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Quantum algorithms for quantum dynamics: A performance study on the spin-boson model
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Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter
approximation of the time-evolution operator. This approach typically relies on deep circuits and is therefore
hampered by the substantial limitations of available noisy and near-term quantum hardware. On the other
hand, variational quantum algorithms (VQAs) have become an indispensable alternative, enabling small-scale
simulations on present-day hardware. However, despite the recent development of VQAs for quantum dynamics,
a detailed assessment of their efficiency and scalability is yet to be presented. To fill this gap, we applied a
VQA based on McLachlan’s principle to simulate the dynamics of a spin-boson model subject to varying levels
of realistic hardware noise as well as in different physical regimes, and discuss the algorithm’s accuracy and
scaling behavior as a function of system size. We observe a good performance of the variational approach used
in combination with a general, physically motivated wave function ansatz, and compare it to the conventional
first-order Trotter evolution. Finally, based on this, we make scaling predictions for the simulation of a classically
intractable system. We show that, despite providing a clear reduction of quantum gate cost, the variational method
in its current implementation is unlikely to lead to a quantum advantage for the solution of time-dependent
problems.
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I. INTRODUCTION

The simulation of quantum systems is one of the most
promising applications of quantum computing [1], aiming to
overcome the limits of classical computers when it comes to
storing and manipulating exponentially large quantum states.
However, many of the conceived quantum algorithms, claim-
ing to offer exponential speed-up over classical counterparts,
are too resource-intensive for available hardware and will
only become practicable once fault-tolerance is reached. In
turn, since today’s noisy near-term quantum technology is
characterised by low qubit counts (<1000), short decoher-
ence times (∼100 µs) and two-qubit gate errors (∼10−3) [2,3],
error-correction schemes cannot yet be implemented [4].

This has sparked the development of hybrid quantum-
classical algorithms, or VQAs [5], that split the workload
between a quantum and a classical processor. Most promi-
nently, the variational quantum eigensolver (VQE) has
become the standard-tool for eigenvalue problems [6–8]. With
efficient encodings of variational states, VQE requires only
shallow circuits and has enabled small-scale simulations of
up to a few atoms already on present-day hardware [9–11].
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Since the development of a first VQA for quantum dy-
namics by Li et al. in 2017 [12], there has been a surge in
attention to the simulation of quantum dynamics using VQAs.
Several new methods, partially based on Ref. [12], have
been put forward recently [13–21]. These approaches claim
to be more resource-efficient compared with fault-tolerant
quantum algorithms for implementing the time evolution
operator, Ut = e−iHt , such as product formulas for the decom-
position of Ut , commonly known as Trotter formulas [22–26],
linear combination of unitaries [27], quantum signal process-
ing [28], and qubitization [29].

However, for VQAs to be meaningful for near-term appli-
cations in the simulation of quantum dynamics, it is necessary
to carefully evaluate their performance, including their sta-
bility under noisy hardware conditions. Furthermore, their
versatility with different systems has to be assessed. Par-
ticularly, they rely on choosing a variational ansatz that is
both compact and flexible enough to accurately represent
the studied system during the entire dynamics. Finding such
a variational form is itself highly nontrivial as already ad-
dressed in the literature [15], which is why often, a so-called
heuristic, or hardware-efficient ansatz, is chosen. Such an
ansatz is agnostic to the problem at hand and its underlying
symmetries, resulting in high numbers of variational param-
eters, which could potentially jeopardize desired quantum
advantage. Hence, in order to better characterize these VQAs,
their application to nontrivial systems [30] is essential.

In this paper we propose a detailed study of the per-
formance of Li’s VQA [12] for solving the dynamics of a
spin-boson model. Moreover, based on our results, we make
predictions on scalability and possible quantum advantage
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with a particular focus on the comparison with Trotter evolu-
tion. The spin-boson model presents itself as an ideal testbed
due to its rich dynamics and high relevance for various areas
of research, resulting in a multitude of theoretical [31–33]
and experimental studies [34–36]. The generic model of a
two-level system coupled to a bath of harmonic oscillators
is of great importance in the study of light-matter interac-
tion and, particularly so, in the description of optical cavities
and superconducting circuits [37]. On the other hand, it may
also be seen as an idealized model for the study of the
nonadiabatic dynamics of molecules, where, in this case, the
fermionic two-level system describes two molecular potential
energy surfaces [26,38]. Recent efforts in the context of digital
quantum computing have explored both the spin-boson
model’s stationary as well as dynamical properties [39–41].

In this paper, we start by constructing a physically mo-
tivated time-dependent variational form. We then focus on
the numerical stability of the algorithm in different physical
regimes, as well as the effects of introducing realistic exper-
imental noise. In the last section, we finally present a careful
study on the scaling of the computational resources as a func-
tion of the system size, comparing the variational approach
and Trotter evolution. In particular, we present predictions
for system sizes far out of reach for classical simulation and
conclude on the possibility to reach quantum advantage using
near-term and fault-tolerant quantum algorithms for quantum
dynamics.

II. THEORY

A. Quantum dynamics with product formulas

As eluded to in the introduction, the most-widely used
method for time-evolution in the context of quantum comput-
ing remains the approximation of the unitary time evolution
operator with a Trotter-Suzuki formula. At first order and with
H = ∑Nh

j=1 h j , we have

exp(−iHt ) ≈
(

Nh∏
j=1

e−ih j
t
d

)d

, (1)

with an error that scales with O(N2
h t2/d ). It can be shown,

however, that for Hamiltonians, which can be mapped to a
qubit-lattice and split into even and odd parts, as is the case
for the spin-boson Hamiltonian introduced below, this scaling
reduces to linear in the number of Hamiltonian terms [25,42],

ε = O
(

Nh
t2

d

)
. (2)

The drawback of this method is that it typically requires
long circuits due to the error scaling quadratically with the
simulation time.

B. Variational quantum algorithm for real-time evolution

Alternatively, variational time-evolution algorithms for
quantum dynamics aim to drastically reduce the circuit depth.
A time-dependent variational ansatz |�(θ)〉, with θ = θ(t ),
seeks to approximate the true state |�(t )〉, obtained as a so-
lution to the time-dependent Schrödinger equation (TDSE)

ih̄ d|�〉
dt = H |�〉. The parameter’s time dependence will be left

implicit in the following and we set h̄ = 1.
On a quantum computer, a variational ansatz is prepared

by acting upon a reference qubit-state |φ〉 with a parameter-
ized unitary operator, the quantum circuit, |�(θ)〉 = U (θ) |φ〉,
where θ = (θ1, θ2, . . .) ∈ RNθ is a set of real parameters. Al-
though variational parameters can generally be complex, they
are, in fact, required to be real in the setting of quantum
computation since they will be encoded as angles of rotational
quantum gates. As outlined in [12,43], such a time-dependent
variational ansatz can be employed in a hybrid quantum-
classical algorithm.

One of three variational principles (VPs) [44–46], the
Dirac-Frenkel variational principle (DFVP) [47,48],
the McLachlan variational principle (MVP) [49], and the
time-dependent variational principle (TDVP) [50], may then
be used to derive a set of equations of motion (EOMs)
dictating the parameter evolution. In fact, as is intelligibly
shown in [46], all three principles are equivalent under the
condition that the variational manifold M is such that |δ�〉
and i |δ�〉 are both elements of the same tangent space. This
is typically satisfied for a complex parametrization but not
for purely real parameters [44], as is the case here. In fact,
while parameters have to be made real artificially with the
DFVP, both the MVP and the TDVP naturally maintain a
real parametrization [43,44]. Due to known instabilities in the
integration of the EOMs resulting from the TDVP, we will
make use of MVP,

δ‖i |�〉 − H |�〉‖ = 0, (3)

where variation is with respect to |�〉 = |�̇〉. Assuming the
evolution of |�〉 to be governed by the same TDSE as that
of |�〉, this means to minimize the distance between the
projection H |�〉 and the variational tangent vector d |�〉 /dt .
Equation (3) results in the condition � 〈δ�|i∂t − H |�〉 = 0.

With all time-dependence residing in the parameters θ and
accounting for a potential global phase mismatch between
exact and approximate state, i.e., taking |�〉 → eiα(t ) |�〉, we
obtain as EOMs [12,43,44]

Mθ̇ = V, (4)

with the matrix elements

Mi j = 

(

∂ 〈�|
∂θi

∂ |�〉
∂θ j

+ ∂ 〈�|
∂θi

|�〉 ∂ 〈�|
∂θ j

|�〉
)

(5)

and the vector components

Vi = �
(

∂ 〈�|
∂θi

H |�〉 − ∂ 〈�|
∂θi

|�〉 〈�|H |�〉
)

, (6)

where the respective second term results from the inclusion
of a global phase. Equation (4) may then be solved by any
numerical ODE-solver, e.g., a Runge-Kutta method.

We highlight that the MVP and the previous derivation is
not immanent to quantum computation but may be used for
any classical variational ansatz. What is distinct in the quan-
tum setting is the preparation of the ansatz and the evaluation
of individual terms by means of quantum circuits [12,51,52].

Recently, several other VQAs for quantum dynamics were
proposed, relying either on propagating parameters by means
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FIG. 1. Schematic representation of the qubit-mapped spin-
boson model. The spin’s state is captured by a single qubit, while
under the direct mapping for bosonic modes, each energy level nk

corresponds to a qubit.

of an EOM like Eq. (4) but differing in the way the ansatz
is constructed [16,17,19], or by carrying out an optimiza-
tion at each timestep [13–15,18,20]. In this last case, one
can minimize for instance the distance between a variational
state and the outcome of a small Trotter step, avoiding the
measurement-intensive construction of the matrix elements
required in Eq. (4) as well as its inversion, which is a potential
source of numerical instabilities. Concerning the optimization
of variational quantum circuits, although it was shown in
Ref. [53] that such optimization is in general NP-hard due to
unresolvable local minima, approximate solutions suffice and
can be found efficiently in practical simulations (cf. Solovay-
Kitaev theorem [54]). Herein, we will make use of the original
variational approach in Eq. (4), which solely relies on the
integration of an EOM and does not involve any parameter
optimization.

C. The spin-boson model

We consider a two-level system coupled to a bath of
M bosons. The two-level system may represent an atom with
two energy levels, a spin- 1

2 particle, or any artificial system
such as, for instance, a superconducting qubit. For brevity, we
will refer to it simply as “the spin”. Such a system is described
by the spin-boson Hamiltonian [37,40],

H =
M∑

k=1

ωka†
kak + ε

2
σ

z + �σ
x +

M∑
k=1

gkσ
x(a†

k + ak ). (7)

The bosonic operators a†
k (ak) create (annihilate) harmonic

basis states with eigenfrequencies ωk , Pauli matrices σ
i, i ∈

{x, y, z} act on the state of the spin with eigenfrequency ε and
tunneling rate �. The coupling between spin and bosons is via
σ

x with coupling constants gk .
Simulation on a quantum device requires to encode states

in qubit registers and map operators to quantum gates, e.g., to
strings of Pauli operators. Note that, in the following, the nota-
tion will be largely adapted from [40]. The excitation space of
the kth bosonic state will be truncated at a maximum occupa-
tion number nmax

k , leaving nmax
k + 1 possible occupations per

mode k, including the ground state. Under the direct qubit-
mapping [55], the occupation number vector (ONV) is then
mapped to a qubit register of size nmax

k + 1, |nk〉 −→ |ñk〉 =
|0nmax

k
. . . 0nk+11nk 0nk−1 . . . 00k 〉. Figure 1 displays a schematic

representation of the system after qubit-mapping. Requir-
ing to maintain correct spin statistics, the corresponding
mapping of bosonic creation and annihilation operators fol-

lows immediately as a†
k → ã†

k = ∑nmax
k −1

nk=0

√
nk + 1σ+

nk
σ−

nk+1,
and analogously for ak , where σ±

nk
= (σ x

nk
± iσ y

nk )/2.

D. The variational ansatz

The so-called polaron transformation (PT) enjoys popular-
ity in the classical simulation of spin-boson models [33,56]
and has successfully been used for VQE ground-state calcu-
lations recently [40]. However, it proved to be insufficient for
the use with variational time evolution and the Hamiltonian
Eq. (7). Instead of the PT, here we employ a variational
Hamiltonian ansatz (VHA) [57]. Inspired by the unitary time
evolution operator, the time parameter is simply replaced with
a variational parameter that is distinct for each term in H ,
yielding

UH(θ) = exp

(
−i

[
M∑

k=1

θ
(1)
k a†

kak + θ (2)σ
z + θ (3)σ

x

+ σ
x

M∑
k=1

θ
(4)
k (ak + a†

k )

])
. (8)

Note that all Hamiltonian parameters are absorbed into varia-
tional parameters.

Translating UH into a sum of Pauli strings is now straight-
forward. Employing the above operator mapping, we find

ã†
k ãk = 1

4

nmax
k −1∑
nk=0

(nk + 1)

(
σ z

nk
− σ z

nk+1 − σ z
nk

σ z
nk+1

+ 1

2
Ink + 1

2
Ink+1

)
, (9)

with I the identity. Such identity terms contribute nothing but
a global phase upon exponentiation and can thus be neglected
in the variational ansatz.

Similarly, for the interaction term, one obtains

ãk + ã†
k = 1

2

nmax
k −1∑
nk=0

√
nk + 1

(
σ x

nk
σ x

nk+1 + σ y
nk

σ
y
nk+1

)
. (10)

Since this expression consists of mutually noncommuting
terms, the summation over nk is split into even and odd parts,
X e

k := −i
∑

nk even

√
nk + 1(σ x

nk
σ x

nk+1 + σ
y
nk σ

y
nk+1)/2, and anal-

ogously for the odd part X o
k , such that

−i(ãk + ã†
k ) = X e

k + X o
k . (11)

Notably, we have [X e
k , X o

k ] �= 0 while all terms within X e,o
k

commute.
The resulting exponential is approximated with a Trotter

series of depth d , yielding an ansatz suitable for imple-
mentation in terms of quantum gates. Exponentials of Pauli
terms may directly be written as rotational gates there-
after, e.g., Rz(2θ (3) ) = exp(−iθ (3)σ

z ). Although the final
variational ansatz appears bulky, it can be compactly ex-
pressed as a series of one- and two-qubit gates and may be
looked up in Appendix A.
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E. Resource estimates and scaling

In this section, we discuss the scaling of the different
computational resources for computing the dynamics of the
spin-boson model with both the variational and the Trotter
approach, [Eq. (1)] and [Eq. (4)], respectively. First off, the
classical cost per timestep of the variational algorithm is de-
termined by the number of variational parameters, which, for
our ansatz [Eq. (8)], is given by

Nθ = 2d (Mnmax + 1). (12)

The quantum cost is determined by qubit- and gate counts,
as well as the number of circuit evaluations. In the variational
case, the total number of qubits is

Nq = M(nmax + 1) + 1 + 1, (13)

where an extra qubit was added to account for the possibility
of evaluating gradients by means of an ancilla qubit [52].
Trotter evolution does not require any ancilla, hence requiring
one qubit less, Nq − 1.

The number of CNOT gates in the quantum circuit is
ansatz-dependent and, for Eq. (8), can be estimated as

Ncx = O(dMnmaxNq ) = O(d[Mnmax]2). (14)

Assuming the worst qubit connectivity, i.e., a linear chain,
we included a factor Nq to account for swap gates that enter
the circuit upon transpilation. This means, in the worst-case
scenario, one needs to swap over the entire qubit register to
execute a CNOT gate. This is true for both variational and
Trotter simulation and, since our ansatz and the Trotter circuit
differ only in the gate angles (which are variational parameters
in the case of variational simulation), Ncx is the same for both
Trotter and variational simulation. Note, however, that the
Trotter depth d differs in the two approaches; In the case of
the Trotter algorithm, the circuit depth increases quadratically
with the simulation time [cf. Eq. (2)], while for the varia-
tional approach, the depth (and the corresponding number of
variational parameters) determines the size and nature of the
sub-manifold governing the dynamics.

The number of circuit evaluations per timesteps to evaluate
the elements of M and V in [Eq. (4)] is determined by the
number of Hamiltonian terms Nh, the number of circuits nec-
essary to evaluate all gradients ∂i |�〉, which we denote Ndθ ,
and the number of samples per circuit, Nshots = O(1/ε2),

Ncirc = O
(
Nshots

(
N2

dθ + NhNdθ

))
. (15)

In the variational ansatz Eq. (8), we have Nθ = 2d (Mnmax +
1) variational parameters, a total of Ndθ = d (5Mnmax + 2)
gradient circuits, and Nh = 7Mnmax + 2 Hamiltonian terms.
The number of gradient terms differs from the number of
parameters, as some parameters are repeated in the circuit.

Finally, we estimate the number of timesteps taken by the
ODE solver to reach the final time T . Throughout this paper,
we will use an adaptive solver, however, adaptively choosing
a step size is highly system dependent. Therefore, to simplify
the estimate, we base it on the local error of a nonadaptive
Runge-Kutta solver. For an order-p Runge-Kutta solver and
a fixed timestep τ , the local error scales as εlocal = O(τ p+1).

For a desired final accuracy of εT , we thus estimate

Nt = εT

εlocal
(16)

timesteps. With Nt = T/τ , this means the timestep must sat-
isfy τ p = O(εT /T ). We emphasize that this is indeed a very
rough estimate as scaling coefficients of the local error may
heavily depend on the system under study. Especially so when
considering an adaptive timestep. In that case, the number
of function calls is what determines the number of circuit
evaluations and thus also the cost of the algorithm, regardless
of the number of accepted or rejected steps.

III. RESULTS

A. Noisy variational quantum simulation

In the following, we study the spin-boson model with the
Hamiltonian in Eq. (7) for various Hamiltonian parameters
and system sizes. In particular, we consider here the resonant
case ωk ≡ ω, gk ≡ g and the regime of ultrastrong coupling
(USC), where g/ω ∈ [0.1, 1]. Note that, from here on, we will
take H/ω such that all Hamiltonian parameters are expressed
in terms of bosonic eigenfrequencies. We begin with the sim-
plest case of a single bosonic mode with an excitation number
cutoff at nmax = 1, resulting in three qubits under the direct
mapping. The coupling strength is fixed at g/ω = 0.5 and
we distinguish (ε,�) ∈ {(0, 0), (−1, 0), (0, 1)}. Furthermore,
we prepare the initial state in the noninteracting ground state
|01〉b |0〉s = |010〉 and monitor its evolution through the orien-
tation of the spin, Pz = 〈σ z + 1〉 /2. Note that we use the re-
verse qubit-ordering notation as conventional in QISKIT [58].

We aim to investigate how much variational simulations
are affected by varying levels of noise. To this end, we dif-
ferentiate four regimes; one with statistical (shot) noise only,
one with full hardware noise mimicking IBM’s ibmq_santiago
device [2], which belongs to IBM’s 5-qubit Falcon processors,
as well as two intermediate regimes. The two intermediate
regimes are achieved by mimicking a device through QISKIT’s
noise model feature and the possibility to isolate and manip-
ulate specific noise components. This allows for a detailed
study of the influence of current hardware noise. Particularly,
for the intermediate noise regimes, we decrease the average
one- and two-qubit gate errors, e1qg and e2qg, respectively, as
well as readout errors of the device eread while simultaneously
increasing average relaxation and dephasing times, T1 and T2,
respectively, by a factor η,

e1qg = edev
1qg

/
η, e2qg = edev

2qg

/
η,

eread = edev
read

/
η,

T1 = ηT dev
1 , T2 = ηT dev

2 , (17)

To simulate this setup, we employ QISKIT’s shot-based
Qasm-simulator with 8192 shots per circuit evaluation, and
SCIPY’s adaptive Runge-Kutta solver of order 5(4) [59].

Figure 2 shows the results of these simulations with η ∈
{1, 2, 10,∞}, where η = 1 denotes full hardware noise and
statistical noise, whereas η = ∞ means no hardware noise,
i.e., only statistical noise. We employed complete readout er-
ror mitigation [58] via 2Nq calibration circuits where Nq is the
number of qubits. All evolutions in Fig. 2 were obtained with
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FIG. 2. Variational simulation results for three qubits (M = 1, nmax
k = 1), Trotter depth d = 1, i.e., Nθ = 4 variational parameters, and

under varying influence of noise with 8192 shots per circuit evaluation. Using the noise model from one of IBM’s devices, ibmq_santiago
v1.3.22 [2] (see Appendix B, Table I), η denotes the fraction of noise employed. That is, η = 1 indicates results obtained with the full realistic
hardware noise together with statistical noise, while η = ∞ means only statistical and no hardware noise. The top row in (a)–(c) shows the
spin-orientation evolving for different system setups (Hamiltonian parameters ε, �), while the bottom row shows the respective infidelities of
the variational state. In panel (d), we plot the mean of the infidelities in (a)–(c), ��, as a function of η. Results indicate that already a reduction
of current hardware noise by one order of magnitude yields an accuracy comparable to that obtained with only statistical noise.

a variational circuit of Trotter depth d = 1, containing Nθ = 4
variational parameters. The top row of panels (a)–(c) displays
the evolution of Pz(t ), while the respective bottom row gives
the infidelities ��(t ) = 1 − | 〈�(t )|�(t )〉 |, where �(t ) is the
propagated (noisy) variational state at time t , while �(t ) is
the corresponding exact solution obtained by exponentiation
of the Hamiltonian matrix. It is evident that mere statistical
noise (η = ∞) yields high accuracy throughout the entire
simulation time, with a final infidelity of O(10−4) to O(10−3).
We note that this is achieved with O(103) integration steps and
a total of O(107) shots throughout one simulation. While this
is highly model dependent, we achieve a final accuracy at a
fixed number of samples several orders of magnitude better
than those estimated in [18].

Moreover, although the accuracy decreases with the intro-
duction of hardware noise, the variational algorithm [using the
proposed variational ansatz in Eq. (8)] achieves a final infi-
delity of O(10−2) to O(10−1), even with full hardware noise
(η = 1). Importantly, despite a deviation of the variational
state from the true state trajectory over time, basic physical
properties of the system’s evolution, such as the oscillation
frequency, are reproduced at least qualitatively.

Systematically reducing the noise (η = 2 and η = 10) as
in Eq. (18) gradually increases accuracy. Remarkably, for
η = 10, the simulation accuracy is comparable to that without
hardware noise (η = ∞). This becomes even more clear in
Fig. 2(d), where we plot the mean error �� for all η and the
respective system from (a)–(c).

B. Scaling up – simulating larger spin-boson systems

Next, we enlarge the system to five qubits, which will
enable us to make better scaling predictions for classically

intractable systems in Sec. IV. Based on the direct qubit-
mapping, five qubits may represent two different systems—a
spin coupled to one bosonic mode (M = 1) with an excita-
tion cutoff at nmax = 3, or a spin coupled to two bosonic
modes (M = 2) with an excitation cutoff at nmax = 1 each.
The time evolution of these two systems within the same
setup as before are displayed in Figs. 3(a) and 3(b), respec-
tively. Note that, in this and the following subsection, we
consider statevector simulations only. Top rows (a1) and (b1)
and bottom rows (a2) and (b2) represent system parameters
(ε,�) = (−1, 0), (0, 1), respectively.

We observe that Trotter depth d = 1 does not offer enough
variational flexibility in all cases anymore and a depth of
d = 2 is necessary to account for the correct dynamics. This
could be anticipated from a simple dimensional analysis of the
Hilbert space. However, with a total of Nθ = 16 (a) and Nθ =
12 (b) real variational parameters at d = 2, the dimensionality
of the variational state remains well below the exponential
size of the full 5-qubit wave function, which would require 31
complex or 62 real parameters for full parametrization (two of
the 2×25 real parameters may be fixed with norm and global
phase).

C. Comparison with Trotter evolution

With circuit depth and two-qubit gate-count being the main
limiting factors in noisy near-term quantum simulation due
to short coherence times, it is worthwhile to compare the
variational results from Figs. 2 and 3 to the more resource-
intensive Trotter evolution. Importantly, in Trotter evolution,
the depth increases with simulation time, while in variational
simulation, the ansatz depth remains constant throughout the
simulation. Henceforth, the question is how the ansatz depth
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FIG. 3. (a) Variational results for five qubits (M = 1, nmax
k = 3) and g/ω = 0.5, for Trotter depth d = 1, 2, i.e., Nθ = 8, 16 variational

parameters. (b) Variational results for five qubits (M = 2, nmax
k = 1) and varying coupling strength g/ω = 0.2, 0.6, 1.0, for Trotter depth

d = 1, 2, i.e., Nθ = 6, 12 variational parameters. Top rows (a1) and (b1) correspond to system parameters (ε, �) = (−1, 0), bottom rows (a1)
and (b1) the parameters (ε, �) = (0, 1).

required by the variational approach scales with system size
compared with Trotter simulation.

To address this question, we use the first-order formula of
Eq. (1) from Sec. II A and aim at finding the minimal Trotter
depth d to achieve a final accuracy of εthresh. For this, we com-
pute the infidelity ��(t ) after each Trotter step. Beginning
with a single circuit layer, d = 1, we append a layer to the
circuit every time the infidelity increases above the threshold
and repeat the step until ��(t ) < εthresh again.

The findings shown in Fig. 4 emphasize the resource-
efficiency of the variational approach when used in combina-
tion with a well-chosen ansatz. Here we plot the final Trotter
depth necessary to keep ��(t ) < εthresh throughout a fixed
simulation time of T = 10 with εthresh ∈ {10−2, 10−3, 10−4}
and for several system sizes indicated by the number of qubits,
Nq ∈ [3, . . . , 11]. These are compared to the smallest Trotter
depth of the variational ansatz that achieves ��(t ) � 10−4

in the variational simulations. Note that, with a growing
number of qubits, the number of distinct spin-boson systems
that can be mapped to Nq increases. For example, systems
with M = 2, nmax = 1 and M = 1, nmax = 3 both result in
5 qubits; systems with M = 2, nmax = 4 and M = 5, nmax = 1
both result in 11 qubits. Data points in Fig. 4 represent simu-
lation results averaged over all possible systems with the same
number of qubits and nmax

k ≡ nmax. Detailed numbers may be
looked up in Appendix C, Tables II and III. In the variational
simulations of up to 11 qubits, d � 4 Trotter steps sufficed to
maintain a target infidelity ��(t ) � 10−4. On the other hand,
using Trotter evolution, the circuit size grows significantly
faster with system size.

To underline the different scaling behaviors, we linearly fit
the depths in Fig. 4 according to Eq. (2). Note that d ∝ Nh ∝
Nq since the number of terms in the qubit-mapped Hamilto-

nian is Nh = 7Mnmax + 2. The fit results are represented by
the lines on different scales (linear and log scale in the top
and bottom row, respectively, as well as different system size
regimes, left and right) and the parameters may be looked up
in Appendix C, Table IV.

Although the depth scales linearly with system size both
with Trotter evolution as well as with the variational approach,
it becomes visible from the fitting lines that the scaling co-
efficients vastly differ in both cases (cf. Table IV). In fact,
despite the obvious savings of the variational method in terms
of circuit depth, the extrapolated number of circuit layers for
a 120-qubit system is merely around two orders of magnitude
smaller than that estimated for Trotter evolution with a target
accuracy of εthresh = 10−4. While this may seem like a large
resource saving, it has to be put in relation with additional
computational costs associated with the variational scheme,
as will become more clear in the following section.

IV. SCALING ESTIMATES FOR QUANTUM ADVANTAGE:
VARIATIONAL APPROACH VS TROTTER

The world’s largest supercomputers can store in the order
of 1012 bits of information. This corresponds, for instance, to
the size of the Hilbert space of a 12-mode spin-boson systems
with 10 degrees of freedom per mode (M = 12, nmax = 9).
For the simulation of such a system as described in the pre-
vious sections, we would need to control Nq = 121 qubits
(122 with an ancilla in variational simulation). In the follow-
ing, we want to estimate the computational effort necessary
to simulate such a system with both the variational and the
Trotter-based approach, making use of the scaling laws pre-
sented in Sec. II E and the fits reported in Fig. 4. Throughout
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FIG. 4. Final depth, i.e., number of Trotter steps, required to
achieve an accuracy �� below εthresh, comparing Trotter and vari-
ational simulation for different system sizes (data points). Top and
bottom plots show the same data with a linear and log scale, respec-
tively. Legend entries denote different values of εthresh and variational
simulation, respectively. Variational simulation achieves a final infi-
delity below 10−4 throughout all numerical examples and is therefore
to be compared to the εthresh = 10−4 Trotter curve. The scaling of the
depth is estimated with a linear fit (see main text), which is used
to extrapolate to system sizes of Nqubits = 120, the number of qubits
necessary for a simulation comparable to state of the art classical
spin-boson simulations.

this section, we will consider a maximal target error of ε �
10−4 during the entire simulation.

From the results in Fig. 4, we estimate that the propaga-
tion of such a system using the first-order product formula
[Eq. (1)] will require a circuit depth d ≈ 3400 in order to
achieve the desired accuracy. This value is obtained by tak-
ing the average prediction for both Hamiltonian regimes in
Fig. 4, leading to Ncx ≈ 107 two-qubit gates. Importantly, this
is the only computational cost associated with Trotter-based
simulation in order to reach the fixed final time of T = 10, as
no classical data processing is required.

On the other hand, in variational simulations the cost is
split into three main components: the one associated to the
circuit length (gate counts), the number of circuit evaluations
to compute the different matrix elements, and the classical
data processing to obtain the parameter update. The same
extrapolation based on Fig. 4 predicts a variational form with
a depth d ≈ 31 to simulate Nq = 122 qubits. In this case the
number of 2-qubit gates amounts to Ncx ≈ 105. With a final
time of T = 10 and a desired accuracy of ε � 10−4, the total
number of timesteps Nt = ε/εlocal [cf. Eq. (16)], needed to
integrate the EOM, amounts to Nt ≈ 100. Note that in the
numerical studies presented above, we found good agree-
ment with this scaling even with an adaptive timestep when
carefully choosing absolute and relative error tolerances for
acceptance criteria. We report exact numbers of function calls
for statevector as well as noisy simulations in Appendix C,
Table V. The total number of circuit evaluations for the

variational case becomes

N tot
circ = Nt Ncirc = O

(
Nt

ε2

(
N2

dθ + NhNdθ

))

≈ 1018. (18)

Now, assuming a two-qubit gate length of 100 ns, ex-
ecuting the Trotter circuit takes approximately 1 second. A
single evaluation of the variational circuit, on the other hand,
would last roughly 0.01 seconds. We neglect the additional
time required to measure and reset qubits after each circuit
evaluation and the speed-up from possibly parallelizing circuit
evaluations in the variational approach, since these two effect
counter each other. Under these assumptions, a variational
simulation will take approximately 0.01 s×1018 = 1015 s ≈
3×107 yr.

This example illustrates that, although the variational pro-
cedure allows for shallower circuits and hence opens avenues
for performing simulations of small systems on near-term
quantum computers, it is unlikely that it will lead to quantum
advantage for the simulation of spin-boson models. In fact, the
number of circuit evaluations quickly becomes prohibitive in
this case. This issue was also raised by Barison and coworkers
[18] who proposed a variational algorithm, which reduces the
scaling of Ncirc from quadratic to linear in the number of pa-
rameters. Although this step goes in the right direction, it is by
itself not enough to make the variational approach feasible for
the applications described here. It is worth mentioning that the
scaling could be further reduced by improving the sampling
procedure. However, for an optimal number of shots, Nshots =
O(log(1/ε)), and a linear scaling of Ncirc with the number
of parameters, the number of circuit evaluation would still
amount to N tot

circ ≈ 1010, taking roughly 107s ≈ 0.3 yr. At the
same time, the scaling of product formulas is suboptimal and
novel algorithms exhibiting reduced complexity have been
proposed recently. Most notably, qubitization [29] achieves a
gate complexity linear and additive in time, O(t + log(1/ε)),
which is provably optimal. A rough estimate based on the
asymptotic bounds presented in Ref. [29] suggests that qubiti-
zation requires a two-qubit gate count of Ncx = O(105) for the
above example, taking O(0.01 s) to run, and additional O(10)
ancilla qubits to implement the needed oracles. Despite its po-
tential, the implementation of this algorithm poses important
challenges to near-term quantum computing, which cannot be
addressed in this paper.

V. DISCUSSION AND CONCLUSIONS

In this paper, we investigated the performance of a time-
evolution VQA by simulating the quantum dynamics of a
spin-boson Hamiltonian, a model, which is widely used to
describe the embedding of a two-level system in a thermal
bath. Aside from assessing the VQA’s numerical stability, the
purpose of our investigation is to provide scaling estimates
and predictions, particularly in comparison to conventional
Trotter evolution. In particular, we analyzed the performance
of these time-evolution algorithms in the regimes of near-term
and fault-tolerant quantum computing.
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To this end, we studied the dynamics of several spin-
boson systems, varying in size as well as in the Hamiltonian
parameter space (i.e., the Hamiltonian coefficients). Further-
more, we introduced hardware noise into the variational
simulations by using the noise model of one of IBM’s quan-
tum computers, which provided a clear upper bound for the
level of noise tolerated by the algorithm. Throughout all simu-
lations, the physically motivated variational ansatz, which we
constructed based on the system Hamiltonian, offered a great
deal of flexibility and correctly captured various system’s
dynamics without the need of further tuning the variational
quantum circuits. Moreover, it exhibits linear scaling of both
the number of variational parameters and circuit depth.

Concerning the scaling of the two considered methods for
time evolution, namely the variational and the Trotter-based
approach, we presented approximate scaling laws for the clas-
sical and the quantum computational resources required by
both methods. We further performed a series of simulations
for system sizes in the range Nq ∈ {3, . . . , 11} to determine
the required circuit depths for a fixed target error, and ex-
trapolated these values to larger numbers of qubits using
appropriate fitting models. Based on these extrapolations, we
could estimate the computational cost of both methods for
simulating system sizes, which are barely accessible with
cutting-edge classical algorithms.

From this analysis, we can conclude that the variational
approach in the current implementation is an efficient and reli-
able approach in the case of relatively small setups, especially
in the context of current hardware limitations. However, the
costs associated with the number of circuit evaluations will
quickly become unaffordable, hampering its applicability to
large setups. Note that this occurs despite the fact that the
number of resources (variational parameters and gate count)
only increases linearly with the system size. Although Trotter
evolution has a two-qubit gate count two orders of magnitude
larger than the variational method, it does not suffer from the
same prohibitive scaling of required measurements.

In conclusion, the variational algorithm might be a use-
ful tool for demonstrations of small system’s dynamics on
noisy near-term quantum devices. But it remains an open
issue whether or not, and if so, under which circumstances,
it would potentially become a valid alternative to the Trotter-
based approach for quantum dynamics simulations of systems
with many degrees of freedom. At least in the simulation of
the spin-boson model, the Trotter-based algorithm remains
superior to the variational approach for treating system sizes
currently intractable with classical computers.
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APPENDIX A: THE VARIATIONAL QUANTUM CIRCUIT

In this section, we detail the construction of the
quantum circuit from the qubit-mapped ansatz UH in Sec. II D.
A detailed representation for one bosonic mode is shown
in Fig. 5, whereby the circuit for M bosonic modes is
obtained by appending respective bosonic qubit registers
that are coupled to the qubit representing the spin via re-
spective coupling gates [blue box in Fig. 5(a)] and which
have their own self-interaction gates [red two-qubit gates in
Fig. 5(a)].

FIG. 5. (a) Quantum circuit representation of the variational
ansatz UH in Eq. (8), showing the spin and one bosonic qubit reg-
ister. The blue box represents the coupling term in UH, while the
red two-qubit gates represent bosonic self-interaction terms. (b) De-
composition of the coupling gate from (a), with each cascade of
three-qubit gates representing a term in X̃ e,o

k . (d) Final decomposition
of the three-qubit gate into one- and two-qubit gates, coupling the
spin and the respective bosonic mode. (c) Decomposition of the
bosonic self-interaction gate. Variational parameters enter through
rotational gates Rz(θ ). The Hadamard gate H and Y † = Rx (π/2)
rotate qubits from σ z– into the σ x– and σ y–basis, respectively.
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TABLE I. Decoherence time, readout as well as one- and two-
qubit gate errors of ibmq_santiago, accessed on June 14, 2021. 2-
qubit gate errors and lengths are listed together with the respective
qubit pair, e.g., [0, 1] for the 2-qubit gate between qubits Q0 and Q1.
The mean values were used for studying different levels of hardware
noise in Sec. III A.

Qubit T1 T2 ero e1qg e2qg len
(µs) (µs) (×10−2) (×10−4) (×10−3) (ns)

Q0 150.48 284.71 2.31 2.68 [0,1] 6.25 526.22
Q1 163.37 104.22 1.14 1.71 [1,0] 6.25 561.78

[1,2] 6.01 355.56
Q2 144.89 97.87 1.47 2.25 [2,1] 6.01 320.00

[2,3] 6.15 376.89
Q3 230.80 97.37 0.52 1.52 [3,2] 6.15 412.44

[3,4] 5.69 376.89
Q4 47.22 103.46 2.16 3.81 [4,3] 5.69 341.33

mean 122.55 149.53 1.63 2.09 7.78 536.89

For all simulations in the main text, we initialize each
bosonic register in its noninteracting ground state |0̃〉k =
|0 . . . 01〉, obtained with a bit-flip on the first k-mode qubit,
|1〉 = X |0〉 = σ

x |0〉.
Variational parameters enter through rotational gates as

Rz(θ ) = exp(−iθσ z/2). Moreover, all parameters are nk-
dependent, θ = θnk , such that each bosonic self-interaction
and coupling gate (red two- and blue three-qubit gates) is
parameterized individually. Within each of these gates, how-
ever, for instance within the gate in (c), all three Rz gates
have the same parameter. While these parameters could be
made independent as well if more flexibility is required of the
ansatz, we found no advantage in doing so.

APPENDIX B: HARDWARE SPECIFICATIONS

Table I lists the most relevant device specifications of all
5 qubits of the device used in Sec. III A, ibmq_santiago,
v1.3.22. It is important to note that this is just a snapshot of the
device’s noise and that, in reality, these quantities may vary.

APPENDIX C: DETAILS OF NUMERICAL EXPERIMENTS

Here, we report relevant details of the simulations de-
scribed the main text. Tables II and III list the Trotter depths
of the circuits shown in Fig. 4, and Table IV details the
corresponding fit parameters. Lastly, Table V lists the number
of function calls by the adaptive-step solver in Fig. 2.

TABLE II. Trotter depth d , necessary to simulate spin-boson
systems of different size (M, nmax) and ε = −1, � = 0. These num-
bers are plotted in Fig. 4 in the main text. Columns correspond
to simulations using Trotter evolution with three different values
of final accuracy εthresh ∈ {10−2, 10−3, 10−4}, and using variational
simulation, respectively.

Nq (M, n
max

) 10−2 10−3 10−4 Var

3 (1,1) 24 85 276 1
4 (1,2) 23 80 259 1
5 (1,3) 23 73 230 2

(2,1) 27 98 323 2
7 (2,2) 34 111 356 3

(3,1) 32 114 375 3
11 (2,4) 39 124 389 4

(5,1) 48 157 504 5

TABLE III. Same as Table II but for ε = 0, � = 1.

Nq (M, n
max

) 10−2 10−3 10−4 Var

3 (1,1) 12 45 150 1
4 (1,2) 21 72 232 1
5 (1,3) 31 98 311 2

(2,1) 18 66 214 1
7 (2,2) 30 102 329 1

(3,1) 23 81 263 1
11 (2,4) 50 157 496 2

(5,1) 31 105 340 1

TABLE IV. Results of a linear fit f (x) = p1x + p0 to the data
points in Fig. 4.

ε, � fit params 10−2 10−3 10−4 Var

−1, 0 p1 2.69 7.86 24.39 0.46
p0 13.58 53.53 178.36 −0.48
residual 11.89 156.54 1721.29 0.24

0,1 p1 3.16 9.64 30.24 0.05
p0 5.93 26.46 90.28 0.90
residual 27.64 218.54 1893.54 0.20

TABLE V. We report the number of function evaluations per-
formed by SCIPY’s RK45 solver with adaptive timestep [59] for
the M = 1, nmax = 1 system in Fig. 2. For reference, we include the
numbers for statevector simulations of the same systems (SV). Since
these numbers are highly dependent on numerical tolerances, we
report here also the absolute and relative error tolerance for choosing
the step size, δa = 10−6 and δr = 10−3, respectively for statevec-
tor, and δa = 10−3, δr = 10−3 for noisy simulations. Furthermore,
the singular value cutoff for matrix inversion [necessary in solving
Eq. (4)] was fixed at δcond = 10−6 and δcond = 10−3 for statevector
and noisy simulations, respectively.

ε, � SV η = ∞ η = 10 η = 2 η = 1

0,0 182 5282 2840 710 506
−1, 0 428 3554 1670 578 482

0,1 230 9518 1892 890 596
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