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Dissipative Kerr cavity solitons (CSs) are persisting pulses of light that manifest themselves in driven optical
resonators and that have attracted significant attention over the last decade. Whilst the vast majority of studies
have revolved around conditions where the resonator exhibits strong anomalous dispersion, recent studies have
shown that solitons with unique characteristics and dynamics can arise under conditions of near-zero-dispersion
driving. Here, we report on experimental studies of the existence and stability dynamics of Kerr CSs under
such conditions. In particular, we experimentally probe the solitons’ range of existence and examine how their
breathing instabilities are modified when group-velocity dispersion is close to zero, such that higher-order
dispersion terms play a significant role. On the one hand, our experiments directly confirm earlier theoretical
works that predict (i) breathing near-zero-dispersion solitons to emit polychromatic dispersive radiation, and
(ii) that higher-order dispersion can extend the range over which the solitons are stable. On the other hand, our
experiments also reveal a novel cross-over scenario, whereby the influence of higher-order dispersion changes
from stabilising to destabilising. Our comprehensive experiments sample soliton dynamics both in the normal
and anomalous dispersion regimes, and our results are in good agreement with numerical simulations and

theoretical predictions.
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I. INTRODUCTION

Temporal Kerr cavity solitons (CSs) are localized pulses of
light that can circulate in a driven passive optical resonator
without distortion [1,2]. They underpin the highly-coherent
Kerr frequency combs that can be generated in low-loss
microresonators [3—7] and have enabled ground-breaking
advances in a wide array of applications, including telecom-
munication [8], frequency synthesis [9], optical ranging [10],
and many more [11-14]. CSs are also dynamically rich. In
particular, for certain system parameters, CSs are known
to destabilize through a Hopf bifurcation, giving rise to
oscillatory behavior [15-18]. Also more complex instabil-
ity behaviors [19-22], including spatiotemporal chaos [23],
soliton binding [24,25], and soliton crystals [26-28], are
possible.

Most of the studies concerning CSs have, to date, revolved
around the scenario where the cavity driving field experiences
strongly anomalous group-velocity dispersion, with higher-
order dispersion terms acting as small perturbations only.
In this regime, the most conspicuous perturbative effect of
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higher-order dispersion is the generation of dispersive radia-
tion that manifests itself as a single narrow-band Lorentzian
peak in the spectral domain [29-32]. More recently, there
has however been growing interest in exploring the dynamics
of CSs under conditions of near-zero-dispersion driving, i.e.,
with the wavelength of the input laser coincident (or close
to coincident) with the zero-dispersion wavelength (ZDW)
of the resonator. In this regime, higher-order dispersion
dominates the dynamics, giving rise to novel bright local-
ized structures both in the normal and anomalous dispersion
regimes [33-35]. Theoretical studies have also suggested that
near-zero-dispersion conditions can significantly affect the
solitons’ instability dynamics and range of existence [36,37].
In particular, it has been theoretically predicted that (i) strong
third-order dispersion combined with soliton breathing can
lead to the emission of comb-like, polychromatic dispersive
radiation [36]—in stark contrast to the sharp, monochromatic
dispersive radiation that is commonly observed with stable
(i.e., nonoscillatory) solitons [29,34]—and that (ii) third-order
dispersion can stabilize CSs, i.e., restrict the range of param-
eters over which the solitons are oscillatorily unstable [37].
However, as of yet, no comprehensive experimental tests of
these predictions have been reported.

In this article, we experimentally explore the existence
and stability dynamics of Kerr CSs under conditions of near-
zero-dispersion driving. Our experiments are performed in
a coherently driven fibre ring resonator, where the disper-
sion conditions are systematically controlled by tuning the
driving wavelength [34]. Our results provide experimental

Published by the American Physical Society
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FIG. 1. Simplified depiction of the experimental setup. The inset
depicts the second-order group-velocity dispersion coefficient of the
cavity as a function of wavelength, the dashed orange lines indicate
the position of the zero-dispersion-wavelength. AM, amplitude mod-
ulator; DSF, dispersion-shifted fibre; ECDL, external-cavity diode
laser; EDFA, erbium-doped fibre amplifier; OSA, optical spectrum
analyzer; OSC, oscilloscope.

confirmation of the theoretical predictions mentioned above
[36,37]. First, we observe the emission of polychromatic dis-
persive radiation emitted by breathing solitons. Second, we
confirm that third-order dispersion indeed can stabilize CSs
[37]. Interestingly, however, our experiments also reveal for
the first time that the latter behavior is not universal: The
impact of higher-order dispersion switches from stabilising
to destabilising for high driving power levels. Our results
provide significant insights into the dynamics of CSs under
conditions of near-zero-dispersion driving and could facilitate
the design of broadband frequency combs or novel sources of
ultrashort pulse trains.

II. EXPERIMENTAL AND NUMERICAL METHODS

Figure 1 shows a schematic illustration of our experimen-
tal setup, which is overall similar to that used in Ref. [34].
The experiment is built around a 5-m-long optical fibre ring
resonator made entirely out of dispersion-shifted fibre (DSF)
with Kerr nonlinearity coefficient y = 1.8 W~'km~!. The
dispersion profile of the cavity is measured using a two-step
process identical to that used in Ref. [34]. Briefly, we first
estimate the ZDW and the dispersion profile at the ZDW
by fitting experimentally measured positions of spectral side-
bands generated by the degenerate four-wave-mixing (FWM)
process to the corresponding theoretical predictions [38] over
a wide range of driving wavelengths. We then refine the es-
timation by fitting a numerically simulated soliton spectrum
to a corresponding experimental measurement for a single
set of parameters. Note that this fitting is done for one set
of parameters only, and the resulting dispersion parameters
are used for all subsequent simulations. Through this method,
we found that the zero-dispersion wavelength is located at
1564.5 nm with third- and fourth-order dispersion coefficients
B3.2aw = 0.13ps*km ™! and B4 4w = —6.65 x 10~* ps*km ™!
at the ZDW, respectively. The cavity is comprised of a sin-
gle 99/1 fibre coupler (made of DSF) spliced to form a
ring, yielding a free-spectral-range of 41.5 MHz and a large
measured finesse of F = 400. We synchronously drive the
resonator with a train of nanosecond pulses carved from a
tunable external cavity diode laser (ECDL). As described in

Ref. [34], the synchronization between the nanosecond driv-
ing pulses and the subpicosecond solitons inside the resonator
is actively maintained by using a computer-controlled feed-
back loop. The driving pulses are amplified and injected into
the resonator via the input port of the 99/1 coupler and the
intracavity dynamics are monitored both in the temporal and
spectral domains at the output port of that coupler. Because
the output consists of a superposition between the intracavity
field and the reflected part (99%) of the driving field, a tunable
bandstop filter is used to remove the pump component prior to
temporal measurements so as to improve the signal-to-noise
ratio. To overcome fluctuations in the frequencies of the driv-
ing laser and the cavity modes, we actively lock the driving
laser to a cavity resonance by using the schemes introduced in
[39] and [34]. This allows us to systematically control the de-
tuning between the laser and the cavity, and hence investigate
the detuning-dependent properties of the CSs.

To compare our experimental observations with theoreti-
cal predictions, we model our system using the generalized
Lugiato-Lefever equation (LLE) that includes higher-order
dispersion and delayed Raman nonlinearity [40]:

aE(z 7)
T
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+iyLI(1 = fR)E + frhe(v) % |[EPIE. (1)

Here, # is the round trip time, E (¢, ) is the slowly varying
intracavity electric field envelope with units of W'/2, ¢ is a
slow time that describes the evolution of E at the scale of
the photon lifetime, T is a corresponding fast-time, which
describes the intracavity field temporal profile over a single
roundtrip, o« = 7 /F is half of the fraction of power lost per
round trip, 8y is the phase detuning of the driving field from
the closest cavity resonance, f; are the dispersion coefficients
at the pump frequency, L is the cavity length, 0 is the power
transmission coefficient of the input coupler (6 = 0.01 in
our experiments), Ej, = +/Py, is the amplitude of the driv-
ing field with power P,, fr = 0.18 is the Raman fraction
of the nonlinearity, hg(7) is the corresponding time-domain
Raman response function [41], and * denotes convolution.
Note that our model includes fourth-order dispersion and
Raman nonlinearity to improve quantitative agreement with
our experiments, but we have carefully verified that they do
not affect the overall trends that are instead set by the third-
order dispersion f3. Furthermore, in what follows, we will
discuss and contrast the results obtained from Eq. (1) with
corresponding results of the “pure” LLE that is obtained from
Eq. (1) by setting all higher-order terms to zero, i.e., Sy = 0
for k > 2 and fg = 0. Lastly, it is important to stress that all
parameters of Eq. (1) have been measured in our experiments;
therefore, the numerical simulations presented below contain
no free parameters.

In our analysis below, we will refer to the fol-
lowing normalized parameters [2,29]: driving power

X = yP,L0/a’, detuning A =§y/a, and third-order
dispersion = 2a/LB3/(3|B21>/*). The normalized

parameter |ds;| describes the relative strength of the
third-order dispersion with respect to the second-order
dispersion. Indeed considering dispersion up to the third
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FIG. 2. (a) Red curve shows CS bifurcation curve for X = 150 and ds = 1.12; green curve shows corresponding results in the absence
of higher-order dispersion [8; = B4 = 0] and stimulated Raman scattering [fg = 0]. Vertical dashed-dotted lines labeled as Ay, and Ays
indicate the detunings at which breathing solitons emerge in the absence and presence of higher-order terms, respectively. Blue curves show
CW solutions for X = 150. Solid (dashed) curves correspond to stable (unstable) solutions. (b), (c) Blue (orange) curves show experimentally
measured (numerically simulated) CS energy per round-trip and time-averaged spectrum at A = 44.5, respectively. (d) and (e) are as in (b) and
(c), respectively, but with A = 18. The positions of both measurements along the CS bifurcation curves are indicated in (a) by green circles.
Insets in (c) and (e) show the dispersive wave spectral components in more detail.

order, the linear phase-shift induced at some frequency €2
can be written, in the normalisation adopted in our work, as
O(Q) x dr 2 + d3Q23, where d, = 1 (d, = —1) for normal
(anomalous) dispersion at the driving wavelength. Assuming
a typical CS with a normalized spectral half-width of 62 ~ 1,
it should be clear that the third-order dispersion dominates
over the second-order dispersion when |d3||62] > 1 or
|ds| > 1/|6R2| & 1. Of course, we must highlight that this
does not represent any strict limit, but simply illustrates
how dj represents the relative strength of the third-order
dispersion. Thanks to the use of a widely tunable ECDL,
we are able in our experiments to systematically control
the magnitude of d3 and to investigate the soliton dynamics
both when driving in the anomalous and normal dispersion
regimes [34].

III. RESULTS

A. Anomalous-dispersion driving

We first consider experiments that probe the CSs’ insta-
bility dynamics under near-zero-dispersion conditions when
driving in the anomalous dispersion regime. To this end, we
set the pump power to 0.97 W such that X = 150, and we set
the driving wavelength to 1566.2 nm (i.e., 1.7 nm away from
the ZDW), where dispersion is anomalous and dz = 1.12.
In Fig. 2(a), we show a theoretically predicted CS bifurca-
tion curve [red curve] obtained by finding the steady-state
solutions of Eq. (1) using a Newton-Raphson method with
our experimental parameters [see also figure caption]. Also
shown in green is the corresponding curve in the absence
of higher-order terms [i.e., B = 0 for k > 2 and fr = 0], as
well as the intensity levels of the homogeneous CW state of
the system. (Note that the stability of all the solutions was
deduced via a linear stability analysis [42].) We see that, both
in the presence and absence of higher-order dispersion terms,
the CSs are stable (solid curves) for large detunings, but then

become unstable (dashed curves) through a Hopf bifurcation
at detuning Ays and App, respectively.

In our experiments, we stabilize the detuning at different
values and examine the soliton characteristics. Blue curves
in Figs. 2(b)-2(e) show the experimentally measured CS
energy per roundtrip as well as time-averaged optical spec-
tra when the detuning is stabilized at A = 44.5 [Figs. 2(b)
and 2(c)] and A = 18 [Figs. 2(d) and 2(e)]. In agreement
with the bifurcation curve shown in Fig. 2(a), the CSs at
A = 44.5 are dynamically stable, exhibiting a typical spec-
trum with a strong monochromatic dispersive wave peak at
about 1537 nm. In stark contrast, at A = 18, the solitons ex-
hibit regular oscillations with a period of about Ty = 1.59 us
(or equivalently 70 roundtrips), with the dispersive wave peak
exhibiting a manifestly polychromatic character. The latter
feature was recently predicted by Melchert et al. [36] and can
be explained as follows. Efficient dispersive wave emission re-
quires that the CS spectrally overlaps with the phase-matched
dispersive wave wavelength [43]; when the (spectral width of
the) CS oscillates, the efficiency of dispersive wave emission
is accordingly modulated. Compounded by the fact that the
emitted dispersive waves walk off from the soliton due to dis-
persion, this results in the generation of a quasiperiodic train
of phase coherent dispersive waves with decaying amplitude.
The temporal spacing between two consecutive dispersive
waves, At, is equal to the dispersive walk-off during one
soliton oscillation period T , i.€.,

/33,5 2 ﬂ4,s 3
> Q7+ 5 Q } 2
where 2 is the angular frequency shift of the dispersive
wave from the soliton and the dispersion coefficients fy g
are evaluated at the center of the soliton spectrum. For our
parameters (estimating the soliton and the dispersive wave to
be centered at 1573 nm 1543 nm, respectively) At = 4.9 ps,
yielding a corresponding spectral modulation frequency
Af =1/At =~ 204 GHz, which is in reasonable agreement

At =L

T-
osc |:ﬂ2’59 +
IR
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with 198 GHz extracted from the measured spectrum (average
frequency spacing between the peaks that are not equidistant
due to dispersion). To the best of our knowledge, the results
shown in Figs. 2(d) and 2(e) represent the first experimental
confirmation of polychromatic dispersive wave emission by
oscillating near-zero-dispersion CSs. It is worth noting that
the asymmetrical form of the pump component in Figs. 2(c)
and 2(e) originates from the fact that the driving wavelength
(1566.2 nm) sits at the operating limit of the EDFA used
(around 1570 nm), which leads to stronger amplification and
hence amplified spontaneous emission (ASE) on the lower
wavelength side.

The experimental observations in Figs. 2(b)-2(e) are in
good agreement with numerical simulations [see orange
curves in Fig. 2] and predictions of the theoretical bifurca-
tion curve [Fig. 2(a)]. Somewhat surprisingly, the bifurcation
curve predicts that, in the presence of higher-order terms, the
Hopf bifurcation that marks the transition between stable and
unstable CSs occurs at a larger detuning than in the pure
LLE model, i.e., Ag3 > Apyp. Arising predominantly due to
third-order dispersion (we again emphasize that fourth-order
dispersion and Raman scattering play a minor role only), this
observation seemingly contradicts the notion that third-order
dispersion stabilizes CSs [37]. To experimentally test this pre-
diction, we measured the soliton characteristics as a function
of detuning over the entire range of the soliton existence.
More specifically, we excite and stabilize a soliton at a given
detuning, and then adiabatically adjust the detuning stabilisa-
tion point in small steps while recording the soliton spectral
and temporal profiles. (Of note: occasionally the soliton dies
due to environmental perturbations during the process, in
which case we re-excite the soliton and resume the measure-
ment.) Figure 3 shows the measured soliton spectral evolution
with X = 150 [i.e., parameters as in Fig. 2(a)], and reveals
that the dispersive wave component transforms from poly- to
monochromatic at a detuning A =~ 26. This transformation is
indicative of the transition between unstable and stable CSs,
and the detuning at which it occurs is in good agreement
with the predicted Hopf bifurcation point Ays = 25.9. (Note
that stability is inferred from the presence of polychromatic
dispersive waves in the spectrum, which provides a better
signal-to-noise ratio than temporal measurements.) The ob-
served transition point is noticeably larger (the uncertainty
in our measurement of A is about unity) than the value of
App = 21.9 predicted in the pure LLE model, thus confirming
that, for the parameters considered in Figs. 2 and 3, third-order
dispersion does not stabilize the CS.

To gain more insight and explain the apparent contradiction
between our findings and results reported in Ref. [37], we
computed the soliton’s bifurcation characteristics for a range
of driving powers and detunings. The results are shown in
Fig. 4 for d; = 1.12, where various colored regions indicate
parameters space over which solitons exhibit distinct dy-
namical behaviors, superimposed with the bifurcation points
predicted in the absence of higher-order effects. We have
carefully verified that neglecting fourth-order dispersion and
Raman scattering yields qualitatively similar existence and
stability boundaries, thus allowing us to draw two major
conclusions with regards to the effect of third-order dis-
persion. First, third-order dispersion reduces the range of
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FIG. 3. The right panel shows a pseudocolor plot of experimen-
tally measured spectra at various detuning values, obtained through
vertically concatenating 72 individual spectral measurements with
parameters as in Fig. 2. The left panel shows a corresponding plot
of high resolution spectral measurements around the dispersive wave
spectral profile; note that the latter measurements are centered at the
wavelength of the strongest dispersive radiation peak and encompass
a spectral window of 20 nm. In both panels, the predicted positions
of the CS Hopf bifurcation points in the presence and absence of
higher-order terms, Ay; and Ay, [same values shown in Fig. 2(a)],
are indicated by the yellow arrows, respectively.

detunings over which the CS exists—especially on the large
detuning side. Second, third-order dispersion induces a non-
trivial change in solitons’ stability boundaries. For low driving
power level (X < 80), the solitons are stable at all detunings—
even when instabilities would otherwise manifest themselves
in the pure LLE model. Thus, for low driving powers,
third-order dispersion stabilizes the solitons, as predicted in
Ref. [37]. As the driving power increases, we find however
that the solitons’ immunity against instabilities vanishes, and
we observe a cross-over where solitons are unstable over a
larger range of detunings in the presence of third-order dis-
persion than in its absence. The results in Fig. 4 suggest that
the stabilising effect of third-order dispersion (as reported in
Ref. [37]) only holds for low driving power levels, whilst for
larger power levels, the instability range is, in fact, extended
[congruent with results reported in Fig. 2 and Fig. 3].

To more comprehensively test the bifurcation predictions,
we performed experiments as in Fig. 3 for a range of driv-
ing power levels. The results are shown in Fig. 4 with
blue and red solids circles representing stable and oscillatory
solitons, respectively. Relating to the instability transition,
the experimental results are in good agreement with the
theoretical predictions. There is only one discrepancy: A the-
oretically predicted small island of stability around X = 100
is not observed in our experiment. We suspect this is due to
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FIG. 4. Bifurcation characteristics of CSs with parameters as in
Fig. 2 over a range of normalized detunings and driving powers;
solutions within the green, orange, and purple patches are stable,
oscillatory, and spatio-temporally chaotic, respectively. Black solid
lines delineate the existence boundaries of CSs in the absence of
higher-order terms (pure LLE model) whilst the black dashed line
shows the corresponding Hopf bifurcation point Ay,. Blue and red
dots correspond to experimental measurements of stable and unstable
CSs, respectively.

experimental imperfections that prevent access to the small is-
land predicted. (Of note: we have observed the corresponding
island in experiments performed for larger values of d3 where
the island extends over a larger range of detuning.) Relating
to the range of existence, our experiments show good quali-
tative agreement with numerical predictions, but quantitative
discrepancies arise at the low detuning side. We believe this
may be due to inhomogeneities in the driving pulse that locally
trigger modulation instability that then pervades the entire
intracavity field. Nonetheless, our experiments confirm the
salient theoretical predictions: third-order dispersion limits
the range of soliton existence and switches from stabilizing
to destabilizing for large driving power levels.

B. Normal-dispersion driving

The results reported above pertain to the (common) situa-
tion where the resonator exhibits anomalous dispersion at the
driving wavelength. However, recent studies have shown that,
due to higher-order dispersion, the existence of bright soli-
tons can extend into the regime of normal-dispersion-driving
[30,34]. As a matter of fact, a number of different bright
structures can exist when driving close to the ZDW in the
normal dispersion regime, distinguished by a different number
of prominent peaks in their temporal profile [33]. Here we are
interested in the “single-peak” structures that are the normal-
dispersion counterparts of the standard CSs that exist in the
anomalous dispersion regime [34]; we will henceforth refer to
such structures simply as CSs.

To explore the existence and stability of CSs with normal-
dispersion driving, we adjust the driving wavelength to

150

100

Normal—;
® Exp. Stable
Theo. Stable

50

Normalized driving power X

Anomalous —
------ Spatio-temporal chaos

—— Existence boundary

R A VVE

0 10 20 30
Normalized detuning A

FIG. 5. Bifurcation characteristic of single-peak CSs with
normal-dispersion driving and d; = 1.07 over a range of normal-
ized detunings and driving powers. The green patch indicates the
parameter range within which normal-dispersion CS exist and are
predicted to be stable; note that there are no instabilities for the
considered parameters. For comparison, the solid-grey curves de-
lineate the existence boundaries of anomalous-dispersion CSs with
d; = 1.12, whilst dashed- and dotted-grey curves indicate the cor-
responding instability boundaries (data extracted from Fig. 4). Blue
dots correspond to experimental measurements of stable CSs (no un-
stable CSs were observed for the considered parameters). The insert
shows a pseudocolor plot of spectral measurements at X = 120 and
for various detunings (corresponding to data points enclosed by the
dashed-orange rectangle). Note that, due to experimental error, a data
point near X = 150 and A = 20 is missing. However, by observing
the stability state of its neighbours, it is reasonable to assume the CS
at this position will be stable.

1562.8 nm (i.e., 1.6 nm away from the ZDW) where the
group-velocity dispersion is normal and d; = 1.07. We then
repeated the theoretical and experimental analyses reported in
Fig. 4 and summarize the results in Fig. 5. Also shown for
comparison are the theoretical boundaries in the presence of
higher-order terms as extracted from Fig. 4.

Several conclusion can be drawn. First, the solitons’
range of existence is further reduced from the case of
anomalous-dispersion driving. Second, in contrast to CSs in
the anomalous dispersion regime, the solitons are stable for
all the detunings and driving powers considered. (Of note:
simulations predict that instabilities can arise if one consider
even larger driving levels.) Third, our experiments are again in
good qualitative agreement with the theoretical results, show-
ing no signs of instability and reproducing the theoretically
predicted upper-detuning limit of soliton existence. As for
the anomalous dispersion results (Fig. 4), discrepancies arise
especially at the low-detuning limit. It is interesting to note
that normal-dispersion driving appears to permit full immu-
nity against instabilities over a larger range of driving powers
than anomalous-dispersion driving. However, it is important
to stress that, at each driving power, the latter regime is still
associated with a larger overall range of detunings where the
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FIG. 6. (a) Upper-detuning-limit of soliton range of existence as
a function of deviation from the ZDW, A, — A4, Where A, and A4y
are the driving wavelength and ZDW, respectively. The dashed-red
line indicates the detuning-limit of the zero-dispersion soliton that
exists when S, = 0 (or equivalently d; = 00). (b) Temporal profiles
of simulated CSs at A = 20 for normal-dispersion driving (orange-
solid curve), anomalous-dispersion driving (blue-dashed curve), and
driving exactly at the ZDW (grey circles).

solitons are stable thanks to the larger range of existence of
CSs in the anomalous dispersion regime.

C. Zero-dispersion driving

The results reported in Figs. 4 and 5 show that, de-
spite similar relative third-order dispersion parameters dz ~ 1,
the existence and stability of CSs differ markedly between
anomalous and normal dispersion driving. On the one hand,
this is within expectation since CSs are commonly associated
with anomalous dispersion driving only (and do no exist at
all with normal dispersion driving in the limit of d; — 0).
But on the other hand, one may expect that in the limit
d3 — oo, which occurs as the pump approaches the ZDW
of the resonator, the two driving scenarios must converge
to one; indeed, in this case, the second-order dispersion can
be considered negligible and the driving scenarios physically
merge.

To elucidate whether the soliton dynamics evolve smoothly
as the driving wavelength is tuned across the ZDW (or
whether a separatrix exists that divides the two regions), we
theoretically calculated the soliton solutions of Eq. (1) over a
wide range of driving wavelengths on either side of the ZDW
for a constant X = 100. To compare the soliton properties,
we plot in Fig. 6(a) the normalized cavity detuning where
the solitons cease to exist (the upper limit of existence) as
a function of pump wavelength (and hence relative third-
order dispersion). As can be seen, the upper-detuning-limit
varies smoothly across the ZDW, monotonically decreasing

as the pump wavelength is moved from anomalous to normal
dispersion regime, until the soliton eventually ceases to exist
in an abrupt fashion when the pump is tuned sufficiently deep
into the normal dispersion regime. This result corroborates
the observation made in Ref. [34] that there is no qualita-
tive change in the characteristic of near-zero-dispersion CSs
across the ZDW. In this context, we note that experimentally
confirming the results in Fig. 6 is beyond the scope of the
present paper, which focuses on the effect of the third-order
dispersion on soliton instabilities.

Before closing, we finally note that when the pump wave-
length is close to the ZDW, the dynamics and characteristics
of the CSs can of course be well-predicted by Eq. (1) with
second-order dispersion identically set to zero, i.e., f, = 0.
The dashed-red lines in Fig. 6(a) highlight the upper-detuning-
limit of existence of solitons that exist when 8, = 0, whilst
Fig. 6(b) shows the corresponding soliton temporal profile
compared with selected profiles for normal and anomalous
dispersion driving with A = 20 and d5 = 1. A thorough anal-
ysis of the characteristics and dynamics of such single-peak,
zero-dispersion CS is beyond the scope of our present pa-
per, yet we envisage that such future analysis can provide
valuable insights and facilitate the design of ultrabroadband
microresonator frequency combs and sources of ultrashort
cavity solitons.

IV. CONCLUSIONS

In conclusion, we have experimentally studied the im-
pact of third-order dispersion on the existence and stability
boundaries of temporal Kerr cavity solitons. This has been
achieved by using an experimental configuration that allows
operation (arbitrarily) close to the ZDW of the resonator,
thus enabling systematic control over the relative impact of
third-order dispersion. Our results include the first observa-
tions of polychromatic dispersive waves emitted by breathing
near-zero-dispersion CSs, as predicted by earlier theories
[36]. Moreover, we have shown that, for low driving pow-
ers, third-order dispersion can stabilize CSs (as predicted
by earlier theories [37]), but that for high-power levels, the
effect of third-order dispersion switches from stabilizing to
destabilizing, expanding the range of parameters over which
solitons are unstable. In addition to experiments performed
under conditions of anomalous-dispersion driving, we have
also considered solitons that manifest themselves with the
driving field in the normal dispersion regime, and exam-
ined how the two pumping conditions merge as the driving
wavelength approaches the ZDW. Our experiments are in
good agreement with numerical simulations of the gener-
alized Lugiato-Lefever equations, with some discrepancies
likely stemming from experimental imperfections. Our paper
provides convincing experimental confirmation of earlier the-
oretical predictions [36,37] and provides insights on CSs with
(near-)zero-dispersion driving.
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