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Controlled preparation of phases in two-dimensional time crystals
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The study of phases is useful for understanding novel states of matter. One such state of matter is time
crystals which constitute periodically driven interacting many-body systems that spontaneously break time
translation symmetry. Time crystals with arbitrary periods (and dimensions) can be realized using the model of
Bose-Einstein condensates bouncing on periodically driven mirror(s). In this work, we identify the different
phases that characterize the two-dimensional time crystal. By determining the optimal initial conditions and
value of system parameters, we provide a practical route to realize a specific phase of the time crystal. These
different phases can be mapped to the many-body states existing on a two-dimensional Hubbard lattice model,
thereby opening up interesting opportunities for quantum simulation of many-body physics in time lattices.
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I. INTRODUCTION

The ability to trap ultracold atomic gases and control their
interactions with high precision has lead the way towards the
realization of new phases of matter [1–4]. These include the
superfluid and Mott insulator phases of the Hubbard model
[5], topological states of matter [6–8], atoms with artificial
gauge potentials [3,9–12], and supersolidity [13,14] as well
as many-body crystals [15–17]. Crystalline structures are ex-
amples of strongly correlated many-body systems generally
resulting in spatially ordered configurations of the constituent
particles. In recent years, there has been considerable interest
in studying a more unconventional type of crystals, namely
discrete time crystals [18–22].

Discrete time crystals constitute periodically driven
quantum many-body systems that spontaneously break dis-
crete time translation symmetry and have been observed
experimentally [23–27]. So far these realizations of discrete
time crystals have been restricted to systems that can be
mapped to one-dimensional (1D) models and the ratio of the
period of their time evolution to the driving period was small
(�3). There are theoretical proposals that study discrete time
crystals with larger periods [28–33] as well as time lattices
that map to higher dimensional lattice problems [21,22,34–
39]. The study of higher dimensional lattices in the context of
discrete time crystals is appealing as it provides an additional
degree of freedom to investigate the gradual time translation
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symmetry breaking processes and its connection with differ-
ent discrete phases in the system. So far, such studies were
done only in 1D models [29,40–42].

Similar to the 1D case, one of the main challenges in re-
alizing higher dimensional time lattices is to find appropriate
initial conditions for the many-body quantum dynamics that
follow periodic classical trajectories [31]. The system studied
in the present paper consists of a Bose-Einstein condensate
(BEC) bouncing on a pair of orthogonal atom mirrors that
are periodically driven as shown schematically in Fig. 1(a).
In the classical description, this system reveals nonlinear res-
onances and the motion for a single particle can be irregular.
However, if the driving amplitude of the periodically driven
mirror is small enough, there exist regular resonance islands
in the phase space that are located around periodic orbits.
For sufficiently large resonance islands, a quantum description
is adopted where localized wave packets [see Fig. 1(b)] that
evolve along these periodic orbits form a basis of Wannier-like
states of a tight-binding model that describes a 2D time lattice
[21,22,35,37,38]. Physically, this means that when we locate a
detector close to the classical trajectory at fixed r = (x, y), the
probability of its clicking will be periodic in time and reflects a
cut of the 2D lattice as shown in Fig. 1(c). Choosing r close to
different points on the classical trajectory, one can observe dif-
ferent cuts, which all together show a 2D crystalline structure
in the time domain [35,37]. In the presence of the attractive
interactions between atoms, the system can break the time
translation symmetry. The different crystalline phases reflect
the degree to which the time translation symmetry is broken
which is schematically depicted in Fig. 1(d).

In this work, we use statistical machine learning with
Bayesian inference to find optimal conditions that realize ro-
bust discrete time crystals for higher dimensional lattices. The
most general approach to find these suitable initial conditions
would involve optimizing over N particles for the many-body
system as well as taking into account any possible noise that
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FIG. 1. (a) Ultracold atoms with attractive interactions are ini-
tially trapped in the lowest mode of a 2D harmonic trap. On its
release, it falls under gravity (whose direction is indicated with �Fg)
resulting in the bouncing of the atoms between the two harmonically
oscillating orthogonal mirrors. Both mirrors oscillate with frequency
ω but with individual amplitudes λx,y, respectively. In order to obtain
stable dynamics, the initial conditions (position and momentum)
need to be optimized which depend on heights (hx, hy ). (b) Density
of noninteracting atoms bouncing between two oscillating mirrors at
t = 2π/3ω and corresponding to a resonant Floquet state. (c) The
probability density for detecting a particle at fixed position r =
(16, 37) in (b) at different times. (d) The system maps to an effective
sx × sy Bose-Hubbard model. By tuning the strength of the attractive
interactions, three different phases are identified.

may occur in preparing the initial state. Such an optimiza-
tion task is intractable even at the theoretical level. However,
we can simplify the optimization task by approximating the
many-body wave function as a single quantum wave packet
thereby reducing the control parameters to a manageable num-
ber of six consisting of initial position, momentum, and size
of the wave packet determined by the 2D harmonic trap in
which the condensate is initially stored, see Fig. 1(a). This
approximation is justified in the mean-field limit for the gas
of bosonic atoms if the time required to prepare the initial
state is much shorter than the overall dynamics of the discrete
time crystal. We report the existence of three distinct phases
for the 2D time crystal where the gradual breaking of time
translation symmetry can be achieved by either modulating
the interaction strength between the atoms or by tuning the
individual mirror amplitudes and frequency of the mirror os-
cillations. Moreover, one can selectively control the direction
in which the time symmetry is broken which is reflected
as selective filling of the lattice along a given direction in
the Bose-Hubbard picture as shown in the partial symmetry
breaking regime in Fig. 1(d).

II. THEORY

The system considered in this paper is a cloud of ultra-
cold atoms bouncing on mirrors, but despite its many-body
character, certain salient features of the model are best un-
derstood in the single particle picture [37]. Thus, we first
introduce the time-dependent model for the single particle

which is naturally extended to incorporate the many-body
Floquet Hamiltonian. The mapping of this system to the
Bose-Hubbard model has been well studied [22,28,37,38] for
which we provide a brief overview. Finally, we discuss the
numerical method used to solve the many-body dynamics and
the control techniques to obtain the optimal solutions.

A. Single-particle model

The static Hamiltonian for the single particle in 1D is clas-
sically integrable and the phase space is completely foliated
with periodic orbits on invariant tori. One finds that certain
periodic orbits are localized inside the resonant islands when
the mirror oscillations are on and provided the amplitude of
the oscillation is sufficiently small. In the quantum descrip-
tion, it implies that if a resonant island is large enough it can
support one or more quantum states.

Consider a single particle bouncing resonantly on a pair of
oscillating orthogonal mirrors under the influence of gravity.
We assume that the mirrors oscillate with the same frequency
ω. In the frame moving with the mirrors, the Hamiltonian of
the system is given by

H (t ) =
∑
α=x,y

[
p2

α

2
+ α + λαα cos(ωt + δα )

]
, α � 0, (1)

where δα=x,y and λα=x,y denote the phases and amplitudes
of the mirror oscillations. In this work, all calculations are
done in gravitational units, but the gravitational acceleration is
rescaled by a factor 1/

√
2. Since the mirrors are orthogonal,

the single-particle dynamics separates into two independent
motions along the x and y directions.

Using the Floquet theorem, one can obtain time-periodic
eigenstates of the Floquet Hamiltonian H (t ) − i∂t , which
evolve with the driving period T ′ = 2π/ω [37,43]. Defining
�x and �y as frequencies for the unperturbed classical mo-
tion of the particle along the respective direction, we assume
sx�x = sy�y = ω, where sx,y are integers. This is the con-
dition for resonant driving of the 2D system. Shape of the
resonant orbits in the 2D space depends on the ratio �x/�y

as well as on the relative phase of the mirrors δ = δx − δy.
If sx,y � 1, the quasienergies corresponding to the resonant
Floquet states form a band structure. Within the tight-binding
approximation, we restrict the analysis to the first energy band
of the single-particle Floquet Hamiltonian and construct 2D
Wannier functions Wi(x, y, t ) that are products of localized
wave packets wix (x, t ) and wiy (y, t ) moving along the x and
y directions with the periods sxT ′ and syT ′, respectively [37].
Here i = (ix, iy) is a double index with components in the
range ix = 1 . . . sx and iy = 1 . . . sy. The Wannier functions
Wi(x, y, t ) move in the 2D space along the classical resonant
orbit with the period T = sxsyT ′.

B. Many-particle model

The many-body Floquet Hamiltonian of ultracold bosonic
atoms which are bouncing resonantly on the pair of oscillating
mirrors can be written in the form [18,22,44]

Ĥ = 1

T

∫ T

0
dt

∫
dxdy ψ̂†

[
H (t ) + g(t )

2
ψ̂†ψ̂ − i∂t

]
ψ̂, (2)
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where H (t ) is the single-particle Hamiltonian given in Eq. (1),
ψ̂ (x, y, t ) is the bosonic field operator and g(t ) = g0 f (t ),
where g0 is the strength of the contact interactions between the
atoms and f (t ) is an arbitrary periodic function with period
T which describes possible modulation of the strength of
interactions between atoms in time. Expanding the bosonic
field operator in the Wannier basis, we get ψ̂ (x, y, t ) ≈∑

i âi Wi(x, y, t ) where âi are the bosonic annihilation opera-
tors. The description of a resonantly driven many-body system
within the first energy band of the single particle system can
be mapped to an effective tight-binding Hamiltonian

Ĥ ≈ −1

2

∑
〈i,j〉

Jij â†
i âj + 1

2

∑
i,j

Uij â†
i â†

j âjâi. (3)

The above Hamiltonian is the Bose-Hubbard model in a time-
periodic basis with the effective interaction coefficients

Uij = (2 − δij)
N

T

∫ T

0
g(t )dt

∫
dxdy |Wi|2|Wj|2 (4)

and the tunneling amplitudes as

Jij = − 2

T

∫ T

0
dt

∫ ∞

0
dxdy W ∗

i (t )[H (t ) − i∂t ]Wj(t ). (5)

Here we have assumed that the interaction energy per par-
ticle is smaller than the energy gap between the first and
second quasienergy bands of the single-particle system [37]
which limits the overall allowed strength of the interactions.
The tunneling amplitudes Jij depend on the amplitudes and
frequencies of the mirrors’ oscillations. In general, for at-
tractive interactions, the ground state of the Hamiltonian (3)
within the mean-field approximation can be superposition of
the Wannier states, i.e.,

ψ (x, y, t ) ≈
∑

i

aiWi(x, y, t ) (6)

with complex amplitudes ai. Having derived the
Bose-Hubbard model for the setup in the reduced Hilbert
space (first energy band of the single particle system), it is
often also useful to solve the mean-field BEC dynamics in
the full Hilbert space in order to capture all the details of the
dynamics.

C. BEC dynamics

For a Bose-Einstein condensate, all N atoms occupy the
same single-particle state and the many-body wave func-
tion factorizes as φ(x1, y1, t )φ(x2, y2, t ) . . . φ(xN , yN , t ) [45].
Within the mean-field approximation, the single-particle state
φ(x, y, t ) satisfies the Gross-Pitaevskii (GP) equation [45]

i∂tφ(x, y, t ) = [H (t ) + g(t )N |φ(x, y, t )|2]φ(x, y, t ). (7)

Physically, the resonant dynamics corresponds to the coherent
propagation of localized wave packet along classical resonant
orbit as shown in Fig. 1(b).

D. Optimal control of the many-body dynamics

The experimental realization of time crystals requires pre-
cise control over the initial conditions of the BEC dynamics.
More specifically, the initial position and momentum of the

quantum many-body wave packet has to lie on the resonant
classical trajectory. In order to determine the optimal initial
conditions in the laboratory, we simulate experimental op-
timization by means of the Bayesian optimization method
since it tends to rapidly converge to optimal solutions for
certain many-body problems [46,47]. For sufficiently strong
attractive interactions, the lowest energy state within the res-
onant Hilbert subspace can be described by a 2D wave packet
thereby reducing the control parameters for an N particle
quantum wave packet to a tractable number of six, namely
initial position (x0, y0), momentum (px0 , py0 ) as well as the
width of the wave packet (σx0 , σy0 ) along each direction. The
wave-packet widths are related to the harmonic trap frequen-
cies along the relevant direction [see the schematic figure in
Fig. 1(a)]. Furthermore, we can treat the initial cloud of atoms
to be noninteracting similar to the single-particle problem.
This approximation is valid provided the time to prepare the
initial wave packet is much smaller than the typical tunneling
time between the wave packets when the weak interactions in-
fluence the dynamics. In this limit, the Hamiltonian becomes
separable along each dimension and we can perform opti-
mization in either dimension independently. Without loss of
generality, we focus on the x direction and assume a Gaussian
wave packet as our initial state,

φ(x, t = 0) =
( ω̃x

π

)1/4

exp

[
− ω̃x(x − x̃)2

2
− i p̃x(x − x̃)

]
, (8)

where x̃, p̃x, and ω̃x are parameters to be determined (ω̃x

corresponds to the frequency of the harmonic trap where a
BEC is initially prepared—the width of the particle density in
the trap equals

√
ω̃x). In order to simulate the experimental

conditions, especially the noise in the initial conditions, we
sample these parameters randomly from a uniform distribu-
tion: x̃ ∈ (x0 − δx0, x0 + δx0), p̃x ∈ (px0 − δpx0 , px0 + δpx0 ),
and ω̃x ∈ (ωx − δωx, ωx + δωx ). The figure of merit

FM = D(2T ) + D(3T ) (9)

is the sum of the overlaps

D(t ) = CN

∫
dx|φ(x, 0)|2|φ(x, t )|2, (10)

of the atomic densities, where CN = 1/
∫

dx|φ(x, 0)|4 is the
normalization constant. The merit of using FM rather than
the squared overlap | 〈φ(0)|φ(t )〉 |2 as the figure of merit is
that FM , in contrast to the overlap, can easily be recovered
experimentally from an average particle-number distribution.
The overlap of densities is not sensitive to velocities as two
overlapping wave packets pass each other. We have found
that in order to mitigate this problem, one can use the sum
of the density overlaps at two different moments of time, cf.
Eq. (9). The optimization was done using the GPyOpt package
[48] and the choice of the acquisition function was expected
improvement. For more details about Bayesian optimization,
see Refs. [49,50].

III. RESULTS

The main result of our work is the identification of the
different phases that characterize the discrete time crystal in
two dimensions. Typically the ground state of the Hamiltonian
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FIG. 2. Three different regimes of the interaction strength (for
the case of sx = 2 and sy = 3) characterized by the parameter a2

max =
max{|ai|2}, cf. Eq. (6). Different regions correspond to the ground
state solutions of the Hamiltonian (3) with time translation symmetry
(i) being preserved in both lattice directions, (ii) broken only in one
of the lattice direction, and (iii) broken in both the lattice directions.
Two different strategies have been used to break the symmetry.
The first (depicted with red circles) corresponds to isotropic tun-
neling Jx = Jy (where Jx = J(ix ,iy ;ix+1,iy ) and Jy = J(ix ,iy ;ix ,iy+1)) with
significant nearest-neighbor interactions in one direction, Ux � Uy

(where Ux = U(ix ,iy ;ix+1,iy ) and Uy = U(ix ,iy ;ix ,iy+1)). The other (depicted
with blue squares) corresponds to anisotropic tunneling Jx �= Jy. The
former method results in 1/6 < a2

max < 1/3 while the latter gives
1/6 < a2

max < 1/2 in regime (ii). As a consequence of our choice of
the system parameters, different symmetry regimes in both strate-
gies coincide with each other—in general they can be located at
different ranges of g0N . We use mirror amplitudes λx = 0.094 and
λy = 0.03, frequency ω = 1.1, and relative phase of δ = 2π/3 to get
isotropic tunneling, Jx = Jy = 4.8 × 10−6. For anisotropic tunneling
rates, we used λx = 0.12, λy = 0.09, ω = 1.4, and δ = π/8 giving
Jx = 7.2 × 10−4, Jy = 3.7 × 10−5.

(3) follows a discrete time translation symmetry which is
spontaneously broken for sufficiently strong attractive inter-
actions. However, when compared to the 1D time crystals, we
find that the additional spatial degree provides more flexibility
in breaking the time translation symmetry. For example, in
this work, the time translation symmetry is also broken by
selectively tuning the mirror oscillation amplitudes in either
direction independently. Controlling the oscillation of the or-
thogonal pair of mirrors affects the tunneling amplitudes Jij in
the Bose-Hubbard picture (3). Although the different phases
obtained for our periodically driven system can be understood
by how strong the time translation symmetry is broken, it has
a simple and elegant correspondence to the 2D Bose-Hubbard
lattice as shown schematically in Fig. 1(d).

The three relevant phases found in the model are shown in
Fig. 2. When the time translation symmetry is preserved, the
ground state is a uniform superposition of Wannier states in
Eq. (6) and the parameter a2

max = max{|ai|2} takes the value
1/6 (since sx = 2 and sy = 3) which is represented by region
(i) in Fig. 2. The scenario where the time translation symmetry
is completely broken such that all N atoms occupy a single
site in the lattice model and ground state of the system can be
described by a single Wannier state is represented as region

FIG. 3. (a),(b) Modulation of the contact interactions between
atoms as function of time. (c),(d) Values of the interaction coeffi-
cients along the two lattice directions for the Bose-Hubbard model
corresponding to (a) and (b), respectively. Small variation of the con-
tact interactions is sufficient to generate non-negligible anisotropic
interactions for nearest neighbors.

(iii) in Fig. 2. The more interesting scenario is when the time
translation symmetry is partially broken, in the sense that it
is broken in one of the lattice directions but not the other
which is given by (3) and corresponds to region (ii) in Fig. 2.
This occurs for higher dimensional (d > 1) lattices, where the
ground state of the Hamiltonian (3) is a superposition of either
sx or sy wave packets depending on the direction in which
the symmetry is broken. This phase is interesting because
the corresponding ground state of the lattice model can have
many different possibilities (in terms of lattice filling although
a specific case has been schematically shown in Fig. 1(d)).

We recognize two different pathways for obtaining
phase (ii): (a) Directionally isotropic tunneling rates with
anisotropic nearest-neighbor lattice interactions shown with
red circles in Fig. 2 and (b) directionally anisotropic tunneling
rates shown with blue rectangles in Fig. 2. Thus depending
on which strategy is chosen, the domain of the weakly in-
teracting phase (ii) in Fig. 2 is determined by the details of
anisotropy of either the tunneling rates or lattice interaction
strengths. As mentioned before, the tunneling amplitudes can
be controlled by choosing specific values for the mirror os-
cillation amplitudes which can take a large range of values
provided we satisfy the small amplitude approximation of
the mirror oscillations [51]. Figure 3 shows that the interac-
tion coefficients |Uij| in Eq. (4) are controlled by modulating
the scattering length for the contact interactions between the
atoms at specific moments in time. These times correspond to
the exact moments when Wannier states Wi and Wj pass each
other. Thus, by mildly modulating g(t )N over time, we get sig-
nificant anisotropy in the nearest-neighbor interactions when
compared to keeping the scattering length constant. Although
the interaction modulations shown in Fig. 3 are specific to
the parameters chosen for Fig. 2, the protocol is completely
generic for any set of parameters.

Our next analysis is regarding the search of optimal initial
conditions that can realize any of the discrete time crystal
phases. We focus on the strongly interacting case for which
we expect a discrete time crystal [18,28,32,37] and use it to
benchmark the required initial conditions for any arbitrary
phase. Thus, FM (t ) [see Eq. (9)] is maximized with respect
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FIG. 4. Overlap between the instantaneous state and the initial
state, O(t ) = | ∫ dxdyφ∗(x, y, t )φ(x, y, 0)|2, for interaction strengths
corresponding to the three different regimes: g0N = 0 [regime (i) in
Fig. 2], g0N = −0.04 [regime (ii)], and g0N = −0.2 [regime (iii)].
The initial state has been chosen as φ(x, 0)φ(y, 0) where φ defined
in Eq. (8) is obtained by the optimization procedure.

to the initial state parameters such that the initial state is
periodically retrieved at long times in integer multiples of
T = sxsyT ′. FM (t ) is evaluated from φ(x, t ), which is obtained
by numerically solving the Gross-Pitaevskii Eq. (7) using the
split-step fast Fourier transform method with step sizes dx =
0.002x0 and dt = 0.001T . The Bayesian optimization pro-
vided the optimal parameters for initial wave packet defined in
Eq. (8) [52], which were obtained with 20 initial points, 100
iterations, and averaged over 10 different noise realizations.
However, since optimization of the initial state is performed in
the short-time scale limit, it is independent of the interaction
strength. In order to test how the optimized state evolves in
the presence of the interactions we have integrated the GP
equation. Using the same parameters as in the anisotropic
tunneling case in Fig. 2, the results of these calculations are
depicted in Fig. 4 which shows the overlap of the optimized
initial state with its time evolution φ(x, y, t ) at long times for
different interactions strengths. As expected, one can see that
stable BEC dynamics in 2D is possible if the interactions are
sufficiently strong and the system performs periodic evolution
for a long time. The presented results are based on the mean-
field approach. However, since the relation of the interaction
energy per particle to the energy gap between the bands of the
resonant quasienergies is similar as in Refs. [31,44,53] where
quantum many-body effects are analyzed, we also expect that
the beyond mean-field approach will not show any signature
of heating of the system by the periodic drive.

Results of the integration of the GP equation in the 2D
space show also that the description of the system indeed
reduces to the resonant Hilbert subspace spanned the sxsy

Wannier-like wave packets, cf. Eq. (6). In Fig. 5 we present
time evolution of the density of atoms starting with the opti-
mized initial wave packet for different interaction strengths.
Within the single period T , we find that the wave packet
is moving along the classical resonant orbit (white curve
in Fig. 5) and only interference fringes are observed when
it hits a mirror [cf. Fig. 5(c)]. It should be noted that the

FIG. 5. Density plot of BEC dynamics obtained with optimized
parameters for the initial state. The white curves represent classical
trajectories. (a)–(c) correspond to short-time dynamics, which is the
same for any g0, for three different times (a) t = 0, (b) t = T/3, and
(c) t = T/2. (d)–(f) correspond to long-time dynamics for different
interactions, (d) g0N = 0, (e) g0N = −0.04, and (f) g0N = −0.2 at
fixed time t = 700T .

short-time dynamics (t � T ) is almost independent of g0, see
Figs. 5(a)–5(c). The reason for this is that the interactions
are very weak and can only modify the tunneling process of
atoms between different wave packets which takes place at
much longer time, i.e., t ≈ 1/J � T . At long time scales,
the interactions play a crucial role in the dynamics which is
clearly visible in Figs. 5(d) and 5(e). For weak interactions
(almost noninteracting system), the localized wave packet
starts spreading into the six Wannier states, while for suf-
ficiently strong interactions (|g0N | > 0.1) the wave packet
remains localized indicating that one particular Wannier state
is dominant. This is consistent with Fig. 2. The partial symme-
try breaking regime corresponds to suppression of tunneling
along one of the directions in the lattice described by the
Bose-Hubbard model (3), see Fig. 1(d).

IV. CONCLUDING REMARKS

In this work, we characterize the different phases realizable
in a time crystal that maps to a 2D lattice model. We find
that one of the benefits of time crystals with properties of
higher dimensional systems is the higher degree of freedom
in controlling the system and preparing it in a certain phase.
This is especially reflected in the scenario where the gradual
breaking of time translation symmetry in either lattice direc-
tion is achieved by selectively varying the system parameters.
Optimal control was used not only in realizing the time crys-
tals but also to observe signatures of the different phases.

The different phases correspond to the state which evolves
with the period T ′, sxT ′ or syT ′ and (sx × sy)T ′, respectively.
In order to distinguish the partial symmetry breaking regime,
one should prepare the initial state as a superposition of sx

or sy localized wave packets moving with different velocities
and with a specific relative phase between them, which is
experimentally challenging. Alternatively it is much easier
to prepare a single localized wave packet and monitor its
evolution along the resonant orbit, but this implies that one
can observe only signatures of different phases from the par-
ticle density using time-of-flight measurements. Although our
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KUROŚ, MUKHERJEE, MINTERT, AND SACHA PHYSICAL REVIEW RESEARCH 3, 043203 (2021)

analysis was done for sx = 2 and sy = 3 number of resonances
along each direction, it is expected to be valid for higher
resonances which is more suitable for experiments [28,32].
Already there exist experimental realizations similar to the
setup described in this work [54–62]. The modulation of the
interaction is routinely done by changing the s-wave scat-
tering length using Feshbach resonance mechanism [63–65].
Typical values of the tunneling rates for the lattice would be
on the order of tens of Hz while the interaction coefficients
would range from tens of Hz to tens of kHz [28]. Although
our numerical results suggest stable BEC dynamics, further
investigation of the effects of quantum heating would be
useful.

The discrete time crystals with properties of higher dimen-
sional lattice systems are in general appealing for simulating
novel physics in condensed matter physics [36,39,66–68],
most of which are yet to be realized in real experiments. The
use of Bayesian optimizers for real experiments can be useful
as it performs better with noisy control landscape [69]. The
ability for the Bayesian optimizer to find optimal initial con-
ditions for BEC dynamics can have more general applications
apart from constructing time crystals. For example, it can be

used to efficiently transfer BEC from an initial harmonic trap
into a desired state with high fidelity [70]. The desired state
can be a particular band in an optical lattice [71], a specific
initial state needed for coherent BEC dynamics under the
influence of gravity [59,72], or an initial set of conditions
required for observing stable soliton dynamics [73,74]. Exam-
ples of controlled continuous loading of a BEC have relevant
implications for an atomic laser [75] and in reducing two- and
three-body losses, thereby enhancing the lifetime of typical
BEC experiments [76].

ACKNOWLEDGMENTS

This work was supported by the National
Science Centre, Poland via Projects QuantERA
Grants No. 2017/25/Z/ST2/03027 (A.K.) and No.
2018/31/B/ST2/00349 (K.S.). The authors acknowledge the
funding from the QuantERA ERANET Cofund in Quantum
Technologies implemented within the European Union’s
Horizon 2020 Programme under the project Theory-Blind
Quantum Control TheBlinQC and from EPSRC under Grant
No. EP/R044082/1 (R.M. and F.M.).

[1] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A.
Sen(De), and U. Sen, Ultracold atomic gases in optical lattices:
Mimicking condensed matter physics and beyond, Adv. Phys.
56, 243 (2007).
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