase com-
prises the classical phase-space trajectories with nonzero time
average of the spatial modulations of the density of the gas.

We exploit the relationship between the topological order
parameter and the stability of the density modulations in the
SOC gas to design a novel detection protocol for the ESQPs
of the spinor gas. In the dressed gas, having an interferometer
built-in generated by SOC makes a measurement of the con-
trast of the stripe equivalent to a simultaneous measurement
of the amplitude and phase of the dressed spin components.
Remarkably, this approach benefits from an intrinsic robust-
ness to magnetic fluctuations, which constrains the current
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FIG. 1. Pseudospin dynamics in SOC BECs. (a) Dispersion
bands of Hamiltonian (1), setting � = 0.75Er , δ = 0, and ε =
�2/16Er . The corresponding mean value of F̂z for the band states
is indicated with the color texture. The undressed bands are
shown in dashed gray. (b) Schematic representation of an effec-
tive spin-changing collision process enabled by Raman transitions
(represented in wavy lines). (c) Phase diagram of the dressed spin
Hamiltonian (3) as a function of the Raman Rabi frequency � and
effective quadratic Zeeman shift ε, for n = 7.5 × 1013 cm−3 and
using the values of a0 and a2 for 87Rb given in [45]. The polar
(P), twin-Fock (TF), and broken-axisymmetry (BA) phases meet
at the tricritical point CF (black dot). The dashed red vertical line
at �c = 4Er

√|ga|/gs separates the ferromagnetic (λ < 0) and the
antiferromagnetic (λ > 0) regimes of the effective Hamiltonian. The
blue dotted lines enclose the region of parameters around the P-TF
transition where the BA′ excited-state quantum phase takes place (see
Sec. III), with its boundaries located at ε̃ = ±2λ in the thermody-
namic limit.

proposals for detecting the excited phases of the model in
spinor gases with intrinsic spin changing collisions [38].

Finally, through the effective model we are able to provide
a robust protocol to prepare striped states. The ES phase of
the gas can be accessed from an initially unpolarized gas via
crossing an ESQP transition in a two-step quench scheme.
With such an approach, we show that the ES phase can be re-
alized in current state-of-the-art experiments with spin-1 SOC
gases, with the prepared states exhibiting large and stable den-
sity modulations. At the same time, the proposal introduces
a novel procedure to access the striped regime of the spin-1
with SOC, which as a ground-state phase has a very narrow
region of stability [71] and it has yet to be experimentally
demonstrated.

The paper is organized as follows. In Sec. II we briefly
review the Raman-dressed spin-1 gas and its description as
a collective pseudospin Hamiltonian with tunable spin inter-
actions. In Sec. III we introduce the novel ES phase of the
dressed condensate, and show that its experimental signature
can provide a new means to detect the ESQP transitions of the
collective spin model. In Sec. IV we propose a robust protocol

to prepare ES states, which we benchmark in Sec. V. Finally,
we briefly recap and draw our conclusions in Sec. VI.

II. RAMAN-DRESSED GAS AS AN ARTIFICIAL
SPINOR GAS

We consider a spin-1 BEC of N atoms of mass m sub-
ject to synthetic SOC with equal Rashba and Dresselhaus
contributions, as experimentally realized via Raman-coupling
two Zeeman pairs {|1, 1〉 , |1, 0〉} and {|1, 0〉 , |1,−1〉} inde-
pendently, as in [72]. In the presence of dressing, the kinetic
Hamiltonian can be written as

Ĥk = h̄2

2m
(k − 2krF̂zex )2 + �√

2
F̂x + δF̂z + εF̂ 2

z , (1)

where h̄F̂j are the spin-1 matrices. Here � quantifies the
Raman coupling strength. By simultaneously adjusting the
detuning from the resonance of each Raman pair, the strengths
of an effective quadrupole tensor field and a magnetic field
term ε and δ, respectively, can be independently tuned in the
laboratory (see Methods from [72]).

The many-body scenario for the Raman dressed gas in
mean-field regime is captured by the energy functional

E [ψ] =
∫

dr
[
ψ∗(Ĥk +Vt )ψ + gs

2
|ψ4|

+ ga

2

∑
j

(ψ∗F̂jψ)2

]
, (2)

where ψ = (ψ−1, ψ0, ψ1)T is the spinor condensate wave
function, normalized to the total number of particles as∫

drψ†ψ = N . The spin-symmetric and nonsymmetric inter-
action couplings are given by gs = 4π h̄2(a0 + 2a2)/3m and
ga = 4π h̄2(a2 − a0)/3m, where a0 and a2 are the scattering
lengths in the F = 0 and F = 2 channels, respectively. For
simplicity we will consider that the gas is confined with an
isotropic harmonic potential Vt = 1

2 mω2
t r2.

In this work we focus on the weak Raman coupling regime,
where � is smaller than the Raman single-photon recoil
energy Er . We label the recoil momentum as h̄kr , so that

Er = h̄2k2
r

2m . Furthermore, we will consider Er � δ, ε. In this
regime, the lowest dispersion band of Ĥk has three differ-
ent minima k j ∼ 2 jkrez, with j ∈ {−1, 0, 1}, as illustrated in
Fig. 1(a). As shown in [41], in these conditions the dynamics
of the dressed gas is equivalent to the one of an effective
spinor gas with Raman-mediated spin-changing collisions
[see Fig. 1(b)]. For small condensates, the low-energy land-
scape of the weakly coupled gas can be restricted to just three
self-consistent modes, and the system is then well described
by a collective pseudospin Hamiltonian. We label the collec-
tive pseudospin operators as L̂x,y,z = ∑

μν b̂†
μ(F̂x,y,z )μν b̂ν and

L̂zz = ∑
μν b̂†

μ(F̂ 2
z )μν b̂ν , where the bosonic operators b̂†

−1, b̂†
0,

and b̂†
1 create a particle in the left, middle, and right well mode,

respectively. With this notation we restrict ourselves to the
zero “magnetization” subspace, where L̂z = 0, the Hamilto-
nian reads

Ĥ = λ
L̂2

2N
+ ε̃L̂zz. (3)
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Here λ = (ga + gs
�2

16E2
r

)n, where n is the mean density of the
gas. The coefficient ε̃ includes a perturbative correction to ε,
with ε̃ = ε + �2

16Er
.

Hamiltonian (3) is completely equivalent to the one de-
scribing the nonlinear coherent spin dynamics of spin-1 BECs
where ga 	 gs [43]. Note that such equivalence does not
generally extend throughout the Hilbert space, where an addi-
tional term proportional to L̂2

z breaks the SO(3) symmetry of
the interacting Hamiltonian (see [41]). This fact motivates our
restriction to the subspace with zero magnetization. Nonethe-
less, it should be noted that, as long as the spread in L̂z is much
smaller than N , the analogy can be straightforwardly extended
to subspaces of any magnetization. The phase diagram of
Hamiltonian (3) in the �-ε plane is shown in Fig. 1(c). The
dashed vertical line at � = 4Er

√|ga|/gs separates the ferro-
magnetic (λ < 0) and the antiferromagnetic (λ > 0) regimes
of the dressed-spin dynamics. The antiferromagnetic regime
includes the polar (P) phase at ε̃(�) > 0, in which all the
atoms occupy the middle well mode, and the twin-Fock (TF)
phase for ε̃(�) < 0, where the atoms evenly occupy both edge
well states. The scenario is richer in the ferromagnetic regime,
where the effective spin interactions favor the formation of
a nonvanishing transverse magnetization. When the effective
interaction dominates, this results in the spontaneous breaking
of the SO(2) symmetry of the system [47], giving rise to the
so-called broken-axisymmetry (BA) phase [73] in between the
P and TF phases.

III. ESQPS IN SOC GASES

Ferromagnetic spin-1 BECs, which are described by
Hamiltonian (3) with λ < 0, exhibit ESQP transitions [38],
between three separate ESQPs that extend from the ground
state phases and span across the whole energy spectrum. The
ESQP diagram of (3) in the ε̃-E plane is shown in Fig. 2(a)
for λ < 0, where E = 〈Ĥ〉/(|λ|N ) is the scaled energy per
particle of the eigenstates of Ĥ and Eg is the one of the ground
state. The phases P′, BA′, and TF′ are labeled according
to the corresponding ground state phase. On the boundaries
between the phases, the mean-field limit of the density of
states diverges, as it is expected for an ESQP transition [17].
The boundaries are found at E∗ = ε̃/|λ| for −2 < ε̃/|λ| < 0,
and at E∗ = 0 for 0 < ε̃/|λ| < 2. Notice that, since Ĥ (λ, ε̃) =
−Ĥ (−λ,−ε̃), the same three phases also occur for antiferro-
magnetic gases, but with their boundaries redefined, as shown
in Fig. 2(b), with E∗ = 0 for −2 < ε̃/|λ| < 0, and E∗ = ε̃/|λ|
for 0 < ε̃/|λ| < 2.

As discussed in [38], within these ESQPs the classical
phase-space trajectories of coherent states can be classified
with respect to a topological order parameter (for a similar
behavior in the Rabi model, see [74]). Here we show that
this order parameter is directly related to the stability of the
density modulations in the spin-orbit-coupled gas. We exploit
this relationship to provide a novel detection protocol for the
ESQPs of the spinor gas.

As in [38], we consider now the set of coherent states
|N, n, θ〉 = 1√

N!
(
∑

j
√

n jeiθ j b†
j )

N |0〉 in the zero magnetiza-

tion subspace, with
∑

j n j = 1 and n1 = n−1. In the mean-

FIG. 2. Excited-state quantum phases (ESQPs) in SOC BECs.
ESQP diagram of Hamiltonian (3), which describes the low-energy
landscape of spin-1 gases with SOC, for both effective ferromagnetic
(a) and antiferromagnetic (b) dressed-spin interactions. The thin gray
lines show every 25th eigenvalue of the Hamiltonian for N = 500.
The thick black line indicates the phase boundary at E∗(ε̃).

field limit of (3), the scaled energy per particle is given by

E (n, θ) = 〈N, n, θ| Ĥ |N, n, θ〉 /|λ|N

= sgn(λ)2(1 − n0)n0 cos2 θ + ε̃

|λ| (1 − n0), (4)

where θ = θ0 − θ1+θ−1

2 . The corresponding mean-field equa-
tions of motion read

ṅ0 = |λ|
h̄

∂E
∂θ

, θ̇ = −|λ|
h̄

∂E
∂n0

. (5)

The solutions of Eqs. (5) are periodic, and the relationship
between the periodicity of n0(t ) and θ (t ) varies between the
different ESQPs. In the BA′ phase, for each point in the ε̃-E
plane there exist two solutions with disconnected trajectories.
In these solutions both n(t ) and θ (t ) have the same periodicity.
Furthermore, the values that θ (t ) can take are bounded, with
−π/2 < θ (t ) < π/2 in one solution and π/2 < θ (t ) < 3π/2
in the other. Conversely, in the P′ and TF′ phases the solution
is unique at each point. Labeling the periodicity in n(t ) by τ ,
in the P′ and TF′ phases of the ferromagnetic diagram one has
θ (t + τ ) = θ (t ) ± π (see [38,75,76] for more details). In [38]
they introduce the winding number

w = 1

π
[θ (τ ) − θ (0)], (6)

which can be interpreted as a topological order parameter that
distinguishes between the three excited phases. It takes the
value w = −1, 0, 1 for any mean-field trajectory within the
P′, BA′, and TF′ phases, respectively. In the antiferromagnetic
diagram, the sign of w is flipped with respect to the ferromag-
netic case.
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A. The excited-stripe phase

Remarkably we can relate the phase space trajectories
[n0(t ), θ (t )] that coherent pseudospin states follow to the
properties of the Raman-dressed atomic cloud. We can
write the mean-field wave function of the gas as ψ(r) =√

N
∑

j

√
n jφ j (r)eiθ j , where we label the three self-consistent

modes around k j as φ j . As the three modes are tightly located
at the vicinity of the respective band minima k j , we can
approximate them by plane waves times a slowly varying
envelope function, which for simplicity we omit in the fol-
lowing. Then, up to second order in �/8Er , and neglecting
the corrections ∝ (ε + δ)�2/E3

r , we can write

φ1(r) ∝ eik1x

[
1 − 1

2

(
�

8Er

)2

,
�

8Er
, 0

]T

,

φ0(r) ∝ eik0x

[
�

8Er
, 1 −

(
�

8Er

)2

,
�

8Er

]T

, (7)

φ−1(r) ∝ eik−1x

[
0,

�

8Er
, 1 − 1

2

(
�

8Er

)2]T

.

At δ = 0, k0 = 0, and k1 = −k−1. In these conditions, the
spatial density of the gas reads

n(r, t ) ∼ n

(
1 + 
n(x, t )

n

)
, (8)

where


n(x, t ) = n cos(k1x − 
)
�

Er

√
n0(t )[1 − n0(t )]

2
cos θ (t )

+ O[(�/8Er )2]. (9)

Here 
 = θ1 − θ−1 is the phase difference between the modes
at the edge minima, which is a constant of motion at δ = 0. In
this way, the mean-field solutions of (3) exhibit spatial density
modulations that depend both on n0 and θ , with a relative
amplitude given by

A(t ) = �

Er

√
n0(t )[1 − n0(t )]

2
cos θ (t ). (10)

Let us evaluate the behavior of these density modulations in
the different phases. In both the P′ and TF′ excited phases,
n0(t + τ ) = n(t ) and cos θ (t + τ ) = − cos θ (t ). It follows
that

1

2τ

∫ 2τ

0
dtA(t ) = 0 (11)

and so

lim
T →∞

1

T

∫ T

0
dtA(t ) = 0, (12)

for all solutions in the P′ and TF′ phases. Thus, while an
excited state in such phases can exhibit spatial density mod-
ulations at a given time, such modulations vanish in the
time-averaged density profile.

The situation is different for the BA′ phase. There, for each
ε̃ and E , one solution fulfills cos θ (t ) > 0 for all t while in the

other cos θ (t ) < 0, and thus

lim
T →∞

∣∣∣∣ 1

T

∫ T

0
dtA(t )

∣∣∣∣ > 0. (13)

Therefore, we can define a new observable that distinguishes a
novel ESQP of the SOC spin-1 gas, which we label as excited-
stripe phase (ES). The classical solutions exhibit a nonzero
time-averaged amplitude of the spatial density modulations, or
stripes, in the region of parameters that corresponds to the BA′
ESQP of the effective dressed spin model of (3). The topo-
logical order parameter w therein is then associated with the
stability of the stripes in the Raman dressed spin-1 gas. This
stability is well understood from the locking of the relative
spinor phase θ in the classical mean-field trajectories when
w = 0, which arises from the effective dressed spin-changing
collisions in the gas.

Notice that in presence of a nonzero detuning δ, the phase
of the modulations 
 [see Eq. (9)] becomes time dependent,
with 
̇ = θ̇1 − θ̇−1 = 2δ/h̄. While the amplitude of the stripes
remains unchanged at leading order, this time dependence
of the phase results into vanishing modulations in the time-
averaged density profile in the laboratory frame, regardless
of the behavior of A(t ). However, there always exist a frame
comoving with the modulation where time averaging of mod-
ulations yields the same nonzero value as at δ = 0. In practice,
the ES phase can be easily distinguished in the presence of
nonzero detuning, or even time dependent, from the behavior
of the contrast of the modulations over time, as discussed in
detailed in Sec. III C.

In the ES phase, the contrast of the stripes increases with
�, and, thus, is larger in the antiferromagnetic regime of (3),
where � > �c. At the same time, for nearly spin-symmetric
gases such as 87Rb, the region of parameters where the ES
can exist is much broader there [indicated with blue-dotted
lines in Fig. 1(c)]. Yet in this regime the stripe phase does not
occur in the ground state of the Raman dressed gas, and one
may suspect the gas to undergo a phase separation between the
different spin components over time. Still, within the validity
of three-mode truncation that leads to (3), phase separation
does not occur, and thus the effective model predicts that the
stripe phase will persists as excited states even at � > �c (see
[41]).

In the next section we assess by comparison with the
mean-field evolution of the whole gas the validity of such
a truncation, which is equivalent to the single-spatial mode
approximation in undressed antiferromagnetic spinor conden-
sates. As the latter, it holds better the smaller the condensate
and for zero total magnetization [77]. As for the latter, it is
notoriously difficult to determine analytically its precise range
of validity. Naturally the physical requirement on the Hamil-
tonian of the gas for the single-spatial mode approximation to
hold is that its nonsymmetric part has to be a perturbation of
the symmetric part, so that λ 	 gsn and λ 	 h̄ωt .

B. The ES phase: Gross-Pitaevskii results

To verify the predictions of model (3) for Raman dressed
SOC gases, we simulate the Gross-Pitaevskii equation (GPE)
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FIG. 3. Signature of the excited-state stripe phase. (a) Relative
amplitude A(t ) of the spatial modulations for a dressed condensate
of N = 104 particles prepared with � = 0.75Er , ωt = 2π × 140 Hz,
δ = 0, and ε̃ = −0.5|λ|, computed using the GPE (14). Solid red:
A(t ) for a state initially at n0(0) = 0.5 and θ = 0.1π , with E > E∗

(ES phase). Dashed blue: A(t ) for an initial state at n0(0) = 0.5 and
θ = 0.3π , with E < E∗ (T′ phase). (b) Corresponding time-averaged
density profile of the condensate 〈n(x)〉T averaged over T = 0.5 s.
When E > E∗, the spatial modulation in 〈n(x)〉T does not vanish with
increasing T . (c) Fraction of the condensate that remains within the
subspace spanned by the self-consistent modes φ j .

of the whole system:

ih̄ψ̇ j = δE [ψ]/δψ∗
j , (14)

where E [ψ] is the energy functional in (2). We calculate
the self-consistent modes φ j via imaginary time evolution
of the GPE. The modes can be easily obtained by project-
ing the ground state at δ = ε̃ = 0, which populates the three
well states, into the well separated regions around each min-
imum of the lowest band. We then define n0 = b∗

0b0 and
θ = arg(b0) − [arg(b1) + arg(b−1)]/2, with

b j = 1

N

∫
drφ∗

j (r) · ψ(r). (15)

We consider small 87Rb condensates in the F = 1 hyperfine
manifold, with Er/h̄ = 2π × 3678 Hz, kr = 7.95 × 106 m−1

[72]. We use the corresponding values a0 = 101.8aB and a2 =
100.4aB for the scattering lengths in the different channels,
taken from [45], where aB is the Bohr radius.

In Fig. 3(a) we plot the relative amplitude A(t ) as a func-
tion of time for two different states prepared at � = 0.75Er ,
ωt = 2π × 140 Hz, and δ = 0 with N = 104. In both cases
we adjust ε so that ε̃ = −0.5|λ| and set n0(0) = 0.5. We then
evolve the initial state with the GPE (14). In one trajectory

(in solid red), the state is initialized at θ = 0.1π , with a
corresponding E > E∗ = 0, and thus expected to be in the ES
phase. Indeed, in agreement with the effective model, A(t )
is periodic and remains positive (or negative) at any time t ,
due to the spinor phase being bounded along the mean-field
trajectory. Conversely, the dashed blue line corresponds to a
trajectory with θ (0) = 0.3π , and so E < E∗, thus out of the
ES phase [see Fig. 2(b)]. In this case the amplitude oscillates
between positive and negative values, averaging to 0 over a
period. In Fig. 3(b) we show the corresponding time-averaged
density profile of the condensate, given by

〈n(x)〉T = 1

T

∫ t0+T

t0

dt
∫

dydz|ψ(r)|2, (16)

and averaged over a time T = 500 ms. As expected, 〈n〉T ex-
hibits large modulations when E > E∗ = 0, while these vanish
for E < E∗ = 0. In Fig. 3(c) we plot the fraction of atoms
that remain within the three-mode subspace, or fidelity f3M =

1
N2

∑
j |

∫
drφ∗

j · ψ|2, as a function of time, which highlights
the accuracy of the approximation in this regime of parame-
ters.

As exemplified by the results shown in Fig. 3, the GPE
analysis of the Raman dressed gas supports the predictions of
the dressed spin model in a broad, and experimentally accessi-
ble, range of parameters. We stress that the stripe phase as an
excited-state quantum phase is only well defined and under-
stood within the three-mode subspace, where the robustness
of the spatial density modulations is enabled by the collective
spin structure of the effective Hamiltonian. The contrast of
the modulations in 〈n(x)〉T is very sensitive on the degree of
accuracy of the truncation, which in turn depends both on the
strength of the effective spin interaction coefficient |λ| and on
the total number of particles.

This sensitivity is illustrated in Fig. 4, where we show the
values of the time-averaged amplitude 〈A〉T = 1

T

∫ T
0 dtA(t )

and fidelity 〈 f3M〉T = 1
T

∫ T
0 dt f3M(t ) for a state initialized at

n0 = 0.5 and θ = 0.1π and evolved under Eq. (14), for several
values of � in Fig. 4(a), and for a varying total number
of particles in Fig. 4(b). In all cases, ωt is adjusted so that
n = 7.5 × 1013 cm−3, and the quantities are averaged over a
total time T = 500 ms. In Fig. 4(a) we set N = 104, and in
Fig. 4(b) � = 0.75Er . While, according to the effective model
(3), the state is prepared within the BA′ phase, with E > E∗,
the contrast of the time-averaged density modulations rapidly
vanishes as soon as the fidelity of the three-mode truncation
degrades. This is exemplified in Fig. 4(c), where we plot the
time-averaged density profile for the corresponding trajecto-
ries with N = 2 × 104 and N = 4 × 104 from Fig. 4(b). In the
latter case, the stripes are absent in the time-averaged density
profile, despite having considered the same Raman dressing
parameters and atom density than in the former.

It is clear, then, that the collective spin structure is fun-
damental to the nature of the ES phase. Still, we are able to
identify a wide range of parameters for which the few-mode
description is accurate, and the behavior of the dressed gas
understood in these terms. Furthermore, the direct connection
between the ES phase of the Raman dressed gas and the BA′
phase of the effective spin model can provide a powerful tool
for the detection of the ESQPs of the spinor gas.
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FIG. 4. Robustness of the ES phase. (a) Time-averaged relative
amplitude 〈A〉T (red circles) and fidelity of the three-mode truncation
〈 f3M〉T (green squares) as a function of � for a dressed condensate
of N = 104 particles. The state is prepared with n0(0) = 0.5 and θ =
0.1π , and evolved using (14) with ε̃ = −0.5|λ|. (b) 〈A〉T and 〈 f3M〉T

as a function of N for a state prepared at n0(0) = 0.5 and θ = 0.1π ,
with � = 0.75Er and ε̃ = −0.5|λ|. (c) Time-averaged density profile
for the corresponding trajectories with N = 2 × 104 (blue solid line)
and N = 4 × 104 (purple dashed line) from (b). In all cases, the state
is evolved for T = 500 ms and ωt is adjusted to have n = 7.5 × 1013

cm−3.

C. Signature of the BA′ ESQP

In [38] the authors propose an experimental scheme to
detect the BA′ ESQP of a spinor gas. The protocol relies on
an interferometric scheme to measure the absolute value of
the winding number of (6), |w|, where the spins are coupled
via an internal-state beam splitter after the state is evolved
for a period T . Such a scheme faces a major difficulty: the
visibility of the projected measurement is very sensitive to
the accumulated phase difference between the ±1 modes, and
hence, to the magnetic field fluctuations in the experiment.

We now show that the realization of the same effective
Hamiltonian in the Raman-dressed spinor gas can in principle
avoid such a drawback. As discussed in Sec. III A, the ampli-
tude of the spatial density modulations in the dressed gas does
not depend at first order in �/Er on the relative phase 
, and
so neither does the contrast or visibility of the modulations,
given by V = 2|A| = (�/Er )

√
2n0(1 − n0)|cos θ |. We conve-

niently define the scaled contrast Ṽ as

Ṽ = V Er/� =
√

2n0(1 − n0)|cos θ |. (17)

The measurement of the contrast of the stripes involves, there-
fore, a simultaneous measurement of the population n0 and

FIG. 5. Stripe contrast as signature of the BA′ ESQP. (a) Min-
imum value Ṽmin of the scaled contrast Ṽ = √

2n0(1 − n0 )|cos θ |
along the classical trajectories given by Eqs. (5), as a function of
ε̃ and E , computed using Eq. (18). The inset shows Ṽ for constant
E − Eg = 0.25 (dashed-blue line) and ε̃/|λ| = 0.5 (dashed-dotted
black). (b) Ṽ as a function of time for two classical trajectories at
ε̃/|λ| = 0.5, in and out of the BA′(ES) phase, indicated in (a) by
the red and green square dots, respectively. In solid red, n0(0) = 0.6
and φ(0) = 0.174, with E > E∗. In dashed green, n0(0) = 0.6 and
φ(0) = 0.243, with E < E∗. The corresponding values for the peak-
to-valley scaled contrast of the solutions of the GPE (14) are shown
in dotted lines. The values are obtained for a condensate of N = 104

and n = 7.5 × 1013 cm−3, setting � = 0.75Er .

the phase θ . From the behavior of the contrast alone, we can
infer the absolute value of the winding number of (6), |w|,
and, thus, detect the BA′ phase of the pseudospin gas—the ES
phase of the dressed gas—regardless of the values taken by

(t ).

The contrast Ṽ is a positive semidefinite quantity and for
generic n0 can reach zero only when θ reaches (2k + 1)π/2,
with k ∈ Z. This obviously occurs in the P′ and TF′ phases,
where θ is unbounded, but never occurs in the BA′ phase
where |θ | � θmax < π/2. Thus, the minimum value Ṽmin of
the scaled contrast (17) is a proxy of |w| as it is nonzero only
in the BA′ phase, as illustrated in Fig. 5(a) where we plot Ṽmin

along the classical trajectories as a function of ε̃ and E . The
onset of Ṽmin is found at E∗ [see the inset in Fig. 5(a)]. In
Fig. 5(b) we plot Ṽ as a function of time along two trajectories
at ε̃/|λ| = 0.5. We choose the parameters to have one trajec-
tory within the BA′ phase, with E slightly above E∗, and the
other in the TF′ phase, with E < E∗. Finally, in dotted lines we
plot the corresponding results from the GPE equation of the
dressed and trapped gas (14). The contrast is computed from
the relative peak-to-valley difference at the central peak of the
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condensate wave function. We note that values of the minimal
contrast shown Fig. 5(a) are obtained analytically using (17).
By taking the time derivative of expression (17) and using (5),
it is clear that, in the BA′ phase, Ṽ can only be minimal (or
maximal) at θ = 0. We then use (4) and (17) with θ = 0 to
retrieve the analytical expression for Ṽmin(E, ε̃), which reads

Ṽmin =

√√√√
E−

ε̃
λ

(
ε̃
λ
+2

) + |ε̃|
λ

√(
ε̃
λ
−2

)2−8
(
E − ε̃

λ

)
4

. (18)

Such a derivation, however, assumes that the condensates are
perfectly located at the three minima of the dispersion band.
The presence of trapping leads to a momentum spread of the
wave packets, decreasing the actual contrast of the stripes in
the cloud. This can be observed in Fig. 5(b), where the peak-
to-valley contrast evaluated in the condensate wave function is
slightly lower than the value predicted by Eq. (17). Nonethe-
less, for relatively small trapping frequencies, the behavior of
the gas in the distinct ESQPs is qualitatively well described
by Eq. (17).

In this way we have shown that the realization of the col-
lective spin Hamiltonian (3) with a Raman-dressed artificial
spinor gas can provide an alternative approach to the detection
of the ESQP transition therein. In the dressed system we
propose to exploit the built-in interferometer that arises from
Raman dressing, where the three quasimomentum-shifted
dressed states can spatially interfere due to their nonzero spin
overlap. The behavior of the density modulations arising from
such interference signals the value of the topological order pa-
rameter that characterizes the BA′ phase of the effective spin
system introduced in [38]. Our proposal, thus, does not rely
on any external interferometric measurement, which results
in an intrinsic robustness to magnetic fluctuations. In such a
scheme, the precision to delimit the boundary of the BA′ phase
is subject to the experimental sensitivity associated with the
measurements of the density modulations. Remarkably, Ṽmin

increases abruptly at the boundary, and the modulations of the
ES states remain large at any time of the trajectory even for
states close to the transition. This can be understood from the
fact that in the classical limit Ṽmin plays the role of the order
parameter of a second order phase transition. From (18) we
can see that its susceptibility diverges as

∂Ṽ

∂E �
√

C

2
(E − E∗)−1/2, (19)

where C = 1 + |ε/λ|
2−|ε/λ| .

At the same time, the properties of the stripe phase as an
excited-state phase can be exploited to facilitate the accessi-
bility of stripe states in experiments with spinor gases. In the
next section we describe a robust protocol to prepare ES states
in a spin-1 spinor gas.

IV. QUENCH EXCITATION OF ES STATES VIA
COHERENT SPIN MIXING

Hamiltonian (3) gives a simple framework to understand
the collective behavior of SOC condensates. We now use the
predictions of the model to propose a protocol that allows a
robust and fast preparation of ES states. By comparing the

FIG. 6. Excitation of ES states via coherent spin mixing: few-
mode predictions. (a) Expected value of n̂0 (dashed blue), θ̂

(dashed-dotted green), and Â (solid red) as a function of time for a
state prepared at t = 0 in |ψ〉 (t = 0) = (b̂†

0)N |0〉, and evolved under
Hamiltonian (3), setting ε̃/λ = −1 and λ > 0. (b) The same initial
state is evolved with ε̃/λ = −1 for a time t1 = 5.5h̄/λ (indicated
with the vertical dotted gray line), where ε̃ is quenched to 0. Follow-
ing the quench, 〈Â〉 stabilizes near its maximum value. (c) Classical
trajectories for the state n0(0) = 0.9998 and θ (0) = 0 evolved under
Eqs. (5), setting ε̃/λ = −1 for t � t1 = 5.5h̄/λ, and ε̃ = 0 for t > t1.

rescaled contrast (17) and classical energy (5), we notice that
Ṽ 2 = sgn(λ)[E − ε̃/|λ|(1 − n0)]. It immediately follows that
at ε̃ = 0, Ṽ becomes a constant of motion of the classical
trajectories as it is proportional to the square root of the
classical energy. With this in mind, we propose a two-step
quench scheme to access ES states that exhibit large and stable
density modulations.

A. Two-step quench scheme: Few-mode predictions

We consider that the system is initially in the fully polar-
ized state with n0 = 1, θ = 0, where all the atoms occupy
the middle well mode. Experimentally, this scenario is very
convenient: we can prepare such an state from an undressed
polarized condensate in the m f = 0 spin state simply by
adiabatically turning up � while keeping ε̃ > 2|λ|. The prepa-
ration is followed by a first quench in ε̃ into the range
−2 < ε̃/λ < 0. According to the classical equations of mo-
tion (5), such a polarized state is a stationary point of the
Hamiltonian at all values of ε̃. However, quantum fluctua-
tions start a coherent spin-mixing dynamics that breaks the
stationarity of the state [37,78,79]. In Fig. 6(a) we show the
expected values of the relative occupation of the middle well
mode n̂0 = 1

N b̂†
0b̂0, the spinor phase θ̂ = 1

2 arg(b̂†
1b̂†

−1b̂0b̂0),
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and the relative amplitude Â = (�/Er )
√

n̂0(1 − n̂0)/2 cos(θ̂ )
as a function of time, for the initial state (b̂†

0)N |0〉 evolved
under Hamiltonian (3) with ε̃/λ = −1 and λ > 0. After some
time, 〈Â〉 reaches a local maximum. For a coherent state,
performing a second quench to ε̃ = 0 when the maximum is
reached would leave 〈Â〉 locked at this value. Naturally the
quantum trajectories of (3) for noncoherent states and away
from the thermodynamic limit may depart from the classical
predictions. Nonetheless, as expected, we numerically find a
qualitative agreement between classical and quantum trajec-
tories, as shown in Fig. 6(b). In the figure, the initial state
(b̂†

0)N |0〉 is evolved under Hamiltonian (3) with ε̃ = −λ for a
time t1 = 5.5h̄/λ, where the Hamiltonian is quenched to ε̃ =
0. Following the second quench, the relative amplitude 〈A(t )〉
is rapidly stabilized very near its maximum value 1

2
√

2
�/Er .

For comparison, in Fig. 6(c) we show the trajectories obtained
using Eqs. (5). The state is initially in a coherent state with a
very small fraction of atoms in the edge well states, to avoid
the classical stationary point at n0 = 1.

B. Excitation of ES states: Gross-Pitaevskii results

Again we assess further the validity of the scheme with
the GPE of the Raman dressed gas. In order to obtain wide
and stable density modulations, we take relatively large val-
ues of �, and consider small condensates to be safely in
the three-mode approximation. Figure 7 shows a simulation
of the protocol with a condensate of N = 104 particles, n =
7.5 × 1013 cm−3 and � = 0.75Er . In Fig. 6(a) we plot n0, θ ,
and A(t ) as a function of time for a state initially prepared
at n0 = 0.9998 and time evolved with the GPE. The state is
evolved with ε̃/λ = −1 for a time t1 = 5.5h̄/λ, where ε̃ is
quenched to 0. As expected, A(t ) is stabilized after the quench,
despite that n0 and θ keep oscillating with time. With the
contrast stabilized, the time-averaged density profile exhibits
very large density modulations, with over 40% contrast of the
stripes, as shown in Fig. 7(b). In Fig. 7(c) we plot the values
of f3M during the evolution, which remains very close to 1 for
the chosen parameters.

With the two-step quench scheme described, a state with
near-maximal density modulations (at a given value of �) can
be reached in a robust and fast manner. In the example shown
in Fig. 7, λ/h̄ � 2π × 17.9 Hz, many times larger than the
intrinsic spin-mixing rate in a 87Rb undressed gas. The peak
in A(t ) is reached in about 50 ms. However, the feasibility of
the scheme in an actual experiment is subject to the stability
of the parameters of the GPE. Several sources of noise can be
detrimental to the stability and contrast of the stripes prepared,
most notably the fluctuations in the Zeeman levels due to
magnetic-field fluctuations and the calibration uncertainty in
the intensity of the Raman beams. We briefly discuss these
aspects in the next section.

V. EXPERIMENTAL CONSIDERATIONS

To benchmark the robustness of the protocol described in
Sec. IV, we include fluctuating and randomized parameters
in the simulations of the GPE. To account for atom loss,
we continuously renormalize the condensate wave function
to N (t ) = N (0) exp(−γ t ), with γ = 3.33 s−1, which is com-

FIG. 7. Excitation of ES states via coherent spin mixing: GPE
results. (a) n0 (dashed blue), θ (dotted-dashed orange), and A(t )
(solid red) as a function of time for a state initially prepared at
n0 = 0.9998 and θ = 0. The state is evolved with the GPE (14), for
N = 104, � = 0.75Er , and ωt adjusted to have n = 7.5 × 1013 cm−3.
For t � t1 = 5.5h̄/λ, we set ε̃/λ = −1. At t = t1 (dotted vertical
line) ε̃ is quenched to 0. (b) Corresponding density profile 〈n(x)〉T ,
time averaged from t = t1 to t = 0.25 s. (c) Relative occupation of
the three-mode subspace f3M along the preparation.

patible with the lifetime of spin-1 Raman-dressed BECs in
the considered regimes [80]. Furthermore, we consider a 10%
Gaussian uncertainty in N (0). The background magnetic noise
is accounted for via sinusoidal modulations of δ and ε at
frequency 50 Hz. We set their amplitudes, respectively, to
700 and 5 Hz, which roughly correspond to a magnetic bias
field of B ∼ 35 G with ∼1 mG instability in experiments with
F = 1 87Rb atoms. We consider a Gaussian uncertainty of
±5% in � to match the systematic uncertainty reported in
[72]. Finally, a finite bias field unavoidably results in cross
coupling between the two Raman-dressed Zeeman state pairs.
This cross coupling is translated into an effective shift in the
value of ε that depends on �, which can be computed from
Floquet theory. We use the polynomial expression for the shift
as given in Methods from [72].

With all these considerations, we reproduce the protocol
as described in the previous section, incorporating now the
uncertainties in the parameters. In Fig. 8(a1) we plot the
corresponding mean value and standard deviation of A(t ), n0,
and f3M as a function of time, evaluated from a sample of 20
realizations. Despite the addition of noise, the preparation still
yields large and stable modulations in the density profile for
the parameters chosen. As discussed in the previous section,
the tunability of the Raman-mediated spin mixing allows the
realization of the protocol in larger condensates. This can be
achieved by setting a lower � (see Fig. 4), but at the expense
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FIG. 8. Robust excitation of ES states. (a) Mean value of A(t ) (red solid line), n0 (blue dashed line), and f3M (green dash-dotted line) as
a function of time, for a state with n0(0) = 0.9998 and θ (0) = 0. The state is evolved under the GPE (14), with N (t ) = N (0) exp(−γ t ) and
including randomized parameters to account for atom loss and experimental noise (see main text). In (a1) we set N (0) = 104 and � = 0.75Er .
In (a2) we set N (0) = 105 and � = 0.5Er . In both cases γ = 3.33, and ε̃/λ = −1 for t � t1 = 5.5h̄/λ and ε̃ = 0 for t > t1. The trap frequency
ωt is adjusted to have n(0) = 7.5 × 1013 cm−3. The averages are computed from a sample of 20 realizations, with the light-colored shadowed
regions indicating the associated standard deviation. (b) Longitudinal density |ψ|2 (blue solid line), spin density Fx (red dashed line), and
nematic density Nxx (green dash-dotted line) at t = t1, evaluated for a single realization from the samples used in (a).

of a smaller contrast of the stripes, as well as of detrimen-
tal effects from noise and atom loss. This is exemplified in
Fig. 8(a2), where we plot the results for an analogous prepa-
ration with N (0) = 105 and � = 0.5Er . The trap frequency is
adjusted to initially have n = 7.5 × 1013 cm−3. While smaller,
the amplitude A(t ) is stabilized in less than 200 ms, with over
half the atoms remaining in the condensate.

In Fig. 8(b) we plot the longitudinal density |ψ2|, the
spin density Fx = ψ∗F̂xψ, and the nematic density Nxx =
ψ∗(2/3 − F̂ 2

x )ψ at t = t1, right after the quench to ε̃ = 0. The
quantities are computed for a randomly chosen realization
from the samples used in Fig. 8(a). The values shown are
not time averaged since the instability in δ induces a back-
and-forth displacement of the stripes. However, as discussed
in Sec. III, the width of the stripes remains stable over time,
according to (10). In the prepared ES states, the periodicity
of the spatial modulations match those of the ground-state
ferromagnetic stripe phase [71], with the particle density and
the spin densities having periodicity 2π/|k1|, and the nematic
densities containing harmonic components both with period
2π/|k1| and π/|k1|. Remarkably, this preparation of stripe
states via crossing an ESQP transition of the effective model
compares favorably, both in its robustness and in the contrast
achieved, to the quasiadiabatic preparation through a quantum
phase transition proposed in [41].

As discussed in Sec. III, due to the instability in the relative
phase 
 between the modes b±1, positive and negative values
of A(t ) cannot be distinguished experimentally. However, in
the states prepared, the contrast of the stripes V ∼ 2|A| re-
mains stable over time and does not vanish at any given time,
which is the distinct feature of the ES phase. At the same time,
this stability provides a direct measurement of the winding

number w that characterises the BA′ ESQP of the effective
spin Hamiltonian.

VI. CONCLUSIONS

In this work we have studied the emergence of ES-
QPs in Raman-dressed SOC spin-1 condensates. Following
a dressed-base description, the SOC gas can be interpreted
as an undressed spinor gas with effective tunable spin-spin
interactions. With this in mind, we have directly connected
the corresponding ESQPs of the bare spinor gas to those of
the Raman-dressed system. Moreover, due to the coupling
between internal (spin) and external (motional) degrees of
freedom in the presence of SOC, the phases of the dressed
condensate exhibit richer features. Most relevantly, a novel
ESQP can be defined in the dressed system, the ES phase,
where the atomic cloud exhibits stable density modulations
that do not vanish over time. The nature of the phase is under-
stood from the topological order parameter that characterizes
the ESQPs of the spinor gas in the regime where the system is
described by a collective spin Hamiltonian.

We have numerically assessed the predictions of the ef-
fective model with simulations of the GPE of the dressed
condensate. We find that, indeed, the collective spin structure
Hamiltonian plays a fundamental role to the existence of
the ES phase, with its signature quickly vanishing when the
few-mode truncation that leads to the effective Hamiltonian
is significantly challenged. While such a sensitivity supposes
a restriction to its experimental realization, we have shown
that the large tunability of the system allows a wide regime of
parameters for which the phase is supported.
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At the same time, we have shown that the realization of the
spin Hamiltonian in the dressed condensate can be advanta-
geous when it comes to the detection of the ESQP transitions
of the system. So far, the proposal to measure the topological
order parameter in undressed quantum gases [38] relies on an
interferometric protocol that is very sensitive to magnetic field
fluctuations. In contrast, in the Raman-dressed gas, the same
information can be obtained from direct measurements of the
density profile of the atomic cloud, with an order parameter,
the minimum contrast of the spatial modulations, that is in-
sensitive to fluctuations of the bias field.

Finally, by exploiting the properties of the ES phase, we
have proposed a simple scheme to prepare stripe states with
large and stable density modulations. We have numerically
tested the robustness of such a preparation with the GPE,
and found it to be feasible in state-of-the-art experiments with
Raman-dressed spinor condensates.

Our pseudospin description of the Raman-dressed gas
across the whole spectrum of the collective spin Hamilto-
nian suggests alternative directions for achieving macroscopic
entanglement in momentum space [81]. The squeezing and

quantum correlations generated by our two-step quench
scheme can be calculated for a mesoscopic number of parti-
cles by including the effect of atoms’ losses in the single-mode
quantum description by wave-function Monte Carlo [82] as
recently done in [68]. Beyond the single-mode approximation,
the properties of the quantum correlations in the system could
be explored for few particles, for instance in connection to the
two-particle solutions of the model, as done in [83] for the
spin- 1

2 scenario.
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[4] N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman,
Light-induced gauge fields for ultracold atoms, Rep. Prog.
Phys. 77, 126401 (2014).

[5] M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms
in Optical Lattices: Simulating Quantum Many-Body Systems
(Oxford University Press, Oxford, 2012).

[6] Y.-J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and
I. B. Spielman, Synthetic magnetic fields for ultracold neutral
atoms, Nature (London) 462, 628 (2009).

[7] Y.-J. Lin, K. Jiménez-García, and I. B. Spielman, Spin-orbit-
coupled Bose-Einstein condensates, Nature (London) 471, 83
(2011).

[8] R. A. Williams, L. J. LeBlanc, K. Jimenez-Garcia, M. C. Beeler,
A. R. Perry, W. D. Phillips, and I. B. Spielman, Synthetic partial
waves in ultracold atomic collisions, Science 335, 314 (2012).

[9] J.-R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F. Ç.
Top, A. O. Jamison, and W. Ketterle, A stripe phase with
supersolid properties in spin-orbit-coupled Bose-Einstein con-
densates, Nature (London) 543, 91 (2017).

[10] A. Putra, F. Salces-Cárcoba, Y. Yue, S. Sugawa, and I. B.
Spielman, Spatial Coherence of Spin-Orbit-Coupled Bose
Gases, Phys. Rev. Lett. 124, 053605 (2020).

[11] J. Hou, X.-W. Luo, K. Sun, T. Bersano, V. Gokhroo, S.
Mossman, P. Engels, and C. Zhang, Momentum-Space Joseph-
son Effects, Phys. Rev. Lett. 120, 120401 (2018).

[12] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C.
Gabbanini, R. N. Bisset, L. Santos, and G. Modugno, Obser-
vation of a Dipolar Quantum Gas with Metastable Supersolid
Properties, Phys. Rev. Lett. 122, 130405 (2019).

[13] F. Böttcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo,
T. Langen, and T. Pfau, Transient Supersolid Properties in an
Array of Dipolar Quantum Droplets, Phys. Rev. X 9, 011051
(2019).

[14] L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C.
Politi, G. Durastante, R. M. W. van Bijnen, A. Patscheider, M.
Sohmen, M. J. Mark, and F. Ferlaino, Long-Lived and Transient
Supersolid Behaviors in Dipolar Quantum Gases, Phys. Rev. X
9, 021012 (2019).

[15] R. Ramos, A. Frölian, C. Chisholm, E. Neri, C. Cabrera, A.
Celi, and L. Tarruell, Realization of a chiral BF theory in an op-
tically dressed Bose-Einstein condensate, Bull. Am. Phys. Soc.
Z06, Z06.00006 (2021).

[16] M. Heyl, Dynamical quantum phase transitions: A review, Rep.
Prog. Phys. 81, 054001 (2018).

[17] P. Cejnar, P. Stránský, M. Macek, and M. Kloc, Excited-state
quantum phase transitions, J. Phys. A: Math. Theor. 54, 133001
(2021).

[18] M. Vojta, Quantum phase transitions, Rep. Prog. Phys. 66, 2069
(2003).

[19] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge
University Press, Cambridge, England, 2011).

[20] N. Fläschner, D. Vogel, M. Tarnowski, B. S. Rem, D.-S.
Lühmann, M. Heyl, J. C. Budich, L. Mathey, K. Sengstock,
and C. Weitenberg, Observation of dynamical vortices after
quenches in a system with topology, Nat. Phys. 14, 265 (2018).

[21] W. Sun, C.-R. Yi, B.-Z. Wang, W.-W. Zhang, B. C. Sanders,
X.-T. Xu, Z.-Y. Wang, J. Schmiedmayer, Y. Deng, X.-J. Liu, S.
Chen, and J.-W. Pan, Uncover Topology by Quantum Quench
Dynamics, Phys. Rev. Lett. 121, 250403 (2018).

043215-10

https://doi.org/10.1088/1402-4896/92/1/013003
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1038/nature08609
https://doi.org/10.1038/nature09887
https://doi.org/10.1126/science.1212652
https://doi.org/10.1038/nature21431
https://doi.org/10.1103/PhysRevLett.124.053605
https://doi.org/10.1103/PhysRevLett.120.120401
https://doi.org/10.1103/PhysRevLett.122.130405
https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/10.1103/PhysRevX.9.021012
http://meetings.aps.org/Meeting/DAMOP21/Session/Z06.6
https://doi.org/10.1088/1361-6633/aaaf9a
https://doi.org/10.1088/1751-8121/abdfe8
https://doi.org/10.1088/0034-4885/66/12/R01
https://doi.org/10.1038/s41567-017-0013-8
https://doi.org/10.1103/PhysRevLett.121.250403


EXCITED-STATE QUANTUM PHASE TRANSITIONS … PHYSICAL REVIEW RESEARCH 3, 043215 (2021)

[22] S. Smale, P. He, B. A. Olsen, K. G. Jackson, H. Sharum, S.
Trotzky, J. Marino, A. M. Rey, and J. H. Thywissen, Obser-
vation of a transition between dynamical phases in a quantum
degenerate Fermi gas, Sci. Adv. 5, eaax1568 (2019).

[23] J. A. Muniz, D. Barberena, R. J. Lewis-Swan, D. J. Young,
J. R. K. Cline, A. M. Rey, and J. K. Thompson, Exploring
dynamical phase transitions with cold atoms in an optical cavity,
Nature (London) 580, 602 (2020).

[24] P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C.
Hempel, B. P. Lanyon, M. Heyl, R. Blatt, and C. F. Roos, Direct
Observation of Dynamical Quantum Phase Transitions in an
Interacting Many-Body System, Phys. Rev. Lett. 119, 080501
(2017).

[25] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker,
H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe,
Observation of a many-body dynamical phase transition with
a 53-qubit quantum simulator, Nature (London) 551, 601
(2017).

[26] K. Xu, Z.-H. Sun, W. Liu, Y.-R. Zhang, H. Li, H. Dong, W. Ren,
P. Zhang, F. Nori, D. Zheng, H. Fan, and H. Wang, Probing
dynamical phase transitions with a superconducting quantum
simulator, Sci. Adv. 6, eaba4935 (2020).

[27] F. Leyvraz and W. D. Heiss, Large-n Scaling Behavior of the
Lipkin-Meshkov-Glick Model, Phys. Rev. Lett. 95, 050402
(2005).

[28] P. Ribeiro, J. Vidal, and R. Mosseri, Thermodynamical Limit of
the Lipkin-Meshkov-Glick Model, Phys. Rev. Lett. 99, 050402
(2007).

[29] M. Caprio, P. Cejnar, and F. Iachello, Excited state quantum
phase transitions in many-body systems, Ann. Phys. (NY) 323,
1106 (2008).

[30] D. Larese, F. Pérez-Bernal, and F. Iachello, Signatures of
quantum phase transitions and excited state quantum phase
transitions in the vibrational bending dynamics of triatomic
molecules, J. Mol. Struct. 1051, 310 (2013).

[31] T. Brandes, Excited-state quantum phase transitions in Dicke
superradiance models, Phys. Rev. E 88, 032133 (2013).

[32] P. Stránský, M. Macek, and P. Cejnar, Excited-state quantum
phase transitions in systems with two degrees of freedom: Level
density, level dynamics, thermal properties, Ann. Phys. 345, 73
(2014).

[33] L. F. Santos, M. Távora, and F. Pérez-Bernal, Excited-state
quantum phase transitions in many-body systems with infinite-
range interaction: Localization, dynamics, and bifurcation,
Phys. Rev. A 94, 012113 (2016).

[34] T. Opatrný, L. Richterek, and M. Opatrný, Analogies of the
classical Euler top with a rotor to spin squeezing and quan-
tum phase transitions in a generalized Lipkin-Meshkov-Glick
model, Sci. Rep. 8, 1984 (2018).

[35] M. Macek, P. Stránský, A. Leviatan, and P. Cejnar, Excited-
state quantum phase transitions in systems with two degrees
of freedom. III. Interacting boson systems, Phys. Rev. C 99,
064323 (2019).

[36] B. Dietz, F. Iachello, M. Miski-Oglu, N. Pietralla, A. Richter,
L. von Smekal, and J. Wambach, Lifshitz and excited-state
quantum phase transitions in microwave Dirac billiards, Phys.
Rev. B 88, 104101 (2013).
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