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In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model
with interorbital Coulomb interaction
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We study the electronic spectral properties at zero temperature of the one-dimensional (1D) version of the
degenerate two-orbital Kanamori-Hubbard model, one of the well-established frameworks to study transition
metal compounds, using state-of-the-art numerical techniques based on the density matrix renormalization
group. While the system is Mott insulating for the half-filled case, as expected for an interacting 1D system,
we find interesting and rich structures in the single-particle density of states (DOS) for the hole-doped system.
In particular, we find the existence of in-gap states which are pulled down to lower energies from the upper
Hubbard band with increasing the interorbital Coulomb interaction V . We analyze the composition of the DOS
by projecting it onto different local excitations, and we observe that for large dopings these in-gap excitations are
formed mainly by interorbital holon-doublon (HD) states and their energies follow approximately the HD states
in the atomic limit. We observe that the Hund interaction J increases the width of the in-gap band, as expected
from the two-particle fluctuations in the Hamiltonian. The observation of a finite density of states within the gap
between the Hubbard bands for this extended 1D model indicates that these systems present a rich excitation
spectra which could help us understand the microscopic physics behind multiorbital compounds.
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I. INTRODUCTION

Understanding the microscopic mechanisms in materials
with strong electron-electron correlations due to interactions
in local orbitals, stands out as one of the most challenging
problems in condensed matter physics. For example, mate-
rials such as transition-metal oxides with partially filled d
or f shells give rise to interesting properties such as high-
temperature superconductivity, colossal magnetoresistance,
correlation-driven metal-insulator transitions, heavy fermion
behavior, or an orbital-selective Mott phase [1,2].

The discovery of a family of materials with similar char-
acteristics in low dimensions, such as those with correlated
electrons in ladders, gives us the possibility of a more detailed
understanding of the underlying physical mechanisms. This
is because of the availability of more accurate theoretical and
numerical tools for one-dimensional models, such as the den-
sity matrix renormalization group (DMRG) technique [3–7].
Among these systems we can mention the AFe2X3 family,
where A = K, Rb, Cs, and Ba, and X are chalcogenides
X = S, Se, which are formed by double chains of edge-
sharing FeX4 tetrahedra [8]. In particular, BaFe2S3 [9,10] and
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BaFe2Se3 [11,12] were found to superconduct under high
pressure. The latter compound behaves in a manner compat-
ible with orbital-selective Mott physics [13–15]. However,
in spite of the theoretical progress made in the calculation
of static properties, it is still difficult to obtain precise and
detailed theoretical electronic structure results to compare
with experiments, such as angular-resolved photoemission
(ARPES), inverse photoemission experiments (IPEs), or op-
tical conductivity measurements.

In this paper we report on results obtained for the zero-
temperature local density of states (DOS) for the model
Hamiltonian which describes these multiorbital systems, the
two-orbital Kanamori-Hubbard model (KHM) [16,17] in one
dimension, which includes a ferromagnetic Hund coupling J
between the orbitals, in the doped regime, with equal band-
widths, using the DMRG for the calculation of static and
dynamical properties [5–7].

By carefully analyzing the local electronic density of states
(DOS) for a large range of parameters and dopings, we find
a well-defined in-gap band for large enough values of the in-
terorbital Coulomb interaction (V ). This structure is additional
to the well-known upper and lower Hubbard bands (UHBs,
LHBs). As we show in this work, for large dopings, this
in-gap band is formed mainly by holon-doublon (HD) pairs.
These results are similar to the findings in Refs. [18–20] for
the two-orbital KHM but on a Bethe lattice using dynamical
mean-field theory (DMFT) where an additional peak (in the
half-filled case) or an additional band (for the doped case)
were observed in the presence of V . In our case, as we are
considering an interacting one-dimensional system, which is
insulating for the half-filled case, we must dope the system to
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FIG. 1. Sketch of the interactions included in the KHM
[Eq. (1)]. Also shown is the representation of the interorbital HD
excitation.

study its metallic behavior, where this new band appears. Al-
though previous work reported holon-doublon pairs in related
models at higher energies [21–24], and also as metastable
states out of equilibrium [25,26], the existence of an in-gap
band, such as the one we are presenting in this paper, was not
reported before for this model.

II. MODEL AND METHOD

We study the degenerate two-orbital Kanamori-Hubbard
model in 1D,

H =
∑

〈i j〉ασ

tαc†
iασ c jασ − (μ − ε)

∑

i

ni +
∑

i

Hi, (1)

where 〈i j〉 are nearest-neighbor sites on a chain, α = 1, 2
are orbital indices, and σ the spin index. The creation
and destruction operators are c† and c, respectively, and
ni = ∑

ασ c†
iασ ciασ the on-site number operator. The nearest-

neighbor hoppings for orbital 1 and 2 take the value t1 =
t2 = 0.5 which is taken as the unit of energy. No interorbital
hybridization is considered. Here, μ is the chemical potential
where μ = 0 leads to half-filled bands. This implies that the
site energies must take the values ε = −U/2 − V + J/2.

The on-site interactions Hi are

Hi = U
∑

α

niα↑niα↓ +
∑

σσ ′
(V − Jδσσ ′ )ni1σ ni2σ ′

−J (c†
i1↑ci1↓c†

i2↓ci2↑ + c†
i2↑ci2↓c†

i1↓ci1↑)

−J (c†
i1↑c†

i1↓ci2↑ci2↓ + c†
i2↑c†

i2↓ci1↑ci1↓), (2)

where J > 0 is the local exchange Hund’s coupling and U (V )
is the intraorbital (interorbital) Coulomb repulsion between
electrons (see Fig. 1).

A. Method

To calculate the static and dynamical properties of the
model we use the matrix-product-state (MPS) implementation
of the DMRG in the orbital-spin-position order (OSP, varying
the position index first) together with the inversion symmetry
along the chain axis and open boundary conditions. However,
for the calculation of the band dispersions in Fig. 7, we use
periodic boundary conditions. This geometry led to the most
reliable results.

FIG. 2. DOS for the two-orbital KHM for U = 4, J = 0, L = 12,
and V = 2 while varying the chemical potential μ. ω = 0 corre-
sponds to the Fermi energy in all figures. For μ = 0 the UHB and
LHB are present and the system is a Mott insulator. When the system
is doped with holes an in-gap band is formed. Also shown is AHD(ω)
(light blue line) and the energies of the HD state in the atomic limit
(arrows).

For the DOS we calculate the following dynamical re-
sponse functions

A>(ω) = − 1

π
Im〈c1↑(ω + iη − H + E0)−1c†

1↑〉, (3)

A<(ω) = − 1

π
Im〈c†

1↑(ω + iη − H + E0)−1c1↑〉, (4)

where the expectation is taken for the ground state with energy
E0 of the Hamiltonian (1).

All dynamical functions are obtained using the correction-
vector method [6] directly on the real axis (with a very small
imaginary offset or Lorentzian broadening ν = 0.15) at zero
temperature on a wide scale of energies. Smaller values of this
broadening result in features in the DOS revealing its finite-
size structure. The main results of this paper do not depend on
this value.

We study system sizes of L = 12 that correspond to 12
physical lattice sites with two orbitals each. The number m
of states used to calculate ground state energies (the bond
dimension) was set to 1024 and up to 512 for correlation
functions and we performed up to eight sweeps reaching a
good convergence with m. We have also done calculations
for other system sizes, showed in Fig. 6, to see possible size
effects. In these results, we can observe that the main features
of the DOS remain the same.

III. RESULTS

A. Zero Hund interaction J = 0

We will consider first the simpler case in which the
Hund coupling is J = 0 and study its effect later, includ-
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FIG. 3. DOS for the two orbital KHM for U = 4, J = 0, L = 12,
and μ = −2 while increasing the interorbital interaction V . For V =
0 the UHBs and LHBs are present and the system is a metal. Also
shown is AHD(ω) (light blue line).

ing the rotationally invariant case defined when V = U −
2J [17].

For the half-filled case (μ = 0) the system is a Mott insu-
lator for finite values of U as seen in Fig. 2, where the UHBs
and LHBs can be seen. When the system is doped with holes
we observe an additional structure in between these Hubbard
bands. This structure evolves towards higher energies with
μ, following the atomic HD excitations, marked with arrows
(see Table I in Ref. [19]). For μ � −U/2 (J = 0) the atomic
limit HD excitation is (U − V ) while for μ < −U/2 it is
(U/2 − V − μ). The light blue line corresponds to the pro-
jection of the DOS onto local HD excitations as explained in
Sec. IV.

It is also interesting to analyze the effect of the interorbital
interaction V , as we show in Fig. 3. When V = 0 the system
consists of two independent interacting Hubbard chains and
both Hubbard bands are clearly recognizable. When V is
turned on we observe a transfer of weight from the UHB to an
in-gap band which decreases in energy as V grows. The case
V = 4 = U corresponds to the rotationally invariant situation
(J = 0) and the in-gap band merges with the central structure.
We also observe a dip in the DOS at the Fermi energy ω = 0
for finite values of V . As studied below (see Sec. IV), these
states are formed mainly by excitations of the kind |0,↑〉 and
|↑,↑〉 (and all other spin projections) in the atomic limit.

B. Finite Hund interaction J

In Fig. 4 we present results for the DOS in the presence of
a finite interorbital Hund interaction J . We observe changes
in the DOS at low energies and also in the in-gap band. As

FIG. 4. DOS for the two-orbital KHM for U = 4, V = 2, L =
12, and μ = −2 while increasing the interorbital Hund interaction J .
J = 1 corresponds to the rotationally symmetric case V = U − 2J .
Also shown is AHD(ω) (light blue line).

we show below, the DOS close to the Fermi energy ω = 0
is formed, mainly, by singly occupied states in both orbitals,
which are affected by the spin-flip term in the Hamiltonian (1).
The widening produced by J in the in-gap band is produced,
on the other hand, by the two-particle fluctuations in 1 since
this band is formed mainly by HD pairs [27].

IV. CHARACTERIZATION OF THE EXCITATIONS

In order to understand the effect of the interorbital inter-
action V on the DOS we have calculated several dynamical
response functions which correspond to the projection of the
DOS onto particular atomic states on each site: One site is
composed by two orbitals and its states are represented as
|s1, s2〉. In a similar way as done in Ref. [19] we define the
Green’s functions As1,s2 (ω) = A>

s1,s2
(ω) + A<

s1,s2
(−ω) with

A>
s1,s2

(ω) = − 1

π
Im

〈
c1↑(ω + iη − H + E0)−1X †

s1,s2

〉
, (5)

A<
s1,s2

(ω) = − 1

π
Im

〈
c†

1↑(ω + iη − H + E0)−1Xs1,s2

〉
, (6)

where the expectation is taken for the ground state with en-
ergy E0 of the Hamiltonian (1). The excitations are X †

s1,s2
=

Ps1,s2 c†
1↑ and their reverse action Xs1,s2 = c1↑Ps1,s2 . The projec-

tor Ps1,s2 = |s1, s2〉〈s1, s2| is used to select the corresponding
atomic configuration |s1, s2〉. Note that adding all possible
configurations gives the total DOS since

∑
s1,s2

Ps1,s2 = 1.
We are particularly interested in the following excita-

tions (and their reverse actions) for orbital 1 (similarly for
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(a)

(b)

(c)

FIG. 5. DOS projected onto different atomic states defined in the
text for U = 4, J = 0 and L = 12. (a) V = 0, μ = −2; (b) V = 2,
μ = −2; and (c) V = 2, μ = −3 (other projections have negligible
weight and are not shown).

orbital 2), where we add over all spin projections:
(i) HD states (|↓, 0〉 → |↑ ↓, 0〉 = |d, 0〉): X †

d,0 = n1↓(1 −
n2↑)(1 − n2↓)c†

1↑;

(ii) |0, 0〉 → |↑, 0〉: X †
↑,0 = (1 − n1↓)(1 − n2↑)(1 −

n2↓)c†
1↑;

(iii) |0,↑〉 → |↑,↑〉: X †
↑,↑ = n2↑(1 − n2↓)(1 − n1↓)c†

1↑;

(iv) |↓,↑〉 → |↑ ↓,↑〉 = |d,↑〉: X †
d,↑ = n2↑(1 −

n2↓)n1↓c†
1↑.

In Fig. 5 we present the results for the projection of the
DOS onto these atomic states. It is interesting to observe that
for V = 0 [Fig. 5(a)] we do not observe the in-gap structure
and all excitations containing doublons contribute to the UHB,
as expected. When we turn on the interorbital Coulomb in-
teraction V [Fig. 5(b)] there is a transfer of spectral weight
towards lower energies forming a new band which is con-
stituted mainly by HD excitations. The weight of these HD
excitations in the UHB is negligible. When the doping is
increased further [e.g., μ = −3, Fig. 5(c)] the HD character of
the new band is increased and we find, as expected, a reduction
in the total weight of the UHB. The curve corresponding to
the HD projection is also shown in the previous figures to
signal the extra band. In Fig. 2 we see how the HD excitations
increase their energy with hole doping (also marked with an
arrow following the projection onto the atomic HD states as
previously explained). Here, we find that for larger dopings
the in-gap band has a larger weight in the HD states. In Fig. 3
we see how this HD projection accompanies the new band

FIG. 6. DOS for different system sizes (L is the number of two-
orbital sites) for U = 4, V = 2, J = 0, and μ = −2.

towards lower energies with V while in Fig. 4 we see how this
new band widens slightly with J .

We also find that the low-energy excitations are formed
mainly by states of the form |0,↑〉 and |↑,↑〉. The obser-
vation of regions with charge density waves (CDWs) and
superconductivity for the low hole doping limit of the rota-
tionally invariant case of this model in Ref. [28] suggests that
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FIG. 7. Heat plots of A(ω, k) for U = 4, μ = −2, and L = 12
and periodic boundary conditions. (a) V = 0, J = 0; (b) V = 2, J =
0; and (c) V = 2, J = 1 (rotationally symmetric case). Figures in the
right column show the dispersions projected onto the HD excitations
for each case.
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this low-energy structure could be related to superconducting
or CDW fluctuations. We leave the analysis of these low-
energy excitations for further study.

In Fig. 6 we plot the DOS for several system sizes, showing
that the existence of the in-gap band is robust.

V. BAND DISPERSIONS

We also calculate the spectral functions A(ω, k), which are
obtained by Fourier transforming the single-particle Green’s
function in real space with periodic boundary conditions using
DMRG.

The momentum dispersions of the bands are plotted in
Fig. 7. In the right column we show the dispersion of the HD
excitations. For V = 0 (which corresponds to two independent
single-orbital chains) we observe that the HD excitations are
located mainly at the zone boundaries, k = ±π , while for
finite V the HD excitations seem to be more extended in k. In
this latter case we can clearly see that the HD band is formed
at lower energies, as shown before with the DOS. We also see
the dip in the DOS at low energies. For J = 1 we observe a
broadening of the HD band together with a reduction of the
dip close to the Fermi energy (ω = 0).

VI. CONCLUSIONS

In this work we studied the T = 0 single electron spectral
functions of the 1D two-orbital Kanamori-Hubbard model
which is the basic model to describe a wide range of correlated
multiorbital materials. We resort to high-precision DMRG
numerical calculations for the ground states and the dynamical

response functions. This allowed us to observe a rich structure
in the DOS for a wide range of parameters. A salient feature
for the hole-doped case is the presence of an in-gap band
with a large component on holon-doublon excitations whose
spectral weight is transferred from the upper Hubbard band
for intermediate values of the interorbital Coulomb interaction
V . We expect that these in-gap excitations will be also ob-
served in two- and three-dimensional versions of this model,
as already indicated in previous work using DMFT [18,19].
One main difference is that for higher dimensions one can
also analyze the half-filled case which is metallic for small
enough local interactions. As shown in Ref. [18], the HD band
is also observed in this case, where a metallic band is needed
to provide for the holes or the doubly occupied states which
form the HD excitations. For the one-dimensional case studied
in this paper, the holes are provided by doping.

We also studied the energy dispersion and found that these
excitations are less concentrated close to the zone boundaries
when compared to the V = 0 case. The new in-gap band
shown in this paper should also show up in other observables
such as optical conductivity. Work is underway to analyze the
low-energy features and the consequences of electron doping.
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