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Operating a passive on-chip superconducting circulator: Device control and quasiparticle effects
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Microwave circulators play an important role in quantum technology based on superconducting circuits. The
conventional circulator design, which employs ferrite materials, is bulky and involves strong magnetic fields,
rendering it unsuitable for integration on superconducting chips. One promising design for an on-chip super-
conducting circulator is based on a passive Josephson-junction ring. In this paper, we consider two operational
issues for such a device: circuit tuning and the effects of quasiparticle tunneling. We compute the scattering
matrix using adiabatic elimination and derive the parameter constraints to achieve optimal circulation. We then
numerically optimize the circulator performance over the full set of external control parameters, including gate
voltages and flux bias, to demonstrate that this multidimensional optimization converges quickly to find optimal
working points. We also consider the possibility of quasiparticle tunneling in the circulator ring and how it
affects signal circulation. Our results form the basis for practical operation of a passive on-chip superconducting
circulator made from a ring of Josephson junctions.
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I. INTRODUCTION

Microwave circulators are widely used in experiments with
superconducting circuits [1]. They break Lorentz reciprocity
[2] and facilitate unidirectional signal propagation, thus pro-
tecting fragile quantum systems from noise and enabling
discrimination between input and output fields for quantum-
limited amplification [3]. Commercially available circulators
are typically realized using ferrite materials and the Faraday
effect to induce nonreciprocity [4]. This approach necessitates
device dimensions of the order of the microwave wavelength,
which poses a practical difficulty for integrating circulators
with chip-based superconducting circuits. Furthermore, the
strong magnetic fields in conventional circulators are in-
compatible with sensitive superconducting devices. Hence,
a great deal of effort has been devoted to implementation
of ferrite-magnet-free circulators exploiting various physical
mechanisms, such as the quantum Hall effect [5,6], interfering
parametric processes [7–9], temporal modulation of couplings
[3,10–15], noncommutation between frequency conversion
and delay [16], and reservoir engineering [17,18].

Recently, Müller et al. [19] analyzed a proposal for a super-
conducting Josephson-junction-ring circulator whose working
principle parallels that of conventional ferrite circulators. The
Josephson-junction ring is promising for quantum simulation
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and potential applications that require nonreciprocity [20–22],
as it is compatible with on-chip superconducting circuits and
works passively, i.e., does not require an external drive. The
physics behind nonreciprocal signal circulation in this device
is the Aharonov-Bohm effect [19,20]. This effect (and the sig-
nal circulation) is strongly dependent on the external charge
and flux biases, the signal frequency, as well as fabrication
imperfections of the device parameters.

Because optimal circulator performance requires precise
tuning of the external parameters, we here address two related
operational issues: (i) tuning to the ideal working point in
the multidimensional space of the control parameters, and (ii)
the effect of quasiparticle-induced fluctuations [23,24] on the
circulator. Tuning the device will likely be necessary in all
implementations and, given the numerous independent control
parameters, issue (i) may present an operational challenge.
Issue (ii) has not been touched upon in Ref. [19], which only
showed resilience of signal circulation against perturbations
in external biases. Unlike these parameter perturbations, tun-
neling of a quasiparticle into and/or out of a superconducting
island shifts the charge bias on that island by one electron
worth of charge [25–27], which detunes the circulator away
from its optimal operating points and impairs the tuning pro-
cedure (i). Understanding the effect of quasiparticles is a step
towards mitigating their impact on the device operation.

Therefore, in this paper we first consider optimization of
the superconducting circulator proposed in Ref. [19]; that is,
we describe a protocol for tuning the device in the multidi-
mensional parameter space to find optimal operating points.
To do this, we employ the adiabatic elimination procedure
to extract semianalytic expressions for the scattering matrix
elements in the SLH input-output formalism [28,29]. This
allows us to deduce quantitative conditions for optimal circu-
lation. We also present numerical optimization results based
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on a full treatment of the multilevel scattering problem. The
numerics are found to be in excellent agreement with the
semianalytical predictions specifying optimal working points
for the circulator.

Second, we address the effect of quasiparticles on the
circulator efficiency. We show that due to tunneling of quasi-
particles between different pairs of superconducting islands
the Josephson-junction-ring circulator in Ref. [19] has four
accessible charge-parity sectors. Given the same working con-
ditions and parameters, these sectors circulate signals with dif-
ferent efficiencies. Stochastic jumps among the sectors caused
by quasiparticle tunneling events then may result in unstable
operation of the circulator device. To mitigate these fluctua-
tions, we propose to employ quasiparticle-trapping techniques
[24,25,30–33] to suppress quasiparticle population.

The structure of this paper is as follows. In Sec. II we
present the circuit design of the passive on-chip superconduct-
ing circulator along with the SLH formalism to numerically
calculate the scattering matrix elements. Then in Sec. III
we derive the scattering matrix elements exploiting the adi-
abatic elimination technique and determine the conditions
for optimal circulation, followed by numerical optimization
in Sec. IV. Section V analyzes quasiparticle tunneling in
the circulator system. The paper is concluded in Sec. VII.
Appendixes provide detailed calculations and additional in-
formation for the results in the main text.

II. CIRCUIT DESIGN AND SLH FORMALISM

In this section we present the circuit design of the ring cir-
culator, its working principle, the SLH formalism to compute
the scattering matrix, and the notations used throughout the
paper. Many details of these can be found in Ref. [19]. The
circulator circuit, depicted in Fig. 1(a), is a superconducting
ring segmented into three superconducting islands by three
Josephson junctions, each of which is described by a Joseph-
son energy EJj and a junction capacitance CJj ( j = 1, 2, 3).
The three islands are represented by the superconducting
phases φ̂ j and their conjugate charges n̂ j ; they are biased by
external voltages Vxj with gate capacitances Cxj and coupled to
three external waveguides by coupling capacitances Ccj . The
circulator ring is threaded by an external flux �x. Input fields
bin, j propagate along the waveguides, interact with the ring,
and scatter into output fields bout, j .

To begin, we consider the case of a symmetric Josephson-
junction ring, that is, EJj = EJ and CJj = CJ , and further
assume that Cxj = Cx and Ccj = Cc. We consider asymmetries
later. As derived in Appendix A, the circulator ring Hamilto-
nian is

Ĥring = (2e)2

2
(n̂ − nx )C−1(n̂ − nx )

− EJ

3∑
j=1

cos

(
φ̂ j − φ̂ j+1 − 1

3
φx

)
, (1)

where n̂ = {n̂1, n̂2, n̂3}, nx = {nx1 , nx2 , nx3} with nxj =
CxjVxj /(2e) the (dimensionless) charge bias on the island
j, φx = 2π�x/�0 is the reduced flux bias which has
been shared equally by the three Josephson junctions with
�0 = h/(2e) the superconducting quantum flux, and C is

FIG. 1. (a) Schematic circuit design of the passive on-chip super-
conducting circulator proposed in Ref. [19]. The device comprises
three superconducting islands which are represented by the numbers
of Cooper pairs n̂ j and the superconducting phases φ̂ j ( j = 1, 2, 3)
on each island. They are connected by three Josephson junctions with
Josephson energies EJj and junction capacitances CJj . Each island
is biased by an external voltage Vx j via a gate capacitance Cx j and
coupled capacitively to a waveguide via a coupling capacitance Cc j .
The whole circulator loop is threaded by a central external flux �x

as well. (b) First four excited-state energies ωk (k = 1, 2, 3, 4) of
the circulator ring versus the reduced external flux φx for a sym-
metric circuit (i.e., EJj = EJ , CJj = CJ , Cx j = Cx , and Cc j = Cc). The
eigenenergies are computed by numerically solving the eigensystem
of Ĥring given in Eq. (4) with EC�

/EJ = 0.35 and nx j = 1/3.

the capacitance matrix. To account for the fact that the total
number of Cooper pairs on the ring is conserved, we define
new coordinates

n̂′
1 = n̂1, n̂′

2 = −n̂2, n̂′
3 = n̂1 + n̂2 + n̂3 = n0, (2)

φ̂′
1 = φ̂1 − φ̂3, φ̂′

2 = φ̂3 − φ̂2, φ̂′
3 = φ̂3, (3)

where n0 is the conserved total charge number, which is con-
trolled by the external biases [20]. In the new coordinates, the
Hamiltonian Ĥring is

Ĥring = EC�

((
n̂′

1 − 1
2

(
n0 + nx1 − nx3

))2

+ (
n̂′

2 + 1
2

(
n0 + nx2 − nx3

))2 − n̂′
1n̂′

2

)
− EJ

(
cos

(
φ̂′

1 − 1
3φx

) + cos
(
φ̂′

2 − 1
3φx

)
+ cos

(
φ̂′

1 + φ̂′
2 + 1

3φx
))

, (4)

where EC�
= (2e)2/C� is the charging energy with C� =

3CJ + Cx + Cc.
In terms of the ring eigenbasis {|k〉; k = 0, 1, 2, . . . }, we

have

Ĥring =
∑
k>0

ωk|k〉〈k|, (5)

where ωk is the eigenenergy1 associated with the excited state
|k〉 (k > 0), and we have subtracted the ground-state energy of
Eq. (4), so that ω0 = 0. Then ωk represent ground-to-excited-
state transition frequencies that would be observed in spectra.
In Fig. 1(b) we plot the first four excited-state energies ωk

(k = 1, 2, 3, 4) as a function of the reduced external flux φx.

1In this paper, we set h̄ = 1.
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These eigenenergies are arranged in pairs; for large ranges
of φx, ω1 and ω2 are nearly degenerate and so are ω3 and
ω4. Circulation of signals in the device is mediated by these
excitations: depending on the external biases and the driving
frequency, signals emitted from different excitations interfere
constructively or destructively, resulting in clockwise or coun-
terclockwise circulation [5,19]. This resembles the operation
of a ferrite circulator where nonreciprocal transmission is cre-
ated by interference of nearly degenerate, counterpropagating
modes [4].

To compute output fields scattering from the circulator,
we make use of the SLH framework [28,29]. We derive
a Hamiltonian description of quantized bosonic fields for
the waveguides interacting with the ring system. The total
Hamiltonian for the combined system is (see Appendix A for
derivation)

Ĥtot = Ĥring + Ĥwg + Ĥint, (6)

where Ĥring is given in Eq. (4) and the waveguide Hamiltonian
Ĥwg is

Ĥwg =
3∑

j=1

∫ ∞

−∞
dωωâ†

j (ω)â j (ω), (7)

which is the sum of three independent continua of harmonic
oscillator modes. The interaction Hamiltonian Ĥint , under the
Markov and rotating-wave approximations, is [19,34]

Ĥint =
3∑

j=1

√
�

2π

∫ ∞

−∞
dω(â†

j (ω)q̂ j,− + â j (ω)q̂ j,+), (8)

where q̂ j,− ≡ (q̂ j,+)† = ∑
k<�〈k|q̂ j |�〉|k〉〈�| is the upper trian-

gularized part (in the ring eigenstate basis) of q̂ j [19], which
is the coupling operator given in terms of the charge operators
as

q̂1 = n̂′
1 + n′

x1

= n̂1 + n′
x1
,

q̂2 = −n̂′
2 + n′

x2

= n̂2 + n′
x2
,

q̂3 = −n̂′
1 + n̂′

2 + n′
x3

= n̂3 − n0 + n′
x3
. (9)

Here n′
x j

are the rescaled charge biases

n′
x1

= c1
(
n0 − nx2 − nx3

) − c2nx1 ,

n′
x2

= c1
(
n0 − nx1 − nx3

) − c2nx2 ,

n′
x3

= c2
(
n0 − nx3

) − c1
(
nx1 + nx2

)
, (10)

where c1 = CJ/(Cx + Cc), and c2 = (CJ + Cx + Cc)/(Cx +
Cc). In Eq. (8) � is the waveguide-ring coupling strength
explicitly given by [35–38]

� = 16
Zwg

RK

(
Cc

C�

)2

ωd = 32α
Zwg

Zvac

(
Cc

C�

)2

ωd , (11)

where Zwg is the waveguide impedance, RK = h/e2 ≈
25.8 k
 is the resistance quantum, α = Zvac/(2RK ) ≈ 1/137

is the fine-structure constant with Zvac ≈ 377 
 the vacuum
impedance, and ωd is the driving frequency. As Cc/C� < 1
by definition, for the typical situation of Zwg = 50 
 one finds
Zwg/Zvac ≈ 0.13 and therefore � < 0.03 ωd , justifying the ap-
proximations used to derive Ĥint. This holds for Zwg � Zvac but
may not for high-impedance waveguides [39]. The coupling
strength � additionally (as shown later) sets the scale for
resonance conditions and acceptable parameter imperfections
in the circulator ring.

Using the above Hamiltonians and considering single-
mode weak coherent fields at the input ports with the
amplitudes β j and the frequency ωd , the SLH master equation
for the circulator density operator ρ is given by [19,28,29]

ρ̇ = −i[Ĥring + Ĥdrive, ρ] +
3∑

j=1

D[b̂out, j]ρ, (12)

where

Ĥdrive = − i

2

√
�

3∑
j=1

(β je
−iωd t q̂ j,+ − H.c.), (13)

b̂out, j = β je
−iωd t1 +

√
�q̂ j,−, (14)

and D[Ô]ρ = 1
2 (2ÔρÔ† − ρÔ†Ô − Ô†Ôρ). In Eq. (12), the

commutation represents coherent evolution of the ring system
plus the effect of dynamics induced from the external driving
fields which is described by Ĥdrive in Eq. (13), whereas the
dissipation is due to couplings to the waveguides. Equation
(14) represents the standard input-output relation [28,34] in
which the output field is the sum of the input field and the
field radiated from the ring system.

III. SCATTERING MATRIX ELEMENTS

We define the scattering matrix element Si j for transfer
of signals from port j to port i as the ratio of the outgoing
amplitude to the incoming one:

Si j = 〈b̂out,i〉
〈b̂in, j〉

, (15)

where 〈Ô〉 = Tr(Ôρ) denotes the expectation value of an
operator Ô with ρ the circulator ring density operator. Si j

can be computed numerically by solving ρ using the master
equation in Eq. (12). However, in this section we harness
the adiabatic elimination technique [28,29], which allows us
to express scattering of the open waveguide-ring system in
terms of the isolated ring excitations, to derive a semiana-
lytical expression for Si j . This expression precisely describes
the working principle of the circulator and helps to find the
conditions to obtain optimal circulation.

A. Adiabatic elimination

When a quantum system can be decomposed into a fast
subspace F and a slow subspace S , we can adiabatically
eliminate its fast dynamics and consider its slow dynamics
only [28]. For the circulator ring system, its fast subspace
consists of the excited states F = {|k〉, k > 0}, whereas its
slow subspace contains the ground state only, S = {|0〉} [19].
In Appendix B we outline the calculations for performing the
adiabatic elimination on the circulator system. We find the
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scattering matrix element Si j restricted to the slow subspace
as

Si j = δi j −
∑
k>0

〈k|q̂ j |0〉〈0|q̂i|k〉
i�ωk/� + γk/2

, (16)

where 〈k|q̂ j |0〉 is the excitation amplitude due to the coupling
operator q̂ j , 〈0|q̂i|k〉 is the relaxation amplitude due to the
coupling operator q̂i, �ωk = ωk − ωd is the detuning of the
excited eigenenergy ωk from the driving frequency ωd , and
γk = ∑3

j=1 |〈0|q̂ j |k〉|2 represents the total (dimensionless) de-
cay rate of the excited state |k〉 due to waveguide couplings.
Similar expressions to Eq. (16) can be found in related works
[20,40] but for different circulator systems and using different
derivation methods. The delta function δi j in Eq. (16) is a
consequence of the input-output relation in Eq. (14), in which
the input field at one port contributes to the output field at
that port, whereas the second term in Eq. (16) describes in-
terference via the transient excitations of the circulator ring.
Equation (16) demonstrates the importance of the external
biases on signal scattering: they set the values of the matrix
elements 〈k|q̂ j |0〉 as well as the transition energy ωk (and
subsequently the detuning �ωk). Therefore, precise control
over these biases is necessary to observe good circulation in
the device.

At this point, it is instructional to consider the coherent
power transmission of the scattered signals, Pj = ∑3

i=1 |Si j |2.
Taking |Si j |2 in Eq. (16) and summing over i, we find that

Pj =
3∑

i=1

|Si j |2 = 1 −
∑
k>0

|〈0|q̂ j |k〉|2γk(
i
�
�ωk + 1

2γk
)(− i

�
�ωk + 1

2γk
)

+
∑

k,�>0

〈k|q̂ j |0〉〈0|q̂ j |�〉Qk�(
i
�
�ωk + 1

2γk
)(− i

�
�ω�+ 1

2γ�

) ,

(17)

where Qk� = ∑3
j=1〈0|q̂ j |k〉〈�|q̂ j |0〉 with k, � > 0. Numeri-

cally, we observe that |Qk 	=�| 
 |Qkk| ≡ γk (see Fig. 11 in
Appendix C). Hence, in the second line of Eq. (17) we can
ignore terms with k 	= � and consider only those with k = �.
We find that

Pj =
3∑

i=1

|Si j |2 = 1, (18)

which merely reflects the energy conservation constraint. We
note that if incoherent scattering occurs (due to dephasing,
etc.) then the coherent power transfer condition relaxes to
Pj < 1; i.e., scattering into incoherent channels would appear
as loss of total power in the coherent subspace.

B. Conditions for optimal circulation

Based on the results in the previous section, we deduce the
conditions for achieving optimal clockwise circulation. Note
that the conditions for optimal counterclockwise circulation
can be found in a similar manner. We first introduce the
scattering matrix for ideal (clockwise) circulation,

Sideal =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, (19)

FIG. 2. Magnitudes of the coupling matrix elements |〈0|q̂ j |1〉|
(solid markers) and |〈0|q̂ j |2〉| (open markers) with j = 1, 2, 3 as
functions of the reduced external flux φx when biasing the three ring
islands identically at charge biases of 1/3 for (a) a symmetric circu-
lator ring with EJj = EJ and EC�

/EJ = 0.35 and (b) an asymmetric
circulator ring with EJ1/EJ = 1, EJ2/EJ = 1.01, EJ3/EJ = 0.99, and
EC�

/EJ = 0.35.

noting that we are indifferent to the output phases of the
nonzero elements. Since a diagonal element Sj j from Eq. (16)
is given by

S j j = 1 −
∑
k>0

|〈0|q̂ j |k〉|2
i�ωk/� + γk/2

,

to have S11 = S22 = S33 one needs

|〈0|q̂1|k〉| = |〈0|q̂2|k〉| = |〈0|q̂3|k〉| for k > 0. (20)

From Eq. (9) we have |〈0|q̂ j |k〉| = |〈0|n̂ j |k〉| with n̂ j the orig-
inal charge operator on the island j, so the above condition
is equivalent to |〈0|n̂1|k〉| = |〈0|n̂2|k〉| = |〈0|n̂3|k〉|, suggest-
ing that the three islands of the circulator ring should be
symmetric.2 In the case of a symmetric circulator ring with
identical Josephson junctions, this implies that the charge
biases on the islands should also be identical. In Fig. 2 we plot
|〈0|q̂ j |1〉| (solid markers) and |〈0|q̂ j |2〉| (open markers) with
j = 1, 2, 3 versus the reduced external flux φx for both sym-
metric [Fig. 2(a)] and asymmetric [Fig. 2(b)] circulator rings
at identical charge biases nxj of 1/3. For a symmetric ring, we
observe in Fig. 2(a) that the condition in Eq. (20) is satisfied
for the whole range of φx from zero to 2π . For an asymmetric
ring with different Josephson energies in Fig. 2(b), the con-
dition in Eq. (20) is approximately met for a small interval
around φx = π .

From Eq. (9), we have q̂3 = −q̂1 − q̂2 + ∑3
j=1 n′

x j
. By

this we can recast the condition in Eq. (20) to |〈0|q̂1|k〉| =
|〈0|q̂2|k〉| = |〈0|q̂1|k〉 + 〈0|q̂2|k〉|. This is then translated into

2When the islands of the ring circulator are symmetric, its Hamil-
tonian is invariant with respect to cyclic permutations of the node
labels, j = 1 → 2 → 3 → 1 or j = 1 → 3 → 2 → 1. Under these
permutations, n̂ j becomes n̂ j′ , the ground state |0〉 is unchanged, and
the excited state |k〉 picks up a phase, which results in |〈0|n̂ j |k〉| =
|〈0|n̂ j′ |k〉|.
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the following conditions:

〈0|q̂ j |k〉 = rkeiϕ j,k for j = 1, 2, (21)

|ϕ1,k − ϕ2,k| = 2π

3
for k > 0. (22)

The former condition tells us that the matrix elements between
the ground state |0〉 and the excitation |k〉 of the coupling
operators q̂1 and q̂2 should have the same magnitude, while
the latter imposes a specific constraint on the phases of these
matrix elements. These two conditions were pointed out in
Ref. [20] based on a system that includes external cavities on
the output of each circulator waveguide, whereas our analysis
is based directly on the circulated scattering elements.

We next derive the relations between the driving frequency
ωd , the coupling strength �, and the first two transition ener-
gies ω1 and ω2 to observe optimal circulation. We notice that
the strong anharmonicity of the circulator ring [see Fig. 1(b)]
allows us to consider contributions of only the first two
excitations to signal circulation and ignore those of higher
excitations; thus, in Eq. (16) the values of k are truncated to
{1, 2}. We define new parameters

xk = |rk|2
((�ωk/�)2 + (γk/2)2)1/2

, tan(θk ) = −2�ωk

�γk
, (23)

for k = 1, 2. From Eqs. (21) and (22) we recast Si j in terms
of rk and ϕ j,k and subsequently xk and θk . For example,
we find S11 = 1 − x1eiθ1 − x2eiθ2 and S21 = x1ei(θ1±12π/3) +
x2ei(θ2±22π/3), where the signs ±k can be different between
the levels [20]. Using Eq. (18), the first column of the ideal
scattering matrix (S11, S21, S31) = (0, 0, 1) is equivalent to
(S11, S21) = (0, 0), yielding

S11 = 1 − x1eiθ1 − x2eiθ2 = 0, (24)

S21 = x1ei(θ1−2π/3) + x2ei(θ2+2π/3) = 0, (25)

where we have chosen specifically the sign of ±k in the phase
factors of S21. The solution for this system of equations is

x1 = x2 = 1/
√

3, θ1 = −θ2 = π/6, (26)

which results in

−�ω1 = 1

2
√

3
γ1�, �ω2 = 1

2
√

3
γ2�. (27)

We recall that γ1 and γ2 respectively represent the decay rates
of the first two excited states |1〉 and |2〉. We aim to operate
the circulator at the parameter ranges such that the two excited
states are nearly degenerate, so we can have γ1 � γ2 = γ .
This, combining with the results in Eq. (27), yields

ωd � 1

2
(ω1 + ω2), (28)

� �
√

3

γ
(ω2 − ω1). (29)

The former condition ensures that the driving fields excite the
first two nearly degenerate excited states equally. Meanwhile,
the latter introduces a concrete relation between the cou-
pling strength � and the eigenenergy difference ω2 − ω1 [40],
which can be met by suitably tuning the reduced external flux
φx. Note that the same results in Eqs. (26)–(29) are obtained

when using either the second column or the third column of
Sideal.

Based on the above conditions, we implement a simple
numerical scheme to compute the optimal parameters for
circulation. Considering a symmetric Josephson-junction ring
with identical Josephson energies, the condition in Eq. (20)
indicates that we should choose identical charge biases (for
example, at 1/3 of a Cooper pair), while the driving frequency
ωd should be chosen to be (ω1 + ω2)/2 as suggested by the
condition in Eq. (28). The external flux φx is determined via
the condition in Eq. (29). Noting that the charge offsets are
already fixed (nxj = 1/3), the transitions ω1 and ω2, the decay
rate γ , and the coupling � are implicitly functions of φx.
Then the optimal value for φx is numerically found from the
equation �(φx ) = √

3(ω2(φx ) − ω1(φx ))/γ (φx ). For an asym-
metric ring with different Josephson energies, it is no longer
straightforward to estimate the optimal charge biases analyt-
ically. However, we can consider the relevant quantities as
functions of the charge biases nxj and the external flux φx.3 We
evaluate the optimal working point by numerically finding nxj

and φx that satisfy the conditions in Eqs. (20), (28), and (29).

IV. OPTIMIZATION OF OPERATING PARAMETERS

We note that solving the conditions in Eqs. (20), (28), and
(29) gives physical insights into the optimal working parame-
ters above. However, extracting the quantities such as ω1, ω2,
and � from experiments to sufficiently high accuracy may be
difficult in practice. Therefore, we now implement an opti-
mization procedure that finds the optimal working points us-
ing a standard optimization method. We have checked that this
approach gives the same result for φx, nxj , and ωd as solving
Eqs. (20), (28), and (29), as described in the previous section.

We optimize a cost function that finds points of high
fidelity F (|S|, Sideal ) [41] between the computed scattering
matrix S and the ideal clockwise scattering matrix, Sideal, in
Eq. (19). We present the optimization results for both sym-
metric and asymmetric circulator rings.

We define the fidelity F (A, B) between two matrices A and
B as

F (A, B) = 1 − 1

‖A‖‖B‖

(∑
i, j

|A(i, j) − B(i, j)|2
)1/2

, (30)

where ‖X‖ =
√

Tr(XX †) denotes the norm of a matrix X .
In Eq. (30) the second term describes a distance measure
between two matrices. The fidelity is thus complementary to
the distance measure: if two matrices are very similar to each
other, their distance measure will be close to zero but their
fidelity will be close to one. It is worth noting that a noncircu-
lating device with S � 1 and a counterclockwise-circulating
one with S � Sᵀ

ideal have F (1, Sideal ) = F (Sᵀ
ideal, Sideal ) ≈ 0.18,

which sets the neutral value of the fidelity.
We fix the energy scales of the circulator (i.e., the Joseph-

son energies EJj and the charging energy EC�
) and employ a

3As � is given in terms of ωd as in Eq. (11) and ωd is chosen to be
(ω1 + ω2)/2 depending on φx , � is treated as a function of φx .
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standard optimization routine (FindMaximum in MATHEMAT-
ICA) to optimize the fidelity over five control parameters,
namely, the driving frequency ωd , the reduced external flux
φx, and the three charge biases nx1 , nx2 , and nx3 . Over the
course of optimization we also track the variations of other
quantities, including the coupling matrix elements 〈0|q̂ j |k〉,
the coupling strength �, and the ring eigenenergies ω1 and ω2.
We show that the optimization converges relatively fast after
less than 50 optimization steps. In a realistic experiment, this
would require sequential measurements of the full scattering
matrix. Given typical experimental time per single scattering
matrix measurement of 10–100 μs [42], the total optimization
would take 0.5–5 ms, indicating feasibly fast calibration of the
device.

A. Symmetric Josephson-junction ring

We consider a symmetric Josephson-junction ring with
EJj = EJ ( j = 1, 2, 3), EC�

/EJ = 0.35, and �/EJ ≈ 0.0025
for Zwg = 50 
 and ωd/EJ = 0.8 and perform five opti-
mizations for the fidelity F (|Ssym|, Sideal ). In Appendix D we
show specific parameter values for simulations. Here the ratio
EC�

/EJ = 0.35 is chosen to be in between the “Cooper-pair-
box” (EC�

/EJ � 1) and “transmon” (EC�
/EJ 
 1) regimes

for the following reasons. First, operating the device outside
the Cooper-pair-box regime avoids charge sensitivity. Second,
as pointed out in Ref. [20], reducing EC�

/EJ into the transmon
regime, which intuitively should make the device insensitive
to charge noise, actually destroys the circulation feature. This
is because in this regime all the coupling matrix elements
can be chosen to be purely imaginary, breaking down the
interference effect [see Eq. (16)]. Third, we find that when de-
creasing EC�

/EJ the decay rate γ in Eq. (29) increases while
the transition difference ω2 − ω1 decreases. Thus, reducing
EC�

/EJ results in a small optimal coupling strength � [which
is proportional to (ω2 − ω1)/γ as in Eq. (29)] as well as a
small working bandwidth. We confirm these numerically in
Appendix D. Additionally, as shown later a small � will put
hard constraints on junction fabrication.

Each of the optimizations is initialized with a set of exter-
nal parameters chosen randomly within certain ranges. That
is, ωd/EJ ∈ [0.70, 0.85], φx ∈ [1.00, 2.14], and nxj ∈ [0, 1],
reflecting the experimental uncertainties in initial parameters
immediately after cooldown of the device, e.g., due to charge
frozen in the substrate materials, flux defects, and charge-reset
noise δQ ∼ √

kBTC worth approximately one electron for fF
gate capacitors at the cooling temperature T ∼ 1 K [43,44].
The ranges of ωd and φx are intentionally selected such that
ω2 − ω1 is neither too large nor too small compared to �,
as suggested from Eq. (29) and observed from the circulator
spectrum in Fig. 1(b). We track the fidelity during optimiza-
tion steps to see how quickly the optimization proceeds. We
also plot the optimization process for a representative selec-
tion of randomly initialized external control parameters in
Appendix E.

As shown in Fig. 3 four out of five example optimizations
yield a very high fidelity (≈1), after 25 to 30 optimization
steps. In these cases the driving frequency ωd and the reduced
flux φx in Figs. 13(a) and 13(b) in Appendix E evolve to
well-defined values at about 0.82EJ and 1.77, respectively.

FIG. 3. Examples of optimization for a symmetric circulator
ring. We optimize the fidelity F (|Ssym|, Sideal ) between the numer-
ically computed scattering matrix Ssym with respect to the ideal
(clockwise) one Sideal for five times. Each optimization begins with
a different set of initial external parameters chosen randomly from
specific ranges (see also main text) and takes 30 steps to complete.
Relevant parameters are chosen as EJ j = EJ , EC�

/EJ = 0.35, and
�/EJ ≈ 0.0025 for Zwg = 50 
 and ωd/EJ = 0.8.

Meanwhile, the three charge biases nxj in Figs. 13(c)–13(e)
tend towards the same value with two apparent clusters near
0.4.

The resulting power transfer matrix after the successful
optimizations is

|Sopt|2 ≈
⎛
⎝0.003 0.995 0.002

0.002 0.003 0.995
0.995 0.002 0.003

⎞
⎠. (31)

This corresponds to insertion loss of IL ≈ 0.02 dB while
the reflection and the isolation are R ≈ −25 dB and IS ≈
−27 dB, respectively, where

IL = 10 log10((|S12|2 + |S23|2 + |S31|2)/3), (32)

R = 10 log10((|S11|2 + |S22|2 + |S33|2)/3), (33)

IS = 10 log10((|S13|2 + |S21|2 + |S32|2)/3). (34)

In some cases the optimization can be trapped in a subopti-
mal configuration; for example, the unsuccessful optimization
(solid green diamond) in Fig. 3 yields a substantially reduced
fidelity (≈0.7). In this scenario the three charge biases, as
shown in Figs. 13(c)–13(e), arrive at rather different final
values, partly explaining why the fidelity for that optimization
is not as high as for the other optimizations. This failure,
possibly, is due to our use of a very simple optimization algo-
rithm and may be circumvented by repeating the optimization
from a different starting parameter set or by employing more
sophisticated parameter optimization routines.

Furthermore, we observe that after optimization the condi-
tion in Eq. (20) is typically satisfied. This is demonstrated in
Figs. 14(a)–14(f) in Appendix E which show that the matrix
element magnitudes |〈0|q̂ j |k〉| for j = 1, 2, 3 and k = 1, 2
approach the same value for the successful optimizations. We
also confirm the conditions in Eqs. (28) and (29) by plotting
the two ratios 2ωd/(ω1 + ω2) and γ�/(ω2 − ω1) respectively
in Figs. 14(g) and 14(h).
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FIG. 4. Similar to Fig. 3 but for an asymmetric circulator ring.
Relevant parameters are chosen as EJ1/EJ = 1, EJ2/EJ = 1.01,
EJ3/EJ = 0.99, EC�

/EJ = 0.35, and �/EJ ≈ 0.0025 for Zwg = 50 


and ωd/EJ = 0.8.

B. Asymmetric Josephson-junction ring

Realistic device fabrication is always imperfect, giving
rise to junction asymmetry. Therefore, we introduce asym-
metry in the circulator junctions as EJ1 = EJ , EJ2 = EJ +
δEJ2 , and EJ3 = EJ + δEJ3 . To illustrate the effect of im-
perfect Josephson junctions we choose δEJ2/EJ = 0.01 and
δEJ3/EJ = −0.01 and show the corresponding optimization
results in Fig. 4. Such junction asymmetry is plausible in
realistic experiments [45,46]. For example, Ref. [46] reported
fabrication of on-chip Josephson junctions with high repro-
ducibility and normal resistance (RN ) variation as small as
1.2% which corresponds to |δEJ |/EJ ∼ 0.012.4

In Fig. 4 three out of five optimizations converge to fideli-
ties just above 0.6 after 50 steps of optimization. The power
transfer matrix for these optimizations is

|Sopt|2 ≈
⎛
⎝0.08 0.70 0.22

0.35 0.06 0.59
0.57 0.24 0.19

⎞
⎠, (35)

showing that the device circulates imperfectly with IL ≈
−2.1 dB, R ≈ −9.5 dB, and IS ≈ −5.7 dB.

Similar to the symmetric case, the driving frequency ωd

and the reduced flux φx in Figs. 15(a) and 15(b) of Ap-
pendix E approach well-defined values at about 0.70EJ and
2.41, respectively. In contrast to the symmetric case, the three
charge biases in Figs. 15(c)–15(e) tend towards different val-
ues during optimizations. However, as shown in Fig. 16 the
conditions in Eqs. (20) and (28) are still approximately ful-
filled: the matrix element magnitudes |〈0|q̂ j |k〉| ( j = 1, 2, 3
and k = 1, 2) are quite close to each other [see Figs. 16(a)–
16(f)] and the ratio 2ωd/(ω1 + ω2) gets to almost exactly 1
[see Fig. 16(g)]. The ratio γ�/(ω2 − ω1) in Fig. 16(h) ap-
proaches about 0.45, far below the optimal value

√
3 required

in the condition in Eq. (29).
Comparing the fidelities in Figs. 3 and 4, we observe a

40% reduction in the optimized fidelity as a result of only 1%
asymmetry in the ring junctions. This follows from the fact

4From the Ambegaokar-Baratoff relation [46] EJ = A(R̄N +
δRN )−1 = ĒJ + δEJ , where A is a constant and ĒJ = AR̄−1

N , we can
estimate |δEJ |/ĒJ = |δRN |/R̄N .

FIG. 5. (a) Contour plot of the optimal fidelity, F , versus the
ratios of the junction disorders δEJ2 and δEJ3 to the coupling strength
�. (b) Diagonal cut of the optimal fidelity in (a) (blue dashed line)
which corresponds to junction asymmetries δEJ2 = −δEJ3 = δEJ

considered in Fig. 4. Also shown in (b) includes reflection, R, and
insertion loss, IL. To generate the plots, we introduce junction asym-
metry as EJ1 = EJ , EJ2 = EJ + δEJ2 , and EJ3 = EJ + δEJ3 and for
each pair (δEJ2 , δEJ3 ) we find the optimal fidelity by performing
optimization over the external control parameters and calculate the
scattering matrix elements at the optimized working points. Here
at the leftmost or rightmost of (b), |δEJ |/� ≈ 4.7 and the optimal
fidelity is F ≈ 0.6, consistent with the optimized value in Fig. 4.

that in this asymmetric case � (≈0.0025EJ ) is substantially
smaller than the detuning ω1 − ω2 (≈0.01EJ ) between the
two excited states. Thus, there is no driving frequency that
simultaneously couples strongly to both states |1〉 and |2〉,
and subsequently the condition for interference between these
states is inhibited. To show that � sets the tolerance level for
asymmetries in junction parameters, in Fig. 5(a) we plot the
optimal fidelity versus the two ratios δEJ2/� and δEJ3/� and
in Fig. 5(b) we consider the example shown in Fig. 4 with
δEJ2 = −δEJ3 = δEJ . We see in Figs. 5(a) and 5(b) that the
optimal fidelity remains close to 1 for |δEJ |/� as large as 2
but decreases quite quickly for larger |δEJ |/�. Accordingly,
in Fig. 5(b) the reflection is below −20 dB and the insertion
loss is very close to 0 dB for that range of |δEJ |. The param-
eters used for the optimizations in Fig. 4 give δEJ/� ≈ 4.7
corresponding to an optimal fidelity slightly above 0.6, which
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FIG. 6. (a) Quasiparticle tunneling in the circulator ring. The
device comprises three superconducting-insulator-superconducting
(SIS) junctions across which unpaired quasiparticles can tunnel.
(b) Charge-parity sectors {e-e(-e), e-o(-o), o-e(-o), o-o(-e)} assum-
ing the total charge parity is even and tunneling operators T̂12 =
sin((φ̂′

1 + φ̂′
2)/2), T̂23 = sin(φ̂′

2/2), and T̂31 = sin(φ̂′
1/2) connecting

them (see Appendix F for derivation of these operators).

is consistent with the values at the leftmost or rightmost of
Fig. 5(b).

V. QUASIPARTICLES

In the previous sections, we have specified values for the
external control parameters that optimize the circulator per-
formance. These parameters are subject to fluctuations due
to voltage noise of various sources. Fast charge fluctuations
with magnitudes much smaller than one electron have been
studied in Ref. [19], while charge drifts comparable to one
electron are expected to occur at a timescale much longer
than the optimization time. Hence, in what follows we focus
on quasiparticle formation and migration in the supercon-
ducting islands forming the circulator, which is a frequently
encountered noise source in superconducting devices [47].
We analyze the effects of quasiparticles on the circulator per-
formance. We anticipate quasiparticle formation will be slow
relative to the internal dynamical timescales of the circulator,
so our analysis is quasistatic. Quasiparticle tunneling causes
large changes in the effective bias voltages, on the scale of
half a Cooper pair, and thus is nonperturbative. We show that
quasiparticle tunneling in the ring circulator results in sev-
eral operating sectors characterized by the parity of charges
on the islands. These sectors have different energy spectra
and scatter signals differently, yielding different circulation
performances. Spectroscopic measurements performed on the
circulator ring over experimental timescales much larger than
the quasiparticle formation and tunneling rates will show a
mixture of the spectra from the different quasiparticle sectors.

A. Parity-charge sectors

As illustrated in Fig. 6(a) the circulator ring is in effect
a loop of three superconducting-insulator-superconducting
(SIS) junctions. Quasiparticles can tunnel across these junc-
tions, giving rise to switching of parities of the electron
numbers in the superconducting islands [48,49]. Since the ring
is capacitively isolated from outside environments, the total
number of electrons is conserved. The charge-parity config-
uration of the circulator ring can thus be represented by the
parities of two out of the three islands, say, islands 1 and 2

only, which due to charge conservation determine the parity
of the third island. Furthermore, in the following we assume
the total charge parity of the three islands is even. Similar
arguments hold for the case of an odd total charge parity,
which is considered in Appendix G.

The above arguments yield four accessible charge-parity
sectors which we label as e-e-e, e-o-o, o-e-o, and o-o-e,
where e denotes even charge parity on the relevant island, and
o denotes odd charge parity. Because of total charge-parity
conservation, the label for the third island is redundant, so for
brevity we drop this label. For example, e-o-o and e-o refer to
the same charge parity sector, which includes all of the charge
states satisfying n′

1 mod 2 = 0 and n′
2 mod 2 = 1 with n′

1 and
n′

2 respectively the eigenvalues of the charge operators n̂′
1 and

n̂′
2.5 Similar definitions hold for e-e, o-e, and o-o.

The sectors are coupled to each other by tunneling of
a quasiparticle between the adjacent islands. For example,
coupling between the sectors e-e and e-o is via tunneling of
a quasiparticle between islands 2 and 3. This is represented
by the operator T̂23 = sin((φ̂3 − φ̂2)/2) ≡ sin(φ̂′

2/2) [50,51]
(see Appendix F for derivation). In Fig. 6(b) we illustrate all
the quasiparticle-tunneling operators coupling among the four
sectors.

Tunneling of a quasiparticle into or out of a supercon-
ducting island is equivalent to shifting the charge bias on
that island by ±1e [25–27], i.e., by half a unit charge. For
example, if the ring is initially in the e-e charge sector, with
charge biases (nx1 , nx2 , nx3 ), then tunneling of a quasiparticle
from island 2 to 3 will leave the ring in the sector e-o with
effective charge biases (nx1 , nx2 − 1

2 , nx3 + 1
2 ). That is, quasi-

particle tunneling changes the charge state and therefore the
effective charge bias of the islands.

This property allows us to express the Hamiltonian for all
charge sectors in a self-consistent form. To do so, we order the
charge basis to group states within each of the charge-parity
sectors, and in this ordered basis, the Hamiltonian matrix is
block diagonal. Each sub-block of the Hamiltonian matrix is
then given by a common functional form, H ref (nx1 , nx2 , nx3 ),
where the double underline denotes a matrix representation of
an operator expressed in the charge basis:

He-e
ring

= H ref
(
nx1 , nx2 , nx3

)
,

He-o
ring

= H ref
(
nx1 , nx2 + 1

2 , nx3 − 1
2

)
,

Ho-e
ring

= H ref(nx1 + 1
2 , nx2 , nx3 − 1

2

)
,

Ho-o
ring

= H ref
(
nx1 + 1

2 , nx2 − 1
2 , nx3

)
.

To account for the presence of quasiparticles, we treat n̂′
1

and n̂′
2 of the Hamiltonian Ĥring in Eq. (4) as single-electron-

number operators, instead of Cooper-pair number, and the
operators cos(φ̂′

1), cos(φ̂′
2), and cos(φ̂′

1 + φ̂′
2) now describe

tunneling of two-electron charges [52]. In the single-electron
basis {|n′

1, n′
2; n0〉; n′

1, n′
2 ∈ Z}, ordered to group states within

each charge sector, the ring Hamiltonian Ĥ ′
ring is expressed as

5Note from Eq. (2) that n̂′
1 and n̂′

2 represent charge parities of
islands 1 and 2.
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a diagonal block matrix H ′
ring with four blocks corresponding

to the Hamiltonians of the four sectors,

H ′
ring =

e-e e-o o-e o-o⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

He-e
ring

e-e

He-o
ring

e-o

Ho-e
ring

o-e

Ho-o
ring

o-o

, (36)

where He-e
ring

is a matrix representation of Ĥe-e
ring with n′

1 and

n′
2 both being even valued and analogously for the other ele-

ments. Blank entries in Eq. (36) are taken to be zero.
The block structure of Ĥ ′

ring stems from the fact the opera-

tors n̂′
1, n̂′

2, cos(φ̂′
1), cos(φ̂′

2), and cos(φ̂′
1 + φ̂′

2) respect charge
parities of the ring islands, so that the ring Hamiltonian does
not couple the quasiparticle sectors.

The quasiparticle tunneling operator T̂23 = sin(φ̂′
2/2) cou-

ples between sector pairs (e-e, e-o) and (o-e, o-o) [as
depicted in Fig. 6(b)], so in sector blocks it takes the form

T23 =

e-e e-o o-e o-o⎡
⎢⎣

⎤
⎥⎦

� e-e
� e-o

� o-e
� o-o

, (37)

where � indicates a nonzero block submatrix. Similar block
forms for other tunneling operators T̂12 = sin((φ̂′

1 + φ̂′
2)/2)

and T̂31 = sin(φ̂′
1/2) are

T12 =

e-e e-o o-e o-o⎡
⎢⎣

⎤
⎥⎦

� e-e
� e-o

� o-e
� o-o

, (38)

T31 =

e-e e-o o-e o-o⎡
⎢⎣

⎤
⎥⎦

� e-e
� e-o

� o-e
� o-o

. (39)

B. Fluctuations between charge-parity sectors

Having identified the four charge-parity sectors, here we
evaluate the transition rates between them and compute their
respective circulation. To this end, we derive the master
equation for the ring density operator ρ ′ in the presence of
quasiparticle tunneling (see Appendix F for derivation)

ρ̇ ′(t ) = −i

[
Ĥ ′

ring − i
√

�
∑

j

(β je
−iωd t q̂ j,+ − H.c.), ρ ′(t )

]

+
∑

j

∑
s

∑
k>k′

�
( j)
k,s;k′,sD[|k′, s〉〈k, s|]ρ ′(t )

+
∑
j 	= j′

∑
s,s′

∑
k,k′

�
( j j′ )
k,s;k′,s′D[|k′, s′〉〈k, s|]ρ ′(t ), (40)

where j and j′ index the islands, s and s′ label the quasiparticle
sectors {e-e, e-o, o-e, o-o}, k and k′ index the ring eigen-
states, and |k, s〉 denotes a ring eigenstate |k〉 in the sector s. In
Eq. (40) the second line describes the inner-sector relaxation
transition due to couplings to the waveguides with the rate
�

( j)
k,s;k′,s = �|〈k′, s|q̂ j |k, s〉|2, whereas the third line describes

the intersector jump (i.e., quasiparticle tunneling) from a state
|k, s〉 in the sector s to another state |k′, s′〉 in the sector s′ with
the rate �

( j j′ )
k,s;k′,s′ given by [53]

�
( j j′ )
k,s;k′,s′ = ∣∣〈k′, s′|T̂j j′ |k, s〉∣∣2

Sqp(ωk,s;k′,s′ ), (41)

where the sector-coupling operator T̂j j′ is given explicitly in
Fig. 6(b) for each intersector transition, ωk,s;k′,s′ is the transi-
tion energy between the states |k, s〉 and |k′, s′〉, and Sqp(ω)
is the quasiparticle spectral density. For a relaxation process
with ω > 0, Sqp(ω) is given by [50,53]

Sqp(ω) = 16EJ

π

∫ ∞

0
dx

1√
x
√

x + ω/�

×(
f [(1 + x)�]{1 − f [(1 + x)� + ω]}), (42)

where f [E ] is the quasiparticle distribution function. At
equilibrium, one would expect that f [E ] is of the form
1/(exp(E/kBT ) + 1) [54], but nonequilibrium quasiparticles
may be present modifying f [E ] [52]. For an excitation process
with ω < 0, in Eq. (42) we make replacements x → x − ω/�

and ω → −ω.
At equilibrium and in the limit of high frequency, δE 


ω 
 � with δE the characteristic energy of quasiparticles
[50,53], we can approximate Sqp(ω) = (8EJ/π )

√
2�/ω xqp,

where xqp is the quasiparticle density normalized by the
Cooper-pair density:

xqp =
√

2πkBT/�e−�/kBT . (43)

At T ≈ 20 mK and for aluminum superconductors with
� ≈ 1.76kBTc and Tc ≈ 1.35 K [52], xqp should be of or-
der 10−53, effectively suppressing quasiparticle tunneling in
equilibrium BCS superconductors. Experimentally observed
results for superconducting circuits nonetheless showed that
xqp ≈ 10−8–10−6 [55–57]. This indicates a small but non-
negligible population of nonequilibrium quasiparticles. The
origin of these is not certain [58], but may arise from stray
photons [48,59], ionizing radiation from surrounding radioac-
tive materials [60,61], and cosmic rays [55]. Further, electrons
and photon baths can be out of equilibrium, so that electrons
are typically hotter than the base fridge temperature [62]. In
any case, we implicitly assume an empirical value for xqp.

To include nonequilibrium quasiparticles, in Eq. (43) we
replace the base temperature T (≈20 mK) with an ef-
fective quasiparticle one Tqp ≈ 200 mK [48,52]. For EJ ∼
2π × 10 GHz and EC�

/EJ = 0.35 we numerically find

|〈k′, s′|T̂j j′ |k, s〉|2 ∼ 10−2–10−1 and ωk,s;k′,s′ ∼ 2π × 10 GHz,
so that for � ≈ 1.76kBTc with Tc ≈ 1.35 K the quasiparticle-
induced transition rate �

( j j′ )
k,s;k′,s′ will be of order 0.1–1 kHz.

This corresponds to quasiparticle lifetime of order 0.1–1 ms as
observed in several experiments [25,49,63,64]. The quasipar-
ticle temperature Tqp determines the quasiparticle-tunneling
rate (i.e., the sector fluctuation rate) and does not affect the
circulation performance of each quasiparticle sector. In the
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absence of quasiparticle fluctuations, the parameters would
be chosen to optimize the fidelity in the fixed quasiparti-
cle sector. Quasiparticle-trapping techniques such as normal
metal traps [24,25,30] and gap engineering [31–33] can be
used to suppress nonequilibrium quasiparticle population.
This effectively reduces the quasiparticle temperature Tqp and
subsequently the quasiparticle-tunneling rate. A long period
free of quasiparticle-tunneling events in the circulator will
benefit device calibration and make the circulation perfor-
mance stable.

1. Symmetric Josephson-junction ring

Since its Hamiltonian is block diagonal across the charge-
parity sectors, the circulator ring will evolve within one
particular sector, with intermittent, incoherent transitions be-
tween the sectors when quasiparticle tunneling events occur.
Accordingly, in Appendix F we unravel the master equation
in Eq. (40) into a stochastic jump evolution equation [65,66]
with intermittent intersector jumps. This allows us to com-
pute the circulation performance of the device within a given
quasiparticle sector during intervals in which no quasiparticle
jumps occur. We note that the quasiparticle tunneling rate
�

( j j′ )
k,s;k′,s′ (∼1 kHz) is much smaller than the waveguide cou-

pling � (∼100 MHz), so �
( j j′ )
k,s;k′,s′ has a negligible effect on the

spectra within each quasiparticle sector. The principle effect
of the quasiparticle-tunneling terms is just to drive transitions
between sectors, with an intersector transition rate given by
�

( j j′ )
k,s;k′,s′ . In what follows we compare the circulation perfor-

mance in each quasiparticle sector, considering both ideal
symmetric rings, and realistic asymmetric rings in which the
junctions are not identical.

In Fig. 7 we show variation of the scattering-matrix fi-
delity F (Ssym, Sideal ) as a function of the reduced external
flux φx and the driving frequency ωd for a symmetric circu-
lator ring with symmetric charge biases (nxj = 1/3 for j =
1, 2, 3) in the four quasiparticle sectors. We note that here
for illustration purposes we increase the coupling strength �

defined in Eq. (11) by effectively choosing a higher waveguide
impedance Zwg = 200 
; smaller Zwg reduces the bandwidth
proportionally.

For the sector e-e in Fig. 7(a) we observe that a high-
fidelity region (dark red) and a low-fidelity region (blue) are
symmetric about φx = π . Such symmetry is owing to the
mirror symmetry of the eigenstates of the circulator ring with
respect to a half-quantum-flux bias, by which the high-fidelity
region yields strong clockwise signal circulation while the
low-fidelity region yields counterclockwise signal circulation
(see also Ref. [19]).

The optimal working point in Fig. 7(a) is found at
(φ�

x , ω�
d ) ≈ (2.11, 0.77EJ ) (labeled by the � symbol), in

which the driving frequency ω�
d lies in between the first

two excited-state eigenenergies ω1 and ω2, as expected from
the condition in Eq. (28). Around this optimal working
point, the bandwidth evaluated from the inset in Fig. 7(a)
is around 0.01EJ . For EJ ∼ 2π × 10 GHz, the bandwidth is
2π × 100 MHz. This is consistent with the estimate made
from Eq. (11), which yields the waveguide coupling strength
� ∼ 0.01EJ for Cc/C� ≈ 0.31, Zwg = 200 
, ωd ≈ 0.77EJ

FIG. 7. Dependence on the nondimensional flux bias φx and the
driving frequency ωd of the scattering-matrix fidelity F (Ssym, Sideal )
for a symmetric circulator ring within (a) the sector e-e(-e) and
(b) the sectors e-o(-o), o-e(-o), and o-o(-e). Here, owing to the
junction and charge-bias symmetries, the scattering-matrix fidelities
within the three sectors e-o, o-e, and o-o are exactly the same.
The insets in both panels show the bandwidth of the circulator at
a fixed value of φx that yields a highest fidelity. The dashed lines in
(a) indicate the transition energies between the ground state of the
ring and different excited states in the quasiparticle sector e-e. The
� symbol indicates the optimal working point. The dotted lines in
(b) indicate transition energies in the sector e-o (which is the same as
in o-e and o-o for a symmetric device). Relevant parameters are the
same as in Fig. 3 but with nx j = 1/3 ( j = 1, 2, 3). We also note that
for illustration purposes here and in Fig. 8 we use a higher waveguide
impedance Zwg = 200 
 to increase the coupling strength �.

(see Appendix D for detailed parameter values used in sim-
ulations).

We note that a background circulation fidelity at about
0.18 for a noncirculating device is indicated by white in the
color scale in Fig. 7 (and Fig. 8 as well). This background
fidelity is present due to the fact that when the driving fre-
quency is far off resonant with respect to the excited-state
energies, transmission of signals in the circulator is very small
and there is only reflection. In particular, in Eq. (16) when
�ωk/� � γk , |〈k|q̂ j |0〉〈0|q̂i|k〉| due to large detuning �ωk ,
the second part of Eq. (16) is close to zero, rendering the
scattering matrix very similar to an identity matrix. In this case
one finds F (|S|, Sideal ) � F (1, Sideal ) ≈ 0.18.

In the other quasiparticle sectors e-o, o-e, and o-o, the
scattering-matrix fidelities are exactly identical for a symmet-
ric circuit and are shown in Fig. 7(b). Comparing Figs. 7(a)
and 7(b), the locations of the high-fidelity and low-fidelity re-
gions are exchanged. Concretely, at (φ�

x , ω�
d ) in Fig. 7(a), we

find F (Ssym, Sideal ) ≈ 0.99 and (S21, S31) ≈ (0.001, 0.996).
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FIG. 8. Dependence on the nondimensional flux bias φx and
the driving frequency ωd of the fidelity of the scattering matrix
F (Sasym, Sideal ) for an asymmetric circulator ring within (a) the sector
e-e(-e), (b) the sector e-o(-o), (c) the sector o-e(-o), and (d) the
sector o-o(-e). The insets in all panels show the bandwidth of
the circulator at a fixed value of φx that yields a highest fidelity.
Ground-to-excited-state transition energies of the circulator ring in
each quasiparticle sector are also plotted (dashed, dotted, dot-dashed,
and dot-dot-dashed for the four sectors, respectively). Relevant pa-
rameters are the same as in Fig. 4 but for illustration purposes we
choose Zwg = 200 
 to increase the coupling strength, which results
in δEJ/� ∼ 1 and subsequently an optimized fidelity in (a) near 1
consistent with the analysis in Fig. 5(b).

In contrast, at the same working point in Fig. 7(b) we
find F (Ssym, Sideal ) ≈ 0.14 and (S21, S31) ≈ (0.622, 0.274).
These indicate significant reverse of signal circulation from
clockwise to counterclockwise and the adverse influence of
quasiparticle tunneling. Assuming the device is circulating

signals clockwise at the high-fidelity region in the sector e-e
as in Fig. 7(a), then an event of tunneling of a quasiparticle
suddenly transforms the circulator to the other sectors and
reverses the circulation direction as in Fig. 7(b).

2. Asymmetric Josephson-junction ring

We consider the same junction asymmetry as in
Sec. IV B with EJ1/EJ = 1, EJ2/EJ = 1.01, and EJ3/EJ =
0.99. We numerically optimize the scattering-matrix fi-
delity F (Sasym, Sideal ) for the sector e-e and find its optimal
value (≈0.97) at (φx, ωd , nx1 , nx2 , nx3) = (2.46, 0.69EJ , 0.10,

0.19, 0.84). The optimal working points for the other sectors
are obtained by shifting the relevant charge biases by half of
a Cooper pair while keeping the external flux and the driving
frequency the same. For example, for the sector e-o we find
the optimal fidelity (also ≈0.97) at (φx, ωd , nx1 , nx2 , nx3) =
(2.46, 0.69EJ , 0.10, 0.19 − 1/2, 0.84 + 1/2), and similarly
for the sectors o-e and o-o. In what follows, we fix the charge
bias configuration at (nx1 , nx2 , nx3) = (0.10, 0.19, 0.84) to be
the same for all sectors, corresponding to the experimental re-
ality that we assume the circulator to be in the sector e-e at all
times; quasiparticles will therefore degrade the performance.
We plot the scattering fidelity versus φx and ωd for the four
sectors in Fig. 8.

Figure 8 shows that the four sectors have quite different
performances. The sectors e-e, e-o, and o-e share the same
high-fidelity region with 2.1 � φx � 2.5 but with decreasing
efficiencies [see the insets in Figs. 8(a)–8(c)], while the sector
o-o has its high-fidelity region mirror-flipped compared to
those in the other sectors. This is different from the case
of a symmetric circuit considered previously which exhibits
exchange of the high-fidelity and low-fidelity regions in the
sector e-e and the other sectors. Such a difference is a result
of junction asymmetry δEJ = 0.01EJ making the sectors e-o,
o-e, and o-o no longer equivalent as in the symmetric-circuit
case. Quasiparticle-tunneling-induced jumps between these
different sectors will make the circulator operate unreliably.

C. Composition of quasiparticle spectra

Since circulation in our system is a resonant effect, reflec-
tion or transmission measurements of the circulator ring will
reveal its energy spectrum. Each quasiparticle sector has a
distinct spectrum, so measurements performed on a timescale
longer than quasiparticle lifetimes will show all the spec-
tra from the four sectors superimposed. Coexistence of the
even and odd sectors has been observed in experiments with
the single-Cooper-pair transistor and the Cooper-pair-box or
transmon qubit [31,32,48,49] that feature the “eye pattern”
composing of both even and odd transitions.

In Fig. 9 we show the four sector spectra with the first
four excited-state energies ωk (k = 1, 2, 3, 4 from bottom to
top with different colors) as functions of the reduced external
flux φx for an asymmetric circulator ring. We numerically
compute the eigenenergies of the Hamiltonian, Eq. (36), for
each quasiparticle sector (i.e., we diagonalize the closed sys-
tem as for the dashed lines in Fig. 8 disregarding waveguide-
or quasiparticle-induced decoherence, and then compose the
eigenenergies together in a single plot). The multisector spec-
tra in Fig. 9 serve as a signature of the presence of the different
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FIG. 9. Composition of the ground-to-excited-state transition en-
ergies for the first four excited states ωk (k = 1, 2, 3, 4 from bottom
to top with different colors) from each of the four quasiparticle
sectors. The line styles of the sector spectra here match those in
Fig. 8. Relevant parameters are the same as in Fig. 8.

quasiparticle sectors when carrying out initial spectroscopic
measurements on the circulator ring. They may also be a map
to distinguish the different quasiparticle sectors.

VI. DISCUSSION

Based on the results in the previous sections, we can sketch
a three-step procedure to calibrate the Josephson-junction-
ring circulator as follows.

(i) First, we perform transmission or reflection measure-
ment of the ring device to obtain its spectrum, from which we
fit its energy scales (i.e., EC�

and EJj ). We also look for any
spectra overlap due to quasiparticle tunneling as in Fig. 9. No
signs of such overlap indicate a device free of quasiparticles,
which will facilitate finding the optimal working points.

(ii) Second, given the ring energy parameters, we numer-
ically estimate the three charge biases, the external flux, and
the driving frequency to achieve optimal circulation as done
in Secs. III and IV.

(iii) Third, we incorporate a particular optimization rou-
tine into measurements of the device and optimize the
scattering matrix fidelity around the parameters found in step
(ii).

Of particular importance is to take into account junction
asymmetry. As analyzed in Sec. IV the tolerance level of
signal circulation to junction asymmetry is set by the coupling
strength and in general the smaller the ratio between junction
asymmetry and the coupling strength the better the scattering
matrix fidelity. Superconducting quantum interference device
(SQUID)-geometry junctions with tunable Josephson energies
can be used to mitigate asymmetry imperfection, but might
complicate device operation and introduce new noise chan-
nels. Alternatively, one can increase the coupling strength
by employing high-impedance waveguides [67,68] to relax
constraints on device fabrication as well as enhancing the
working bandwidth.

We suggest a set of fabrication parameters for the ring
circulator: EC�

/2π ∼ 3 GHz, ĒJ/2π ∼ 10 GHz, �/2π ∼
100 MHz, and |δEJ | � 2�, by which |δEJ |/� � 2 allowing
us to achieve a high circulation fidelity (see Fig. 5) with
an operational bandwidth around 2π × 100 MHz. Besides,
quasiparticle-trapping techniques such as normal metal traps

[24,25,30] and gap engineering [31,32] combined with careful
shielding [69] can be harnessed to suppress unpaired quasipar-
ticles, with the goal of creating a period free of quasiparticles
at a timescale (about seconds or minutes [33,58]) much larger
than the needed optimization time (at the order of milliseconds
as estimated in Sec. IV). Conditioned on this, we expect to
apply the optimization procedure presented here to a real
experimental setup to calibrate the circulator device.

VII. CONCLUSION

The passive on-chip superconducting circulator proposed
in Ref. [19] is intriguing, as it operates passively and may
facilitate scaling up superconducting circuit experiments.
Practical operation of this device necessitates consideration
of two challenging issues: tuning the various external control
parameters to the optimal working points and reducing the
impact of parameter instabilities. Here we have shown that
even with a simple optimization routine the multiparameter
optimization can be implemented quickly within less than 50
optimization steps to determine the desired operating points
for the circulator device. The optimization is supported by
our semianalytic treatment of the scattering problem which
elucidates intuition for numerical results.

As for parameter instabilities, we have considered a detri-
mental type of charge noise, that is, quasiparticle tunneling.
We find that tunneling of quasiparticles across the circulator
junctions creates four available operating sectors, differing
in the charge parities of the superconducting islands. Under
the same working conditions, each sector circulates signals
differently with varied circulation direction and efficiency.
Stochastic jumps between the sectors due to quasiparticle
tunneling subsequently may render the circulator perfor-
mance inefficient. We suggest using quasiparticle-trapping
and shielding techniques to reduce quasiparticle population
and the quasiparticle-tunneling rate, thus potentially rendering
the device unaffected by quasiparticles for a period much
longer than the required optimization time.
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APPENDIX A: CIRCUIT QUANTIZATION

1. Combined circulator-waveguide system

Figure 10 shows the formal representation (left) and the
microscopic model (right) of the coupling between the ring is-
land j represented by the canonical flux � j and the waveguide
j in which the coupling capacitance Cc and the waveguide
are treated as distributed elements. The waveguide of length
L is decomposed into unit cells of length d , so that the
total unit-cell number is N = L/d . The waveguide capaci-
tance and inductance per unit cell are Cwg and �wg, yielding
the waveguide capacitance and inductance per unit length as
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FIG. 10. Left: Formal representation of the waveguide-circulator
capacitive coupling. Right: Microscopic model for this coupling in
which the coupling capacitance is treated as a distributed element
[35].

C̄wg = Cwg/d and �̄wg = �wg/d . The coupling capacitance Cc

has length y spreading across D = y/d waveguide unit cells,
by which the coupling capacitance per unit cell is Cc = Cc/D.
We also assume that the waveguide length is much larger than
that of the coupling capacitance, i.e., L � y.

We perform circuit quantization for the combined
circulator-waveguide system assuming symmetric Josephson
junctions, EJ j = EJ and CJ j = CJ , symmetric gate capaci-
tances, Cxj = Cx, and symmetric coupling capacitances, Ccj =
Cc. The Lagrangian of the total circuit in the absence of
external biases is

Ltot =
3∑

j=1

CJ

2
(�̇ j+1 − �̇ j )

2 + Cx

2
�̇2

j

+EJ cos

(
2π

�0
(� j+1 − � j )

)

+
3∑

j=1

N∑
k=1

Cwg

2
�̇2

j,k − (� j,k+1 − � j,k )2

2�wg

+
3∑

j=1

D∑
k=1

Cc

2
(�̇ j,k − �̇ j )

2, (A1)

where the first and second lines, respectively, represent the
Lagrangians of the circulator ring and the waveguides in the
absence of any coupling and the third line represents their
capacitive coupling. We decompose Ltot into

Ltot = Lring + Lwg + Lint, (A2)

where

Lring = 1

2
�̇C�̇ + EJ

3∑
j=1

cos

(
2π

�0
(� j+1 − � j )

)
, (A3)

Lwg =
3∑

j=1

N∑
k=1

Cwg

2
�̇2

j,k − (� j,k+1 − � j,k )2

2�wg

+
3∑

j=1

D∑
k=1

Cc

2
�̇2

j,k, (A4)

Lint = −
3∑

j=1

D∑
k=1

Cc�̇ j,k�̇ j, (A5)

where �̇ = {�̇1, �̇2, �̇3} and

C =
⎛
⎝C� − CJ −CJ −CJ

−CJ C� − CJ −CJ

−CJ −CJ C� − CJ

⎞
⎠, (A6)

with

C� = 3CJ + Cx + Cc. (A7)

We determine the conjugate momenta {Qj, Qj,k ; j =
1, 2, 3; k = 1, . . . , N} via the equations Qj = ∂Ltot/∂�̇ j and
Qj,k = ∂Ltot/∂�̇ j,k and perform Legendre transformation to
compute the (classical) Hamiltonian Htot. Keeping terms to
the first order of Cc/Cothers only (that is, we assume that the
unit-cell coupling capacitance Cc is much smaller than other
capacitances), we find

Htot = Hring + Hwg + Hint. (A8)

Concretely, Hring is given by

Hring = 1

2
QC−1Q − EJ

3∑
j=1

cos

(
2π

�0
(� j+1 − � j )

)
, (A9)

where Q = {Q1, Q2, Q3}. The waveguide Hamiltonian Hwg is

Hwg =
3∑

j=1

N∑
k=1

Q2
j,k

2Cwg
+ (� j,k+1 − � j,k )2

2�wg
. (A10)

Last, the interaction Hint is given by

Hint = Cc

Cwg(Cx + Cc)C�

3∑
j=1

D∑
k=1

Qj,k

×
(

(Cx + Cc)Qj +CJ

3∑
l=1

Ql

)
. (A11)

We transform to the dimensionless coordinates n = Q/2e
and φ = 2π�/�0 and perform the first quantization to obtain
the following Hamiltonians:

Ĥring = (2e)2

2
n̂C−1n̂ − EJ

3∑
j=1

cos(φ̂ j+1 − φ̂ j ), (A12)

Ĥwg =
3∑

j=1

N∑
k=1

ECwg n̂2
j,k + E�wg (φ̂ j,k+1 − φ̂ j,k )2, (A13)

Ĥint = (2e)2Cc

Cwg(Cx + Cc)C�

3∑
j=1

D∑
k=1

n̂ j,k

×
(

(Cx + Cc)n̂ j + CJ

3∑
l=1

n̂l

)
, (A14)

where ECwg = (2e)2/(2Cwg) and E�wg = �2
0/(8π2�wg).

2. Offset charges and external flux

We include the offset charges and external flux to the
circulator ring by simply making replacements in Eq. (A12)
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as n̂ → (n̂ − nx ) with nx = (nx1 , nx2 , nx3 ) and φ̂ j+1 − φ̂ j →
φ̂ j+1 − φ̂ j − φ̂x/3, yielding

Ĥring = (2e)2

2
(n̂ − nx )C−1(n̂ − nx )

−EJ

3∑
j=1

cos

(
φ̂ j − φ̂ j+1 − 1

3
φx

)
. (A15)

For the interaction Hamiltonian Ĥint in Eq. (A14), we replace
n̂ j → n̂ j − nxj , so that

Ĥint = (2e)2Cc

Cwg(Cx + Cc)C�

3∑
j=1

D∑
k=1

n̂ j,k

×
(

(Cx + Cc)
(
n̂ j − nxj

) + CJ

3∑
l=1

(
n̂l − nxl

))
. (A16)

3. Coordinate transformation

Since the total number of Cooper pairs on the ring is
conserved, we can reduce the number of dynamical variables
of the circulator system from 3 to 2. To this end, we define
new coordinates [19,20]

n̂′ = An̂, φ̂′ = (AT )−1φ̂, (A17)

where ô = (ô1 ô2 ô3)T and

A =
⎛
⎝1 0 0

0 −1 0
1 1 1

⎞
⎠. (A18)

By this, Ĥring in Eq. (A15) in terms of new coordinates is

Ĥring = EC�

((
n̂′

1 − 1
2

(
n0 + nx1 − nx3

))2

+ (
n̂′

2 + 1
2

(
n0 + nx2 − nx3

))2 − n̂′
1n̂′

2

)
− EJ

(
cos

(
φ̂′

1 − 1
3φx

) + cos
(
φ̂′

2 − 1
3φx

)
+ cos

(
φ̂′

1 + φ̂′
2 + 1

3φx
))

, (A19)

where n0 = 〈∑3
j=1 n̂ j〉gr is a conserved charge number evalu-

ated from the expectation value of
∑3

j=1 n̂ j in the ground state
of Ĥring in Eq. (A12) and EC� = (2e)2/C�. The expression of
Ĥint in Eq. (A16) is also altered to be

Ĥint = Ec

D∑
k=1

(n̂1,kq̂1 + n̂2,kq̂2 + n̂3,k q̂3), (A20)

where

q̂1 = n̂′
1 + n′

x1
, q̂2 = −n̂′

2 + n′
x2
, q̂3 = −n̂′

1 + n̂′
2 + n′

x3
,

(A21)

n′
x1

= c1
(
n0 − nx2 − nx3

) − c2nx1 ,

n′
x2

= c1
(
n0 − nx1 − nx3

) − c2nx2 , (A22)

n′
x3

= c2
(
n0 − nx3

) − c1
(
nx1 + nx2

)
,

with Ec = (2e)2Cc/(CwgC� ), c1 = CJ/(Cx + Cc), and c2 =
(CJ + Cx + Cc)/(Cx + Cc). We note that the above rescaled

charge biases, because of the rotating-wave approximation
(used later) which considers only off-diagonal matrix ele-
ments of q̂ j , are irrelevant in calculations.

4. Waveguide normal modes and simplification of the
interaction Hamiltonian

Using the results in Ref. [35], we reexpress the waveguide
Hamiltonian in Eq. (A13) in terms of its normal modes as

Ĥwg =
3∑

j=1

∞∑
k=0

ω j,kâ†
j,k â j,k, (A23)

where ω j,k = ωk = πkL−1(C̄wg�̄wg)−1/2 with L, C̄wg, and �̄wg

respectively the length, the capacitance per unit length, and
the inductance per unit length of the waveguide. The interac-
tion Ĥint in the new waveguide modes is

Ĥint =
3∑

j=1

∞∑
k=1

gk (â†
j,k + â j,k )q̂ j, (A24)

where gk = (2Cc/C� )
√

2ωs/(RK LC̄wg) with RK = h/(2e)2 ≈
25.8 k
 and q̂ j are given in Eq. (A21). Taking the continuum
limit [35,70] and expanding the lower limit of the frequencies
to −∞ [66] the two above Hamiltonians are recast to

Ĥwg =
3∑

j=1

∫ ∞

−∞
dω ω â†

j (ω)â j (ω), (A25)

Ĥint =
3∑

j=1

∫ ∞

−∞
dωg(ω)(â†

j (ω) + â j (ω))q̂ j, (A26)

where g(ω) = (2Cc/C� )
√

2ωZwg/(πRK ) with Zwg =√
�̄wg/C̄wg the waveguide impedance. We furthermore employ

the rotating-wave approximation and Markov approximation
to simplify the interaction into

Ĥint =
3∑

j=1

√
�

2π

∫ ∞

−∞
dω(â†

j (ω)q̂ j,− + â j (ω)q̂ j,+), (A27)

where
√

�/(2π ) = g(ωd ) is the coupling strength evaluated at
the driving frequency ωd .

APPENDIX B: ADIABATIC ELIMINATION

In this Appendix, we present the adiabatic elimination pro-
cedure presented in Ref. [28] to find a new SLH triple defined
in the slow subspace of the circulator ring. We denote the
initial SLH triple of the system of interest with an upper bar
(S̄, L̄, H̄ ). We define the operator

K̄ = −
(

iH̄ + 1

2

∑
j

L̄†
j L̄ j

)
. (B1)

We decompose K̄ as

K̄ = Y + A + B, (B2)

where

Y = P1K̄P1, (B3a)

A = P1K̄P0 + P0K̄P1, (B3b)

B = P0K̄P0, (B3c)
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with P0 the projector onto the slow subspace and P1 onto the
fast subspace. We also decompose L̄ j as

L̄ j = Fj + Gj, (B4)

where

Fj = P1L̄ jP1 + P0L̄ jP1, (B5a)

Gj = P1L̄ jP0 + P0L̄ jP0. (B5b)

The operators (without an upper bar) in adiabatically elim-
inated subspace are then given by

K = −
(

iH + 1

2

∑
j

L†
j L j

)
= P0(B − AỸ A)P0, (B6a)

Lj = (Gj − FjỸ A)P0, (B6b)

H = iK + i

2

∑
j

L†
j L j, (B6c)

Si j = (FiỸ F †
� + δi�)S̄� jP0, (B6d)

where Ỹ satisfies

YỸ = ỸY = P1. (B7)

For the circulator ring, its initial SLH triple is

H̄ = Ĥring + Ĥdrive, (B8)

L̄ j =
√

�q̂( j)
− + β j1, j = 1, 2, 3, (B9)

S̄ = Diag(1,1,1), (B10)

where Ĥring and Ĥdrive are expressed in a frame rotating
with the driving frequency ωd : Ĥring = ∑

k>0(ωk − ωd )|k〉 〈k|
and Ĥdrive = − i

2

√
�

∑3
j=1(β j q̂ j,+ − H.c.). The ring slow-

subspace and fast-subspace projectors are respectively defined
as

P0 = |0〉〈0|, (B11)

P1 =
∑
k>0

|k〉〈k|. (B12)

FIG. 11. γ1, γ2, and |Q12| ≡ |Q21| as functions of the reduced
external flux φx , where γ1 and γ2 are respectively the decay rates
of the excitations |1〉 and |2〉 and Qk� = ∑3

j=1〈0|q̂ j |k〉〈�|q̂ j |0〉. Note
that Q11 ≡ γ1 and Q22 ≡ γ2. Relevant parameters are the same as in
Fig. 1(b).

TABLE I. Relevant parameters used for numerical simulations in
this paper.

Parameter Value

EJ/h̄ 2π × 12.92 GHz
CJ 5.76 fF
Cx 5.95 fF
Cc 10.60 fF
EC�

/h̄ 2π × 4.58 GHz
Zwg (Sec. IV) 50 


Zwg (Sec. V) 200 


Given the initial SLH triple and the projectors onto slow and
fast subspaces, we carry out the computations outlined above
to obtain the semianalytical expression for the scattering ma-
trix element Si j as given in Eq. (16). Note that to simplify
the operator Y , we make use of the results |Q12|, |Q21| 

|γ1|, |γ2| (see next Appendix) and |β j |2 
 � for weak coher-
ent input fields.

APPENDIX C: DECAY RATE COMPARISON

In Fig. 11 we compare γ1, γ2, and |Q12| ≡ |Q21|, where
Qk� = ∑3

j=1〈0|q̂ j |k〉〈�|q̂ j |0〉 for a symmetric circulator ring
with identical charge biases of 1/3. We clearly see that
|Q12| � 0 while γ1, γ2 > 0, thus justifying the approxi-
mation used to obtain the property in Eq. (18). Similar
results hold for the case of an asymmetric circulator
ring.

APPENDIX D: SIMULATION PARAMETERS

Table I shows the values of the parameters used to perform
numerical simulations in the present paper.

In Fig. 12 we plot the nonreciprocity defined by |S12| −
|S21| (solid red) and the coupling strength � (dashed blue) as
functions of the ratio EC�

/EJ for a symmetric ring circulator.
It is shown that nonreciprocity disappears at approximately

FIG. 12. Nonreciprocity represented by |S12| − |S21| (solid red)
and coupling strength � (dashed blue) versus the ratio EC�

/EJ . The
inset shows the variation of |S12| − |S21| when EC�

/EJ � 0.045; non-
reciprocity disappears near EC�

/EJ = 0.025. The coupling strength
� increases monotonically with EC�

/EJ . The black dot indicates the
value of EC�

/EJ (= 0.35) used for simulations in the main text. The
plot is generated for a symmetric ring.

043211-15



DAT THANH LE et al. PHYSICAL REVIEW RESEARCH 3, 043211 (2021)

FIG. 13. Variations along the optimization in Sec. IV A for a
symmetric circulator ring of (a) the driving frequency ωd , (b) the
external flux φx , and (c)–(e) the three charge biases nx j .

EC�
/EJ = 0.025 and � is monotonically reduced when de-

creasing EC�
/EJ .

APPENDIX E: VARIATIONS OF THE WORKING
PARAMETERS ALONG OPTIMIZATION

In Fig. 13 we record the variations with respect to opti-
mization steps of the driving frequency ωd [Fig. 13(a)], the
external flux φx [Fig. 13(b)], and the three charge biases nxj

[Figs. 13(c)–13(e)] for a symmetric circulator ring after the
optimization in Sec. IV A. Meanwhile, in Figs. 14(a)–14(f) we
show the variations of the magnitudes of the coupling matrix
elements |〈0|q̂ j |k〉| for j = 1, 2, 3 and k = 1, 2 to inspect the
condition in Eq. (20), in Fig. 14(g) the ratio 2ωd/(ω1 + ω2)
to inspect the condition in Eq. (28), and in Fig. 14(h) the ratio
γ�/(ω2 − ω1) to inspect the condition in Eq. (29).

Figures 15 and 16 show the results for an asymmetric
circulator ring.

FIG. 14. Variations along the optimization in Sec. IV A for a
symmetric circulator ring of (a–f) the magnitudes of the coupling
matrix elements |〈0|q̂ j |k〉| for j = 1, 2, 3 and k = 1, 2 to examine
the condition in Eq. (20), (g) the ratio 2ωd/(ω1 + ω2) to examine the
condition in Eq. (28), and (h) the ratio γ�/(ω2 − ω1) to examine the
condition in Eq. (29).

APPENDIX F: DERIVATION OF THE MASTER EQUATION
IN THE PRESENCE OF QUASIPARTICLE TUNNELING

Here we derive the master equation for the ring density
operator in the presence of both coupling to waveguides and
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FIG. 15. Similar to Fig. 13 but for an asymmetric circulator ring
and the optimization in Sec. IV B.

coupling to quasiparticles as in Eq. (40). The total waveguide-
ring-quasiparticle Hamiltonian is [71]

Ĥ ′
tot = Ĥ ′

ring + Ĥwg + Ĥint + Ĥqp + ĤT , (F1)

where Ĥ ′
ring is diagonal in sector blocks as in Eq. (36), and Ĥwg

and Ĥint are respectively given in Eqs. (A25) and (A26). Ĥqp

is the Hamiltonian of quasiparticles in the three ring islands
[50]:

Ĥqp =
3∑

j=1

Ĥ ( j)
qp , Ĥ ( j)

qp =
∑
n,σ

ε ( j)
n α̂( j)†

nσ α̂( j)
nσ , (F2)

where j indexes the islands, σ = ↑,↓ denotes electron spins,
ε

( j)
n =

√
(ξ ( j)

n )2 + (�( j) )2 is the quasiparticle energy with ξ
( j)
n

the single-particle energy at level n in the normal state of
the island j and �( j) the gap parameter of that island, and
α̂

( j)
nσ (α̂( j)†

nσ ) is the quasiparticle annihilation (creation) operator.
ĤT describes quasiparticle tunneling between the ring islands

FIG. 16. Similar to Fig. 14 but for an asymmetric circulator ring
and the optimization in Subsec. IV B.

[50,53]:

ĤT =
∑
j 	= j′

t j j′
∑

n,m,σ

α̂( j)†
nσ α̂( j′ )

mσ

(
e

i
2 (ϕ̂ j−ϕ̂ j′ )u( j)

n u( j′ )
m

− e− i
2 (ϕ̂ j−ϕ̂ j′ )v( j′ )

m v( j)
n

) + H.c., (F3)

where t j j′ 
 1 is the tunneling amplitude between the islands
j and j′ and is determined via the junction conductance
g j j′ = 4πe2ν ( j)ν ( j′ )t2

jk/h̄ with ν ( j) the density of states per

043211-17



DAT THANH LE et al. PHYSICAL REVIEW RESEARCH 3, 043211 (2021)

spin direction in the island j, ϕ̂ j is the phase of the island
j, and u( j)

n and v
( j)
n are Bogoliubov amplitudes and are as-

sumed to be real. In the low-energy limit [50], we approximate
u( j)

m � v
( j)
n � 1/

√
2, so that

ĤT =
∑
j 	= j′

t j j′
∑

n,m,σ

α̂( j)†
nσ α̂( j′ )

mσ T̂j j′ + H.c., (F4)

where T̂j j′ = sin((ϕ̂ j − ϕ̂ j′ )/2) are the tunneling operators.
In terms of the new coordinates defined in Eq. (A17), these
operators are

T̂12= sin

(
φ̂′

1 + φ̂′
2

2

)
, T̂23= sin

(
φ̂′

2

2

)
, T̂31= sin

(
φ̂′

1

2

)
.

(F5)

We assume that the waveguides (the bosonic baths) are in
vacuum [71] and consider the effect of weak coherent driving
fields later. We also assume that quasiparticles in the ring
islands are near equilibrium, so that〈

α̂( j)†
nσ

〉
qp = 〈

α̂( j)
nσ

〉
qp = 0,

〈
α̂( j)†

nσ α̂( j′ )
nσ

〉
qp = δ j j′ f ( j)

[
ε ( j)

n

]
,

(F6)

where f ( j)[ε ( j)
n ] is the distribution function of quasiparticles in

the island j which is assumed to be independent of spin. We
decompose Ĥ ′

tot in Eq. (F1) into

Ĥ ′
tot = Ĥ0 + V̂ , (F7)

where Ĥ0 = Ĥ ′
ring + Ĥwg + Ĥqp is the total unperturbed

Hamiltonian and V̂ = Ĥint + ĤT is a perturbation to Ĥ0.
Let � be the density operator of the total waveguide-ring-
quasiparticle system and ρ ′ = Trwg,qp(�) be the ring density
operator. In the interaction picture, the equation of motion of
ρ ′ is [71]

ρ̇ ′
I (t ) = −

∫ t

−∞
dt ′Trwg,qp{[V̂I (t ), [V̂I (t ′), �I (t ′)]]}, (F8)

where

V̂I (t ) = e−iĤ0tV̂ eiĤ0t

=
3∑

j=1

√
�

2π

∫ ∞

−∞
dω(a†

j (ω)eiωt q̂−
j (t ) + H.c.)

+
( ∑

j 	= j′
t j j′

∑
n,m,σ

ei(ε ( j)
n −ε

( j′ )
m )t α̂( j)†

nσ α̂ j′
mσ T̂j j′ (t ) + H.c.

)
.

(F9)

Here the operators q̂−
j (t ) and T̂j j′ (t ) are

q̂−
j (t ) =

∑
s

∑
k>k′

〈k′, s|q̂ j |k, s〉eiωk,s;k′ ,st |k′, s〉〈k, s|, (F10)

T̂j j′ (t ) =
∑
s,s′

∑
k,k′

〈k′, s′|T̂j j′ |k, s〉eiωk,s;k′ ,s′ t |k′, s′〉〈k, s|, (F11)

where s and s′ label the sector indices and k and k′ label the
ring eigenstate indices within each sector.

The right-hand side of Eq. (F8), due to the double com-
mutator, has four terms of which we consider only the term

containing V̂I (t )V̂I (t ′)�I (t ′). The other terms are evaluated
similarly. We have

−
∫ t

−∞
dt ′Trwg,qp{V̂I (t )V̂I (t ′)�I (t ′)}

= −1

2

3∑
j=1

∑
s

∑
k>k′

�
( j)
k,s;k′,s|k, s〉〈k′, s||k′, s〉〈k, s|ρ ′

I (t )

− 1

2

∑
j 	= j′

∑
s,s′

∑
k,k′

�
( j j′ )
k,s;k′,s′ |k, s〉〈k′, s′||k′, s′〉〈k, s|ρ ′

I (t ),

(F12)

where we have used the Born-Markov approximation and
neglected fast oscillating terms, �

( j)
k,s;k′,s is the inner-sector

relaxation rate,

�
( j)
k,s;k′,s = �|〈k′, s|q̂ j |k, s〉|2, (F13)

and �
( j j′ )
k,s;k′,s′ is the intersector (i.e., quasiparticle-tunneling)

rate,

�
( j j′ )
k,s;k′,s′ = |〈k′, s′|T̂j j′ |k, s〉∣∣2

Sqp(ωk,s;k′,s′ ), (F14)

with ωk,s;k′,s′ the transition energy between the states |k, s〉 and
|k′, s′〉. Here S( j j′ )

qp (ω) is the quasiparticle spectral density and
for ω > 0 is given by [50]

S( j j′ )
qp (ω) = 16E ( j j′ )

J

π

∫ ∞

0
dx

1√
x
√

x + ω/�

×(
f ( j)[(1 + x)�]{1 − f ( j′ )[(1 + x)� + ω]}),

(F15)

where E ( j j′ )
J is the Josephson energy of the junction connect-

ing the islands j and j′. For ω < 0, in Eq. (F15) we make
replacements x → x − ω/� and ω → −ω. We consider equal
populations on the islands, so f ( j) = f ( j′ ) simplifying S( j j′ )

qp

into Eq. (42).
Using the above results, Eq. (F8) is recast to

ρ̇ ′
I (t ) =

∑
j=1

∑
s

∑
k<k′

�
( j)
k,s;k′,sD[|k′, s〉〈k, s|]ρ ′

I (t )

+
∑
j 	= j′

∑
s,s′

∑
k,k′

�
( j j′ )
k,s;k′,s′D[|k′, s′〉〈k, s|]ρ ′

I (t ). (F16)

We transfer the master equation to the Schrodinger picture and
add weak coherent driving fields [36,72], yielding

ρ̇ ′(t ) = −i

[
Ĥ ′

ring − i
√

�
∑

j

(β je
−iωd t q̂ j,+ − H.c.), ρ ′(t )

]

+
∑

j

∑
s

∑
k>k′

�
( j)
k,s;k′,sD[|k′, s〉〈k, s|]ρ ′(t )

+
∑
j 	= j′

∑
s,s′

∑
k,k′

�
( j j′ )
k,s;k′,s′D[|k′, s′〉〈k, s|]ρ ′(t ), (F17)

which is the master equation in Eq. (40).
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We unravel Eq. (F17) into a conditional master equation
[65,66]

ρ̇ ′
c,0(t ) = −i[Ĥeff , ρ

′
c,0(t )] +

∑
j

∑
s

∑
k>k′

�
( j)
k,s;k′,s

×D[|k′, s〉〈k, s|]ρ ′
c,0(t ), (F18)

where ρ ′
c,0(t ) is the conditional system density operator con-

ditioned on when no quasiparticle jumps happen; that is, it
describes evolution within one quasiparticle sector in between
incoherent jumps to the other sectors, and Ĥeff is the effective
no-jump Hamiltonian:

Ĥeff = Ĥ ′
ring − i

√
�

∑
j

(β je
−iωd t q̂ j,+ − H.c.)

− i

2

∑
j 	= j′

∑
s,s′

∑
k,k′

�
( j j′ )
k,s;k′,s′ |k, s〉〈k, s|. (F19)

The non-Hermitian part of Ĥeff [the second line in Eq. (F19)]
is the system self-damping [66] given in terms of the
sector-mixing operator ĉk,s;k′,s′ = |k′, s′〉〈k, s| as |k, s〉〈k, s| =

ĉ†
k,s;k′,s′ ĉk,s;k′,s′ . This self-damping term is negligible compared

to the Hermitian part of Ĥeff [the first line in Eq. (F19)], since
�

( j j′ )
k,s;k′,s′ ∼ 1 kHz (as estimated in Sec. V B) is much smaller

than ωk,s ∼ 2π × 10 GHz and � ∼ 2π × 100 MHz.

APPENDIX G: SECTOR FLUCTUATIONS FOR AN ODD
TOTAL CHARGE PARITY

In this Appendix, we consider sector fluctuations when the
total charge parity of the ring islands is odd. The four quasi-
particle sectors include e-e(-o), e-o(-e), o-e(-e), and o-o(-o).
For a symmetric ring circuit, we find the fidelity F (Ssym, Sideal )
for the sector e-e is optimized at (ωd , φx, nx1 , nx2 , nx3 ) =
(0.77EJ , 2.11, 1/3, 1/3, 5/6). We fix the three charge biases
and plot the fidelity versus ωd and φx for the four sectors. The
results are almost identical to those in Fig. 7, so we do not
show them here for brevity.

We repeat the above procedure for an asymmetric circuit
with the same junction asymmetries as in Fig. 8 and observe
that sector fluctuations are qualitatively analogous to the re-
sults in Fig. 8.
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