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A primary goal at the interface of theoretical and experimental quantum magnetism is the investigation of
exotic spin states, mostly notably quantum spin liquids (QSLs) that realize phenomena including quasiparticle
fractionalization, long-ranged entanglement, and topological order. Magnetic rare-earth ions go beyond the
straightforward paradigm of geometrical frustration in Heisenberg antiferromagnets by introducing competing
energy scales, and in particular their strong spin-orbit coupling creates multiple split crystal electric-field (CEF)
levels, leading to anisotropic effective spin models with intrinsic frustration. While rare-earth delafossites have
a triangular-lattice geometry and thus have gained recent attention as candidates for hosting spin-1/2 QSL
physics, the reliable extraction of effective spin models from the initial many-parameter CEF spectrum is a hard
problem. Using the example of CsYbSe2, we demonstrate the unambiguous extraction of the Stevens operators
dictating the full CEF spectrum of Yb3+ by translating these into parameters with a direct physical interpretation.
Specifically, we combine low-field susceptibility measurements with resonant torsion magnetometry (RTM)
experiments in fields up to 60 T to determine a sufficiently large number of physical parameters—effective
Zeeman splittings, anisotropic van Vleck coefficients, and magnetotropic coefficients—that the set of Stevens
operator coefficients is unique. Our crucial identification of the strong corrections to the Zeeman splitting of
Kramers doublets as van Vleck coefficients has direct consequences for the interpretation of all anisotropic
magnetic susceptibility measurements. Our results allow us to determine the nature and validity of an effective
spin-1/2 model for CsYbSe2, to provide input for theoretical studies of such models on the triangular lattice, and
to provide additional materials insight into routes for achieving magnetic frustration and candidate QSL systems
in rare-earth compounds.
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I. INTRODUCTION

The quantum spin liquid (QSL) is a nonmagnetic many-
body ground state in which the spin correlations have
long-ranged quantum entanglement [1]. Despite many theo-
retical studies of these enigmatic phases, which have served
to drive detailed investigations of a wide range of magnetic
compounds, neither a universally agreed QSL phase in a real
material nor an unambiguous set of experimental QSL criteria
has yet emerged. The strong quantum fluctuations respon-
sible for producing exotic spin states are a consequence of
generalized magnetic frustration, which leads to a highly de-
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generate manifold of competing states. Early examples of
material realizations of candidate models for hosting QSL
states were based on geometrical frustration in structures with
triangular motifs, including kagome [2], pyrochlore [3,4], and
triangular lattices [5–8], mostly of real S = 1/2 spins.

Magnetic insulators with strong spin-orbit coupling are
now widely recognized as a platform for extending very sig-
nificantly the nature of frustration and the variety of quantum
many-body phases (including QSLs) and phenomena that can
be realized. When compared to spin-1/2 magnetic insulators
based on 3d ions, these systems tend to exhibit complex
microscopic physics even at the single-ion level. Magnetic
materials containing 5d and 4d transition-metal ions pos-
sess interactions that are anisotropic in both spin space and
real space, leading to complex phenomenology in pyrochlore
systems [3,9,10] and in proximate Kitaev materials [11–15].
Compounds based on 4 f rare-earth ions that combine the
geometric frustration of pyrochlore and triangular lattices with
strong spin-orbit coupling have also provided fertile ground
for quantum magnetism research [16–19]. However, in these
materials a detailed understanding of the microscopic physics
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is a prerequisite for developing effective spin models that
serve as a basis for theories of many-body phenomena.

In insulating 4 f materials, the key to a microscopic
description of the magnetic interactions is a reliable de-
termination of the single-ion crystal electric-field (CEF)
Hamiltonian (HCEF) [3,4]. In many rare-earth compounds,
CEF effects split the degeneracy of the ground multiplet of the
total angular momentum, J . For half-odd-integer J , the result
is a set of Kramers doublets. At sufficiently low temperatures,
a restriction of the dynamics to the lowest such doublet may
be invoked to justify using an effective pseudospin-1/2 model
[16,20–22]. From an experimental standpoint, this allows a
significant diversification of both materials and magnetic phe-
nomena, while on the theoretical side a minimal model may be
relatively simple, or even a realization of one of the paradigm
models in frustrated magnetism.

The leading system-specific parameters in HCEF are com-
monly determined by inelastic neutron scattering (INS),
which provides direct information about the spectrum of CEF
multiplets. However, there are in general more symmetry-
allowed parameters in HCEF than there are gaps between
CEF multiplets, resulting in an underdetermined fit of the
CEF parameters and hence to uncertainties in the appropri-
ate pseudospin-1/2 model that can be qualitative rather than
merely quantitative corrections. Methods allowing the unam-
biguous determination of HCEF with higher reliability are
thus very desirable. In this paper, we present a high-fidelity
determination of the CEF parameters of a selected 4 f sys-
tem, obtained by using a combination of low-field magnetic
susceptibility and high-field (up to 60 T) resonant torsion
magnetometry (RTM) measurements.

Yb-based triangular-lattice compounds offer an excellent
combination of geometric frustration, quasi-two-dimensional
nature, half-odd-integer J , and a strongly split CEF spec-
trum that suggests the validity of pseudospin-1/2 models
of quantum magnetism. In particular, the family of AYbX2

delafossites (with A = Na, Cs and X = O, S, Se) has at-
tracted intensive interest [21–29], and a very recent summary
was compiled in Ref. [30]. Unlike the material YbMgGaO4
[31–36], they are free from potential site disorder [37,38] and
no members of the family have been found to exhibit magnetic
ordering at temperatures down to tens of mK [30], while
several have been reported to exhibit continua of low-energy
magnetic excitations [21,22,39]. Their magnetic response is
highly anisotropic between the in- and out-of-plane directions,
providing a valuable opportunity to use the magnetic field to
vary the free-energy landscape. Thus the trianguar-lattice de-
lafossites present an ideal test case for unambiguous fitting of
the field-induced CEF spectra and subsequent establishment
of the effective spin-1/2 states in rare-earth compounds.

As an example material we focus on CsYbSe2 [Figs. 1(a)
and 1(b)]. The complete CEF spectrum is specified by the
coefficients of six Stevens operators, and thus the challenge
is to measure enough independent physical quantities be-
yond the low-energy limit. From the susceptibility, we extract
not only the linear Zeeman coefficients for both of the pri-
mary, high-symmetry field directions but also the van Vleck
(VV) coefficients for the ground doublet, which are the
second-order corrections (i.e., quadratic in the applied field).
While these VV coefficients are often used to describe the

FIG. 1. Crystal structure and CEF spectrum. (a) CsYbSe2 adopts
the P63/mmc space group. (b) Yb3+ (red) triangular layers formed
by edge-sharing YbSe6 octahedra are separated by layers of Cs+

ions. (c) Schematic origin of the CEF energy spectrum of Yb3+. The
CEF interactions allowed by the D3d site symmetry split the Yb3+

ground-state manifold into four Kramers doublets. The application of
a magnetic field lifts the doublet degeneracy in a spatially anisotropic
manner whose leading nonlinear contributions are captured by the
van Vleck coefficients defined in Eq. (7).

magnetic response of rare-earth compounds in terms of an
additive contribution to the susceptibility [25,40], in fact they
are embedded in a nontrivial way in the full expression for this
quantity. We will show how the multiple roles of the ground-
state VV coefficients and their significance as stand-alone
physical quantities, with direct implications for the high-field
magnetic anisotropy, have yet to be appreciated in connec-
tion with CEF fitting. They facilitate the bridge to the field
range covered by our RTM measurements, from which we
extract the full field and temperature dependence of the mag-
netotropic coefficients for the same two high-symmetry field
directions. These round out a complete set of eight observ-
ables, allowing us to determine a unique set of microscopic
CEF parameters and thus the full CEF spectrum. As Fig. 1(c)
makes clear, our results reveal an intricate energy landscape
and level-repulsion behavior in the CEF spectrum of CsYbSe2

up to high magnetic field values and for both field directions.
The physical content of our analysis is to interpret the

essential role of the VV coefficients in determining magnetic
properties, even at low fields and temperatures, where they are
often neglected in pseudospin-1/2 models. Quantifying the
VV corrections allows us to demarcate the field-temperature
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range over which a pseudospin-1/2 approximation is ap-
propriate in CsYbSe2, and to describe the high-field limit
accurately. The resulting full characterization of the CEF
spectra is essential for investigating their experimental con-
sequences, for example, when the application of intense
magnetic fields causes multiple real or avoided level crossings
in narrowly spaced CEF spectra. It is also a prerequisite to
study further mechanisms leading to different forms of mag-
netic frustration, in which additional degrees of freedom, such
as phonons, hybridize with the electronic spectrum to cause
profound effects to appear in low-temperature thermodynam-
ics and transport properties [41,42]. Finally, while we have
focused on one example material, our analysis can be applied
widely to localized 4 f -electron systems.

The structure of this paper is as follows. In Sec. II, we
introduce CsYbSe2, our experimental methods, the complete
Stevens operator formalism for CEF levels and some approx-
imate treatments. In Sec. III, we show all the results of our
susceptibility measurements and their analysis for the two
primary field directions. Section IV presents our RTM mea-
surements and extraction of the magnetotropic coefficients,
allowing us to determine the full set of Stevens operators. In
Sec. V, we discuss the physical interpretation of the results
and their consequences for experimental analysis, effective
pseudospin-1/2 models in frustrated quantum magnetism, and
materials selection for candidate QSL systems. Section VI
contains a brief summary of our contribution and four Ap-
pendices provide additional information concerning details of
the analysis.

II. MATERIALS AND METHODS

While most of the AYbX2 family crystallizes in the
R3̄bm space group [30], the layer stacking sequence of
CsYbSe2 gives a P63/mmc structure [43,44], in which the
triangular-lattice planes are constructed from edge-sharing
YbSe6 octahedra, as illustrated in Figs. 1(a-b). The ratio of
inter- and intra-layer distances separating the Yb3+ ions re-
sults in a quasi-2D magnetic system [43]. Within each plane,
the Se atoms mediate identical AFM superexchange interac-
tions between all nearest-neighbor Yb3+ ion pairs, resulting
in highly frustrated triangular magnetism. In fact the system
does not order at zero field for temperatures down to 0.4 K,
although an applied in-plane field induces an up-up-down
ordering, as demonstrated by the observation of a 1/3 plateau
in the magnetization, M(H ), at this temperature [43].

Magnetization and susceptibility measurements were per-
formed on single-crystalline samples using a Quantum Design
MPMS. All susceptibilities we report are obtained from
χab,c = dMab,c

dH , where the indices denote measurements per-
formed with the field oriented in the triangular-lattice plane
(H ‖ ab) or perpendicular to it (H ‖ c).

Beyond the 7-T upper limit of our magnetization measure-
ments, we employ resonant torsion magnetometry (RTM) to
probe the nature of the magnetic anisotropy. The sample is
mounted on the tip of a vibrating cantilever and the measured
shifts in the resonant frequency ( f0 ≈ 40 kHz) reflect changes
in the magnetic rigidity caused by changes in the direction of
the applied magnetic field, which are quantified by a tensor
of magnetotropic coefficients, k( �H ). We focus on k(H, T ) at

the high-symmetry angles θ = π/2 (to measure kab) and 0
(kc), where θ is the polar angle of the applied field measured
from the crystalline c axis. The measurement configuration
is summarized in Sec. IV and described in detail elsewhere
[45,46]. All RTM data were taken using the capacitive magnet
of the NHMFL pulsed-field facility at Los Alamos National
Laboratory.

A. CEF Analysis and model Hamiltonian

Yb3+ ions subject to the CEF interactions of their sur-
rounding anion charge distribution have a total J = 7/2
ground-state multiplet of allowed electronic states. Unlike
the triangular-lattice material YbMgGaO4, the Yb3+ ions
in CsYbSe2 are largely free from any site disorder associ-
ated with the nonmagnetic ions. To describe CsYbSe2, we
parametrize the single-ion CEF interaction as a linear combi-
nation of the six symmetry-allowed Stevens operators, Ôm

n , for
the D3d site symmetry of the YbSe6 octahedral environment
[21,23–26,28–30] to obtain

ĤCEF = B0
2Ô0

2 + B0
4Ô0

4 + B3
4Ô3

4 + B0
6Ô0

6 + B3
6Ô3

6 + B6
6Ô6

6. (1)

This Hamiltonian splits the J = 7/2 multiplet into four
Kramers doublets, |n±〉 with n = 0, 1, 2, 3, whose energies
we use to define the separations from the ground-state doublet
(n = 0) as �10, �20, and �30 [Fig. 1(c)]. The corresponding
wave functions are obtained by diagonalizing Eq. (1). A CEF
spectrum for the zero-field limit can be identified using spec-
troscopic probes, particularly INS and Raman spectroscopy,
but to date little information is available with which to inves-
tigate the high-field reorganization of the energy spectrum.

The symmetries of the triangular lattice of Yb3+ ions per-
mit a nearest-neighbor superexchange interaction with XXZ
spin symmetry [47]. Additional symmetry-allowed and bond-
dependent anisotropic pseudo-dipolar exchange terms [48] are
found to give vanishing contributions in a standard Weiss
mean-field approximation. Thus we restrict our analysis to the
minimal XXZ spin model, ĤXXZ, describing nearest-neighbor
interactions between adjacent in-plane J = 7/2 moments in
terms of two interactions, J⊥ and Jz, which are the respective
couplings of spin components transverse and parallel to ẑ, i.e.,

ĤXXZ =
∑
〈i j〉

[
J⊥

(
Ĵi,xĴ j,x + Ĵi,yĴ j,y

) + JzĴi,zĴ j,z
]
, (2)

in which the indices 〈i, j〉 refer to nearest-neighbor lattice
sites and Ĵi,γ , with γ = x, y, z, labels the components of spin
J = 7/2 moments on site i.

To account for Zeeman coupling to the external field we
add the term

ĤZ = −μ0μBgJH ·
∑

i

Ĵi, (3)

where the Landé g factor, gJ = 8/7, is used for Yb3+ mo-
ments. We note that the quantization axis defining the ẑ
direction of the chosen basis of spin operators in ĤCEF and
ĤXXZ is identically the crystallographic c axis, whence the
component Hz refers to a field (H ‖ c) applied along the c
axis in experiment. Similarly, H⊥ = H ‖ ab refers to a field
component perpendicular to the c axis, which lies precisely
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in the hexagonally symmetric ab plane. In none of our ex-
periments (magnetization, susceptibility, RTM) did we find a
discernible difference in the response for different in-plane
field directions, and hence we do not distinguish between
these. The two separate contributions to the spin response
under an external magnetic field, arising from the single-ion
anisotropy and the superexchange anisotropy (both of which
have their origin in the CEF spectrum), are then captured by
the Hamiltonian

Ĥtot = ĤCEF + ĤXXZ + ĤZ. (4)

B. Weiss mean-field approximation

We treat the physics of the system at finite temperature
within a self-consistent Weiss mean-field approximation for
the Yb3+ spins, which we will find captures the bulk magnetic
behavior of CsYbSe2 exceptionally well at all measurement
temperatures (T � 2 K). In the Weiss mean-field treatment,
Eq. (4) reduces to a system of N decoupled Yb3+ ions each
subject to the Hamiltonian

Ĥsg
MF = ĤCEF − 1

2 q
[
J⊥〈Ĵx〉2 + Jz〈Ĵz〉2

]
− [

μ0μBgJH − q
(
J⊥〈Ĵx〉x̂ + Jz〈Ĵz〉ẑ

)]·Ĵ, (5)

where q = 6 is the nearest-neighbor coordination number
on the triangular lattice and the mean-field expectation val-
ues of the spin operators are determined self-consistently
as 〈Ĵα〉 = Tr[Ĵαe−βĤsg

MF ]/Z , where Z = Tr[e−βĤsg
MF ] and β =

1/kBT . Because we find that the bulk magnetic susceptibility
of CsYbSe2 is almost entirely uniaxial, we make the addi-
tional simplifying assumption that the external magnetic field
lies in the xz plane, such that H = H⊥x̂ + Hzẑ.

The precise determination of the mean-field Hamiltonian
given in Eq. (5) poses a major challenge because it con-
tains eight unknown parameters, six coefficients {Bn

m} of the
Stevens operators in Eq. (1) and two energy scales, J⊥ and
Jz, specifying the interactions of the J = 7/2 spins. INS
spectra are used widely as the starting point for extracting
the coefficients {Bn

m} [18,19], but as noted above measuring
the three CEF level splittings, �10, �20, and �30 [Fig. 1(c)],
is not sufficient to determine six unknowns. Electron spin
resonance (ESR) [27] probes a much lower frequency range,
making it the method of choice for determining effective g-
factor values in the ground doublet, while the T dependence
of the linewidth can be used to estimate �10 [23,25,30]; in
very well characterized systems, the linewidth may also be
used to discuss the effective exchange anistropy between J⊥
and Jz [27].

Thus the parameter space for fitting the measured CEF
spectra usually remains highly degenerate, even with ac-
curate spectral measurements in an applied field and well-
constrained g tensors, and hence the uniqueness of a fitted
set of Stevens operator coefficients cannot be guaranteed
[28,29,37]. The method we apply to solve this problem has
two key components. First we apply a detailed considera-
tion of the second-order corrections in the field dependence
of the CEF spectrum, encoded as the VV coefficients we
extract from the low-field susceptibility. Then we leverage
extensive RTM data providing systematic temperature- and
field-dependent information about the magnetotropic coeffi-

FIG. 2. Temperature dependence of the magnetic susceptibili-
ties, χab and χc, measured for CsYbSe2 in a field of μ0H = 1 T
applied respectively in the ab and c directions. The inset shows the
inverse susceptibilities, χ−1

ab and χ−1
c , compared with fits obtained

by applying Eq. (8) in the regime T � 45 K (� �10/kB) in order
to determine the interaction parameters, J⊥ and Jz, and the VV
coefficients, α0

⊥ and α0
z , for the ground-state doublet.

cients for the two high-symmetry field directions to fix a
unique set {Bn

m}.

III. ANISOTROPIC MAGNETIC SUSCEPTIBILITIES

A. Experiment: deviations from Curie-Weiss

In Fig. 2, we show the temperature dependence s of the
two magnetic susceptibilities, χab(T ) and χc(T ), measured for
CsYbSe2 in the presence of an external magnetic field μ0H =
1 T applied respectively within the ab plane and along the c
axis. There is no indication of long-range ordering down to
T = 2 K. The crossing of the two curves around T = 35 K
reflects a crossover from easy-plane behavior (�χ = χab −
χc > 0) at low temperatures to easy-axis anisotropy (�χ < 0)
at high T .

Both susceptibilities increase rapidly as the temperature is
lowered below 50 K, and the corresponding inverse quantities
shown in the inset of Fig. 2 make clear the susceptibility
anisotropy, with χ−1

c (T ) exhibiting a significantly sharper
downward trend as T decreases. While a qualitative inspection
suggests that a Curie-Weiss form might capture χ−1

ab (T ) for
T < 50 K, this is clearly impossible for χ−1

c (T ). This type of
low-T downturn in χ−1(T ) is observed quite commonly in
similar rare-earth magnetic materials [16,20,23,25,40,49], but
to date lacks a detailed analysis. Next we show that this behav-
ior can be explained entirely by analyzing the field-induced
evolution of the CEF energy levels, where the leading devia-
tions from a linear (effective Zeeman) form are contained in
two strongly anisotropic ground-state VV coefficients.
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B. Van Vleck coefficients and low-field limit

The splitting of the CEF levels in a finite applied magnetic
field can be understood systematically by perturbation theory.
We express the H-linear and -quadratic corrections to the
energy eigenvalues of ĤCEF due to ĤZ in the form

En,±(H ) = E0
n ± 1

2μ0μB

√
(gn

⊥H⊥)2 + (
gn

zHz
)2

+ αn
⊥H2

⊥ + αn
z H2

z + O(H3), (6)

where E0
n refers to the four CEF energy levels at zero field

(and setting the ground-state energy, E0
0 , to zero gives E0

n =
�n0 for n = 1, 2, and 3). The second term describes the
H-linear Zeeman splitting with a generalized g-tensor for all
levels (n = 0, 1, 2, 3) defined as gn

⊥(z) = 2gJ〈n±|Ĵx(z)|n∓(±)〉,
where the subscripts ⊥, z denote a field applied respectively
within the ab-plane or along the c-axis. The conventional ef-
fective spin-1/2 g-tensor components are g0

⊥ and g0
z , to which

we refer henceforth, without the superscript 0, as the g factors
of the system.

We define all of the phenomena obtained at second order
in the perturbative effect of ĤZ on the zero-field eigenstates
of ĤCEF as the VV contribution. To describe the full field-
and temperature dependence of the susceptibility we define
the VV coefficients, αn

⊥ and αn
z , for the nth CEF level by

αn
⊥(z) = (μ0μBgJ )2

∑
n′ �=n

|〈n′
±|Ĵx(z)|n+〉|2

�nn′
, (7)

where �nn′ = E0
n − E0

n′ . Although it is often stated that one
may define a “VV susceptibility,” χVV, that is a small, addi-
tive, temperature-independent, and paramagnetic contribution
to the total susceptibility, this is rarely an accurate approxi-
mation. By inspecting the form of the VV coefficients, one
observes that the n = 0 terms should be negative, giving the
expected type of second-order correction to the ground state.
The physics content of the anisotropic VV coefficients can be
read from Fig. 1(c), where the field dependence of the CEF
levels is quite strongly nonlinear due to level-repulsion effects
between adjacent doublets. In CsYbSe2 this repulsion, which
is equivalent to a negative curvature of the lower (and positive
of the upper) branch in each case, is strongest between the
n = 0 and 1 doublets for H ‖ c.

We obtain analytical formulas for the low-field magnetic
susceptibilities of the system by using the N-particle parti-
tion function calculated with Eq. (5). The full expression for
χab(c)(T ), which includes the contributions of all four CEF
levels, is presented in Eq. (A1) of Appendix A. Here we
focus on the regime of temperatures sufficiently small that
only the lowest-lying Kramers doublet need be considered,
i.e., kBT � �10, and write the inverse susceptibility as

χ−1
ab(c) = 1

C

⎡⎣ T

|〈0+|Ĵx(z)|0−(+)〉|2 − 2kBα0
⊥(z)

μ2
0μ

2
Bg2

J
T

+ 	CW
⊥(z)

⎤⎦
= μ0kB

N

[
T

1
4 g2

⊥(z)μ
2
0μ

2
B − 2α0

⊥(z)kBT
+ 	CW

⊥(z)

]
, (8)

where C = Nμ0μ
2
Bg2

J/kB is a constant. We have defined the
quantities 	CW

⊥(z) = qJ⊥(z)/kB in order to obtain an adapted

Curie-Weiss (CW) form for the two applied-field directions
and in the second line we have used the definition of the g
factors (above) to make this form more transparent. We note
that the regime of validity of Eq. (8) is also that in which the
system can be approximated by an effective pseudospin-1/2
description.

It is clear from Eq. (8) that the contrast to a conventional
CW form, χ−1 ∝ T + 	̃, is the additional T -linear term in the
denominator, whose prefactor is the corresponding VV coef-
ficient. An explicit comparison is presented in Appendix B.
The key advantage of our formulation is to observe that the
same (VV) coefficients describing the H2 correction that gives
the leading nonlinear contribution to the CEF levels at low
temperatures and finite fields [Eq. (6)] are those describing
the nonlinear, “beyond-CW” form of the susceptibility at zero
field and finite temperatures [Eq. (8)]. Thus one may con-
clude that the latter effect is also related to level-repulsion
between doublets, the fact that the susceptibility is a second
field derivative of the free energy meaning that second-order
perturbative effects do not vanish in the limit H → 0.

Returning to Fig. 2, the gray dashed lines in the inset show
fits to Eq. (8), made in the regime T < 45 K, for each field
direction. From these fits we obtain two exchange energies,
J⊥ and Jz in Eqs. (2) and (5), and two VV coefficients for
the ground-state doublet. A complete fit is deferred to Sec. V.
Starting with the VV coefficients, we find the values α0

⊥ =
−(2.9 ± 0.1) × 10−4 meV/T2 from χ−1

ab and α0
z = −(17.9 ±

0.1) × 10−4 meV/T2 from χ−1
c . We stress that α0

z is six times
larger than α0

⊥, which for all fields beyond 5 T becomes
clearly manifest as a much larger downward level-repulsion
of the lowest Kramers doublet [Fig. 1(c) and the quantitative
analysis of Sec. V]. Turning to the magnetic interactions, we
find J⊥ = 0.54 ± 0.01 K from χab and Jz = 0.61 ± 0.01 K
from χc, both encapsulated in 	CW

⊥(z). If one reduces the sys-
tem to an effective pseudospin-1/2 model, the corresponding
interaction terms are J ′

⊥ = 5.12 K (� 0.44 meV) and J ′
z =

0.84 K (� 0.07 meV), as detailed in Appendix C. We discuss
the physical implications of these interaction parameters in
Sec. V B.

As noted above, downward curvature of the low-
temperature χ−1 has been observed in other rare-earth
compounds and our fitting results demonstrate that this feature
should be characterized by using the VV coefficients as a
part of a full description of the anisotropic magnetism. The
validity of Eq. (8) as a replacement for the CW form of
the susceptibility is confirmed by capturing the different T
dependencies correctly for the two field directions with two
VV coefficients that are consistent with Eq. (6). Although the
VV coefficients are not parameters appearing directly in the
system Hamiltonian, they impose constraints that are essential
for a unique determination of the full parameter set, a topic we
discuss further in the next section.

In Table I, we compare the VV coefficients and other
physical characteristics for a variety of Yb delafossites. For
all compounds listed other than CsYbSe2, the �10 and g-
tensor parameters are taken from experimental data. All α0

⊥
and α0

z values were calculated from Eq. (7) using the Stevens
coefficients (Bn

m) provided by each reference, where they were
obtained from fits to the CEF spectrum obtained by INS.
We stress again the fact that, in several of the studies cited,

043202-5



CHRISTOPHER A. POCS et al. PHYSICAL REVIEW RESEARCH 3, 043202 (2021)

TABLE I. Comparison of the lowest zero-field CEF level splitting, �10, g-tensor components, and the VV coefficients for n = 0 in a
number of Yb-based triangular-lattice compounds. For CsYbSe2 we show two sets of g factors and VV coefficients, one obtained by a full
calculation [Eq. (7)] using the Bn

m coefficients and wave functions, i.e., assisted by fitting to the RTM data as shown in Sec. IV, and the other
from fitting χab,c(T ) using Eq. (8). For the other compounds, �10 and the g factors are quoted from the respective references and we calculated
the VV coefficients using the reported Bn

m coefficients. The compound nominally most similar to CsYbSe2, NaYbSe2, displays slightly less
anisotropy in its VV coefficients and this is consistent with the differing forms of χab(T ) and χc(T ) reported in Ref. [25]. For NaYbO2 we note
that the two sets of Stevens coefficients (fits 1 and 2) deduced in Ref. [28] yield dramatically different values of α0

⊥ and α0
z , which underlines

the crucial role of the VV coefficients in a complete and consistent characterization of HCEF. YbMgGaO4 is found to be least anisotropic
among these materials, and its small VV coefficients are consistent with the reported Curie-Weiss form of the susceptibility.

�10 (meV) g⊥ gz α0
⊥(10−4 meV

T2 ) α0
z (10−4 meV

T2 ) Reference

CsYbSe2 13.6 3.52 1.33 −3.31 −18.8 calculated from Eq. (5)
CsYbSe2 − 3.77 1.76 −2.93 −17.9 χab,c(T ) fit to Eq. (8) [Fig. 2]

NaYbSe2 17.5/17.7 2.87/2.87 1.18/1.33 −5.51/−5.44 −12.5/−18.8 fit 1/fit 2 in Ref. [29]
NaYbSe2 13.8 3.13 1.01 − − ESR [25]

NaYbO2 34.0/34.7 3.39/3.54 1.71/1.75 −1.10/−2.85 −7.39/−3.62 fit 1/fit 2 in Ref. [28]
NaYbS2 16.7 3.19 0.57 − − ESR [23]

YbMgGaO4 39.3/39.4 3.22/3.21 3.70/3.73 −2.25/ − 2.29 −2.60/ − 2.58 fit 1/fit 2 in Ref. [37]

different sets of Stevens coefficients can provide equally good
descriptions (“fit 1” and “fit 2”) of the same INS data due to
the underconstrained nature of the problem. The anisotropy
of CsYbSe2, α0

z /α
0
⊥ ≈ 6, is strikingly higher than the values

reported for other compounds in the same family. Although
all of the NaYbX2 materials seem to show considerable direc-
tional anisotropy [30], this may be less severe for NaYbO2,
except that the two sets of proposed Bn

m parameters yield
wildly different VV coefficients, indicative of an underlying
ambiguity of the type we demonstrate how to resolve. In this
regard, the sole nondelafossite in Table I, YbMgGaO4, is a
nearly isotropic outlier.

Before proceeding, we reiterate two important attributes of
the VV coefficients as a mean of characterizing the magnetic
anisotropy of a CEF system. First, nonzero VV coefficients
are immediately evident in χ (T ), as strong deviations from a
CW form, and thus failure to account for them means that the
interaction parameters, J⊥,z, cannot be determined correctly.
Second, it is evident from Eq. (8) that caution is required
in applying an effective pseudospin-1/2 description, because
even at low T , where only the lowest Kramers doublet is
thermally populated, the repulsion from the higher CEF levels
cannot be ignored. Hence the twin roles of the anisotropic
VV coefficients in dictating H- and T -dependent physical
properties generic to many 4 f electronic systems (Table I)
must be taken into account to obtain a meaningful description
of the spin physics.

IV. RESONANT TORSION MAGNETOMETRY

A. Dependence on field and temperature

Having characterized the magnetic response at low fields
using χ (T ), and thereby obtained four independent physical
quantities to include in the fitting procedure, we turn for
more information to the magnetropic coefficients. The RTM
method allows these to be measured over wide ranges of both
field and temperature, which we will show provides enough
input for an unambiguous determination of all the remaining
free parameters in Eq. (5). The magnetotropic coefficient is

defined as k(H, ϑ ) = ∂2F (H, ϑ )/∂ϑ2, where F (H, ϑ ) is the
portion of the Helmholtz free energy depending on the mag-
nitude and orientation of the magnetic field (ϑ is the angular
direction of Ĥ measured in the plane of vibration of the sam-
ple [45,46]). k quantifies the magnetic rigidity of a material,
whose origin lies in the energy cost of rotating a sample
with an anisotropic magnetic free energy in a finite field, and
RTM measurements constitute a highly sensitive probe of this
magnetoanisotropy.

The variation of the magnetotropic coefficients at finite
field produces a shift in the resonant frequency of a system
composed of a cantilever and an attached sample given by

� f

f0
= k

2K
, (9)

with K the intrinsic bending stiffness of the cantilever at zero
field [45,46]. In the low-field limit, where χ is constant at
constant temperature, both the torque and the magnetotropic
coefficient are not only straightforward functions of the polar
angle, θ , but are also quadratic in H . Thus the magnetotropic
coefficient can be expressed in terms of the difference, �χ =
χab − χc, between the principal components of the suscepti-
bility tensor in the plane of vibration, as k = �χH2 cos 2θ .
More detailed derivations of field-dependent expressions for
the high-symmetry angles (kab for θ = 0 and kc for θ = π/2)
can be deduced by introducing the transverse susceptibility, as
shown in Appendix D.

Figures 3(a) and 3(b) show the frequency shifts, � fab and
� fc, which are directly proportional to the magnetotropic
coefficients, kab and kc [Eq. (9)], as functions of field in the
H ‖ ab and H ‖ c geometries. We note that the vibration plane
of the cantilever and the rotation plane of H are the same,
meaning that in this experimental configuration the angle ϑ

of Eq. (D2) is identically the polar angle, θ , relative to the
crystallographic c axis.

At low fields, where χab and χc are H-independent con-
stants (i.e., the magnetizations mab and mc are linear in H),
both kab and kc are indeed proportional both to H2 and to
�χ with opposing signs. As the temperature is increased,

043202-6



SYSTEMATIC EXTRACTION OF CRYSTALl ELECTRIC- … PHYSICAL REVIEW RESEARCH 3, 043202 (2021)

FIG. 3. Dependence on the applied field magnitude of the reso-
nant frequency shifts (a) � fab for H ‖ ab (θ = π/2) and (b) � fc for
H ‖ c (θ = 0). Thin solid lines show the low-field H2 dependencies,
with coefficients of �χ and −�χ , taken at T = 4 K from Fig. 2. The
nonmonotonic H dependence leading to a local maximum in the H ‖
ab configuration is attributed to the saturation of the magnetization
and is explained in Sec. V by considering the effective susceptibility
in the transverse direction. The insets illustrate the applied-field
configurations of the RTM measurements on the layered triangular
lattice of CsYbSe2 in each case.

�χ (T ) in Fig. 2 changes its sign above 50 K, and this is re-
flected in the sign-changes of � fab and � fc between T = 30
and 50 K.

As the field is increased, � fab(H ) deviates from an H2 de-
pendence and becomes nonmonotonic, with a local maximum
at low temperatures [T � 30 K in Fig. 3(a)]. The origin of
this behavior lies primarily in mab(H ) saturating in this field
range, which we confirm from our calculations in Sec. V. By
contrast, the behavior of � fc(H ) remains monotonic in the
same T range, where mc(H ) continues to increase with H . We
comment that � fc(H ) does exhibit a weak maximum in H
at T = 70 K, whereas no such behavior is found in � fab at
this temperature. This feature is also captured qualitatively by
calculating the eigenstates of the full mean-field Hamiltonian
[Eq. (5)], as we show next.

B. Fitting kab and kc

Taking the magnetic interaction parameters J⊥ and Jz

determined from χab,c(T ) (Fig. 2), we fit the measured data
for kab(H ) and kc(H ) using the full mean-field Hamiltonian
based on Eq. (5), in which the six coefficients of the Stevens
operators are free parameters to be determined. However,

FIG. 4. Magnetotropic coefficients, kab and kc, shown per Yb3+

ion as a function of field in the respective geometries H ‖ ab (a) and
H ‖ c (b). Open symbols mark measured data and dotted lines show
the best fits achieved by self-consistent diagonalization of the full
mean-field Hamiltonian [Eq. (5)]. The values of J⊥ and Jz are taken
from the susceptibility fits [Fig. 5], leaving the six coefficients of the
Stevens operators as free parameters constrained by the extracted VV
coefficients, α0

⊥, and α0
z . Curves are shown for clarity with a constant

offset.

obtaining the ground-state VV coefficients, α0
⊥ and α0

z , from
the fit to Eq. (8) reduces the number of fitting parameters
to four. Given the wide ranges of T and H covered by the
RTM data, the remaining unknowns can be determined with
an unprecedentedly high level of confidence by using kab

and kc.
Figure 4 displays the magnetotropic coefficients converted

from the measured � f data in both geometries. It is clear that
the fits capture the full field dependence of kab(H ) and kc(H )
in an excellent manner, despite the minimal spin model and
the mean-field approximation. In particular, the low-field H2

curvature is fully consistent with |�χ | (Sec. IV A). At μ0H >

30 T, beyond the range of some of the data, the agreement
is no longer quantitative for all temperatures simultaneously,
but the model continues to capture the majority of the field-
dependent behavior for both field directions. One possible
source of these deviations would be high-field magnetostric-
tive effects, which can distort the lattice structure and thus

TABLE II. Values of the Stevens operator coefficients [Eq. (1)]
obtained from the fits shown in Fig. 4.

unit B0
2 B0

4 B3
4 B0

6 B3
6 B6

6

10−2 meV −42.33 1.17 54.94 0.03 0.52 −0.04
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FIG. 5. Data for the measured inverse susceptibilities (symbols,
inset Fig. 2) shown over the full range of temperature together with
fits (solid lines) computed using the Stevens operator coefficients of
Table II. Thin dot-dashed lines show fits obtained from a pseudospin-
1/2 description [Eq. (8)] applied at low temperatures, which align
well with the full matrix calculation for T < 60 K.

modify both the magnetic interactions and possibly even the
sizes of the CEF coefficients at sufficiently large applied fields
[50]. We use the optimal fits to obtain the six Stevens operator
coefficients [Eq. (1)] shown in Table II and we discuss the
physical implications of having this fully determined spin
Hamiltonian [Eq. (5)] in the next section.

V. DISCUSSION

A. CEF spectrum and VV coefficients

Having determined a full set of eight fitting parameters
from the RTM data, we first verify the self-consistency of this
fit against the measured magnetic susceptibilities, which are
shown as χ−1

ab (T ) and χ−1
c (T ) over the full temperature range

in Fig. 5. The solid lines show the same quantities calculated
from the mean-field Hamiltonian of Eq. (5). The agreement of
the fit with the data is quantitatively excellent over the entire
measured T range, including temperatures allowing signifi-
cant population of the higher CEF levels. The dot-dashed lines
were calculated using the pseudospin-1/2 approximation, i.e.
the contributions from the ground-state doublet [Eq. (8)],
which as expected captures the T dependence below a specific
energetic cutoff; by inspection we find this cutoff at T ≈ 60 K
in CsYbSe2 for both directions of Ĥ .

As discussed in Sec. III, the difference in T dependence for
the two primary field directions is accounted for in the model-
ing procedure by the large discrepancy in the VV coefficients.
While this anisotropy is also reflected in the very different
prefactors of the H-quadratic part of the energy spectrum for
the two different field geometries, we stress again the fact that
it affects the susceptibility strongly even at zero field. As a
consequence, the susceptibility fits in Fig. 2 provide an inde-

FIG. 6. CEF spectrum calculated using the fitting result from
Fig. 4 (solid lines). Quadratic and higher-order dependence on the
applied field are clearly visible for all four Zeeman-split Kramers
doublets. We comment that the n = 2 level remains mostly de-
generate in fields H ‖ ab because of their dipolar-octupolar nature.
Dot-dashed lines show the perturbative expression of each energy
level at second order, as in Eq. (6).

pendent determination of α0
⊥ and α0

z , as well as of the squared
matrix elements |〈|0±|Ĵx(z)|0∓(±)〉|2. These constitute addi-
tional constraints on the allowed Stevens operator coefficients
that are crucial for reducing the enormous degeneracy of the
six-variable parameter space describing the CEF levels. It is
well known that suitable sets of coefficients are often highly
degenerate, in the sense of yielding many indistinguishable
fits of INS data for the CEF spectrum and g-tensor values
[18,28,37]. In Table I, we compare the ground-state g-tensor
values and VV coefficients obtained by fitting kab,c(H ) (top
line, Fig. 4) and χ−1 (second line, Fig. 5), where we find
agreement at the 10% level.

Next we use our fit coefficients to calculate the CEF energy
levels, which are shown in Fig. 6 as a function of field at zero
temperature. The black solid lines show the spectra calculated,
for Ĥ oriented in the ab-plane [panel (a)] and along the c-axis
[panel (b)], by the direct diagonalization of ĤCEF + ĤZ. Fo-
cusing first on zero field, we obtain the level-splittings �10 =
13.6 meV, �20 = 29.6 meV, and �30 = 52.6 meV. Thus �10

in CsYbSe2 is similar to that of NaYbSe2 (≈17.7 meV [29]),
but is significantly lower than the values reported for de-
lafossites in which the Yb3+ ion has an oxygen environment
[28,37]. The g-factor values we obtain for the ground state,
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gab = 3.52 and gc = 1.33, are comparable to those measured
in all of the Yb-based delafossites [30], as summarized in
Table I.

Turning to finite fields, a comparison of the ground-state
doublet (n = 0) in Figs. 6(a) and 6(b) shows the expected
strong anisotropy, which lies predominantly in the fact that
the H-quadratic component is much larger for H ‖ c (the
aforementioned factor-6 difference between α0

z and α0
⊥). Be-

cause the quadratic curvatures are a consequence of repulsion
between adjacent CEF levels, the n = 1 doublet exhibits a
clear opposing curvature for H ‖ c (dominating the behavior
of both doublet components), whereas in the H ‖ ab configu-
ration this effect is weaker than the higher-order corrections.
The dot-dashed lines in Fig. 6 illustrate the fidelity of a fit
made only at the level of second-order energy corrections for
each n [Eq. (6)], i.e., by using all the VV coefficients, which
agrees well until μ0H > 50 T in both Ĥ directions.

Moving up in the CEF spectrum, our results also capture
the unique properties of the n = 2 state. This dipolar-
octupolar doublet, |J, mJ = ±3/2〉 [20,49,51,52], does not
transform as a magnetic dipole because the threefold rota-
tional symmetry excludes any mixing between states with
mJ = ±3/2 and those with other values of mJ [53]. Instead
this doublet combines the features of dipolar and octupolar
moments [20,49]. In particular, only one component of the
dipole moment (in this case oriented along the c axis) appears
in the vector of pseudospin-1/2 operators, which makes the
Zeeman splitting of the n = 2 level appear very different be-
tween H ‖ ab and H ‖ c. In the latter case, the mJ = 3/2 state
remains an exact eigenstate up to arbitrarily large field, so
the Zeeman splitting is exactly H-linear with no higher-order
perturbative corrections [Fig. 6(b)], i.e., α2

z = 0. By contrast,
for H ‖ ab the matrix elements 〈2±|Jx|2∓〉 are zero and the
H-linear Zeeman splitting vanishes (g2

⊥ = 0). Thus these dou-
blet components remain nearly degenerate [Fig. 6(a)] until
the field is sufficiently strong that higher-order perturbative
corrections become visible.

A further key experimental quantity we consider is the
magnetization. The solid lines in Fig. 7 show the magnetiza-
tion of the system at several different temperatures calculated
for fields in the two primary directions using the full Hamil-
tonian matrix [Eq. (5)]. In the low-field range, mab and
mc reproduce exactly our experimental data measured up to
μ0H = 7 T. At higher fields, mab calculated from the full
spectrum changes slope at μ0H ≈ 12 T (at T = 4 K), beyond
which it continues to increase more slowly with increasing
field. This hint of saturation behavior is consistent with the
broad maximum in the RTM frequency shift, � fab(H ), at
low temperatures (Fig. 3). No such behavior is found in mc,
although the overall slope does decrease as H is raised beyond
approximately 25 T, and nor is it immediately evident in the
RTM measurements; however, it can be found within the de-
tailed H dependence of the free energy, which we parametrize
using the transverse susceptibilities, χT

ab(T ) and χT
c (T ), in

Appendix D.
Finally, the magnetization presents an excellent test case

for the validity of a pseudospin-1/2 description of CsYbSe2,
meaning the extent to which any physical property is ex-
plained by the contributions from the ground-state doublet
(n = 0) alone. In Figs. 7(a) and 7(b), we show in addition

FIG. 7. Magnetizations, mab (a) and mc (b), calculated for se-
lected values of the temperature from Eq. (5) (solid lines), in a
pseudospin-1/2 approximation with VV corrections (dotted lines),
and in a pseudospin-1/2 approximation without VV corrections
(dashed lines). Solid symbols show magnetization data measured up
to 7 T.

the magnetizations obtained using a pseudospin-1/2 approx-
imation with (dotted lines) and without (dashed lines) the
VV correction. For reference, the efficacy of the VV cor-
rections in reproducing the full field-induced evolution of
the ground doublet can be gauged in Fig. 6. For mab(H ), a
pseudospin-1/2 model with no VV correction captures the
field dependence only up to μ0H ≈ 10 T before saturating to
the generic tanh function of a Zeeman doublet. By contrast,
a model with VV correction follows the full solution very
closely over the entire field range to 60 T. This contrasts
with the situation for mc(H ), where even the VV-corrected
model shows a clear departure from the full solution that
sets in around 15 T, beyond which the approximate treat-
ment separates systematically, and it is clear that higher-order
corrections to the doublet spectrum are required. For the
model with no VV correction, mc(H ) does not even reproduce
the low-field regime. Recalling the very significant magnetic
anisotropy (α0

z /α
0
⊥ ≈ 6), the effectiveness of the VV correc-

tions for the two directions is no surprise. As a function of
temperature, we observe that the VV-corrected magnetiza-
tions in both geometries show increasing discrepancies at the
same field as T is increased to 70 K (Fig. 7), even though
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the nominal thermal cutoff imposed by the next CEF level is
�10/kB ≈ 160 K.

Thus our experiments and analysis demonstrate two key
results. The first is that all of the nontrivial magnetic prop-
erties of a material are captured by a single concept, the VV
coefficients. The second is that the contrast between conven-
tional and nontrivial magnetic properties can be found in a
single material due to anisotropic VV coefficients that differ
strongly between the field geometries H ‖ ab and H ‖ c. We
have shown that the origin of the VV coefficients lies in the
large matrix elements governing the mixing and consequent
repulsion of adjacent CEF levels. Although the ground-state
VV coefficients, α0

⊥ and α0
z , are zero-field quantities whose

effects can be found in non-CW behavior of the susceptibility,
their strongest impact emerges as H increases (Fig. 6). Our
analysis also demonstrates that the success or failure of the
popular pseudospin-1/2 approximation to the magnetic prop-
erties of a Kramers-doublet system depends directly on the
magnitude of the VV coefficients.

Our conclusions rely completely on determining all of the
CEF parameters with high accuracy, which allows a detailed
characterization of all the magnetic properties throughout the
(H, θ, T ) parameter space within a single and self-consistent
model. The simplest indication for a significant contribution
from the VV coefficients is a deviation of the susceptibility
from a CW form, which is visible most clearly as a downward
curvature in χ−1(T ) as T → 0; this type of behavior is obvi-
ous in χ−1

c (T ) in Fig. 5, but not in χ−1
ab (T ). As noted above, a

more detailed characterization of the VV coefficients requires
experiments under significant applied fields. Quantitatively,
the origin of the VV coefficients in second-order perturbation
theory [Eq. (7)] gives them a systematic dependence on �−1

n0 ,
as well as on the expectation values of Ĵx(z). Although the
latter terms are primarily responsible for the strong directional
anisotropy in the Yb-based delafossites whose reported �10

values and extracted VV coefficients are collected in Table I,
the related material YbMgGaO4 presents an example where
the large value of �10 suppresses the VV coefficients, leading
to a predominantly CW-type behavior of χ−1(T ) [34].

We stress again that our full microscopic model is di-
rectly applicable to the computation of all aspects of the
magnetic response of a material. Here we have illustrated
the situation for our own magnetic susceptibility, magnetiza-
tion, and RTM data, and we await its extension to describe
magnetic specific-heat, torque, ESR, and magnetocalorimetric
measurements. We have also distilled the properties of the
full model to the physically relevant VV coefficients, which
can be understood as governing the nonlinear field depen-
dence of the CEF energy levels (Fig. 6) and thus affect all
of the magnetic properties. This linking function allows the
use of our analysis to resolve a number of contradictions that
have emerged in recent studies of delafossites by different
techniques.

One example is the report from single-crystal INS mea-
surements on CsYbSe2 of no CEF levels below 20 meV [43],
in direct contradiction to the present conclusions (Fig. 6).
We have calculated the scattering cross-section for the 0 → 1
transition by using the diagonalized CEF matrix in order to
compare the intensity obtained in the crystalline geometry
of the measurement with that expected for a polycrystalline

sample. Indeed we find the former to be smaller than the
latter by four orders of magnitude, indicating that the initial
conclusion was the consequence of an unfortunate choice of
geometry, and subsequent reports suggest that a CEF level
has been found around 15 meV [54]. We note also that the
two sets of Stevens operator coefficients proposed [21] for
NaYbO2 based on INS measurements of the CEF spectrum
have widely divergent VV coefficients, whereas similar fits
to the INS spectra of NaYbSe2 show much more agree-
ment when refined with complementary Raman scattering
data [25].

B. Magnetic interaction parameters and triangular-lattice
spin models

We turn our discussion from the Stevens operators deter-
mining the CEF levels to the magnetic interaction parameters
that govern the low-energy physics, and hence the extent to
which the Kramers-doublet system can be used as an effec-
tive realization of any of the paradigm S = 1/2 models in
quantum magnetism. As Sec. V A made clear, an adequate
understanding of the CEF energies and their evolution in an
applied field is a prerequisite in the search for phenomena
including field-induced phase transitions and candidate QSL
phases [1]. In particular, narrowly spaced CEF levels that
undergo significant mutual repulsion at a specific field scale
offer a complex and correlated energy landscape that could
accommodate unconventional spin states.

Focusing on the triangular geometry, the nearest-neighbor
triangular-lattice Heisenberg model is the original [55] and
still one of the deepest problems in frustrated quantum mag-
netism [56,57]. Although the ground state of this model
has a modest amount of magnetic order, triangular lattices
have attracted extensive interest from a number of angles
over the decades. Not only does this geometry have multi-
ple materials realizations, but each generation of materials
has opened a new dimension in research [56]. Triangular
organic compounds drove a discussion of proximity to the
Mott transition [5–8], Cs2CuCl4 and Cs2CuBr4 [58–62] drove
studies of the spatially anisotropic (J-J ′) triangular-lattice
models [57,63], and the cobaltates Ba3CoNb2O9 [64,65],
Ba3CoSb2O9 [66–68], and Ba8CoNb6O24 [69] spurred the
consideration of spin-anisotropic triangular lattices with XXZ
symmetry. In recent years, Yb-based triangular-lattice ma-
terials have sparked very strong interest in further spin
anisotropies, in the form of J++ and J+z terms [38,48,70],
all of which widen considerably the scope for finding QSL
states. On the theoretical side, it has been shown that second-
neighbor Heisenberg interactions also drive a QSL state,
whose gapped or gapless nature remains undetermined at
present [71–75]. In the nearest-neighbor model, the sys-
tematic treatment of parton-based formulations has led to
qualitative advances in calculating the dynamical excitation
spectrum by both Schwinger-boson [76] and pseudofermion
methods [73,77]. Long-standing questions about the ther-
modynamic properties may soon be answered by DMRG
methods [78], despite the constraints of working on a rather
narrow cylinder, and by tensor-network methods [79] despite
the challenge posed by the high connectivity of the triangular
lattice.
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In Sec. II, we restricted our considerations to a triangular-
lattice model of XXZ form [Eq. (2)], meaning that we allowed
only a minimal spin anisotropy of Ising or XY form. Working
at the mean-field level [Eq. (5)], in Sec. III B, we obtained
the results J⊥ = 0.54 ± 0.01 K and Jz = 0.61 ± 0.01 K for
the magnetic interactions in the system of J = 7/2 Yb3+

ions. As shown in Appendix C, the interaction terms of
the corresponding effective pseudospin-1/2 model are J ′

⊥ =
5.12 K (� 0.44 meV) and J ′

z = 0.84 K (� 0.07 meV), mean-
ing that CsYbSe2 is very strongly in the XY limit (J ′

z /J ′
⊥ �

0.16). Although this contrasts with most assumptions made
at present, we note that XY character has also been deduced
for each of the NaYbX2 materials by using a pseudospin-1/2
treatment [30]. We expect further investigations of CsYbSe2

to confirm this result. As the most straightforward indicator
of XY or Ising physics, we suggest that the width in field of
the regime over which the 1/3 plateau (i.e. the state of up-up-
down spin order) in the magnetization is stabilized constitutes
a quantity rather sensitive to the ratio J ′

z /J ′
⊥ [47,80]. This

plateau is evident in the data of Ref. [43], although a lower
temperature would assist a quantitative analysis. However, the
relevant regime of parameter space is yet to be investigated
theoretically for a field applied in the ab plane of the system.
Finally, while we cannot exclude terms of J++ and J+z type
from the spin Hamiltonian, the accuracy of our fit indicates
that the effect of any missing terms is extremely small in
CsYbSe2; either they are genuinely small or they are relevant
only at the lowest temperatures where a treatment beyond the
present mean-field level would be required.

On the materials side, it is also fair to say that the contin-
uing lack of experimental signatures for QSL ground states
can be blamed on two primary issues, namely the scarcity of
candidate materials and the paucity of measurable physical
quantities offering unambiguous signatures or predictors for
QSL properties (such as fractional quantum numbers and non-
local entanglement). To address the first of these, our analysis
provides a definitive guide to the field-induced physics of
highly spin-anisotropic systems such as the Yb-delafossites,
and hence to the regions of parameter space where competing
energy scales establish an environment conducive to the oc-
currence of exotic spin states. Although we cannot solve the
second issue, we can provide a comprehensive understanding
of the single-ion energy spectrum that identifies the extent
to which a given material replicates a target pseudospin-1/2
model, thereby streamlining the experimental search for QSL
fingerprints by available experimental methods.

VI. SUMMARY

We have investigated the anisotropic magnetic response
of an insulating 4 f electronic system by measuring two key
thermodynamic quantities, the magnetic susceptibility in the
low-field limit and the magnetotropic coefficients over very
wide field and temperature ranges (up to μ0H = 60 T and
T = 70 K). We have shown that the anisotropies in both quan-
tities can be formulated within a set of anisotropic van Vleck
(VV) coefficients, which arise as the second-order perturba-
tive corrections of the Zeeman interaction to the zero-field
crystal electric field (CEF) spectrum. This leads to the es-
sential finding that the VV coefficients constitute independent

physical quantities that describe the crucial magnetic prop-
erties of 4 f spin systems across the full range of applied
fields and extant anisotropies. A proper account of the ground-
state VV coefficients is indispensable for an accurate and
unambiguous determination of the microscopic parameters
governing the CEF Hamiltonian, a process for which other-
wise few routes are known to date. The VV coefficients fulfill
the vital function of unifying the low-field, low-temperature
magnetic susceptibility with the high-field magnetotropic co-
efficients and CEF levels, and in this sense their role as
stand-alone physical quantities allowing a full interpretation
of magnetic anisotropies has not been appreciated before.

Our experimental results highlight the value of the reso-
nant torsion magnetometry (RTM) method, which is accurate
and profoundly powerful in terms of the parameter ranges
it accesses. The magnetotropic coefficients we extract over
these broad field and temperature ranges play the key role
in obtaining a unique set of Stevens operators describing
the microscopic CEF Hamiltonian with unprecedent fidelity.
We reiterate that a fitting analysis must provide complete
consistency from zero to high field and at all relevant tem-
peratures, and our fits meet this challenge. With the full CEF
spectrum in hand, we can examine the validity of different
and popular approximations that have been applied to many
materials. Specifically, we identify the limits of a CW fit to
the temperature dependence of the magnetic susceptibility and
the boundaries of the effective pseudospin-1/2 description for
systems with a ground-state Kramers doublet.

We have developed and applied our analysis for the
material CsYbSe2, which is a member of a family of Yb-
delafossites displaying triangular-lattice geometry. Because
the CEF levels of the Yb3+ ion are four Kramers doublets,
these compounds are leading candidates in the search for
quantum spin-liquid (QSL) behavior, and indeed the full CEF
spectrum we obtain up to high fields (Fig. 6) reveals an
intricate and anisotropic energy landscape amenable to uncon-
ventional magnetism. This spectrum allows one to construct
a maximally informed pseudospin-1/2 model for the low-
energy physics of the system, and within a minimal XXZ spin
Hamiltonian we conclude that CsYbSe2 is a strongly XY tri-
angular antiferromagnet. While we await further experimental
confirmation of this result, we note again that our analysis is
applicable to a wide range of 4 f materials with complex CEF
spectra and especially with ground-state doublets allowing an
effective spin-1/2 description, which should expand signifi-
cantly the scope of the search for QSL phases.
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APPENDIX A: EXACT FORM OF MAGNETIC
SUSCEPTIBILITY

From the N-particle partition function calculated with
Eq. (5), we derive analytical formulas for the low-field mag-
netic susceptibilities of our model using the thermodynamic
relation

χab(c)(T ) = − 1

μ0

∂2F

∂H2

∣∣∣
Hab,c→0

= Nμ0μ
2
Bg2

J

kB

⎡⎢⎢⎢⎣ T
∑3

n=0 e−βEn∑3
n=0

(
|〈n+|Ĵx(z)|n−(+)〉|2 − αn

⊥(z)

2kBT

μ2
0μ

2
Bg2

J

)
e−βEn

+ 	CW
⊥(z)

⎤⎥⎥⎥⎦
−1

, (A1)

where β = 1/kBT , 	CW
⊥(z) = qJ⊥(z)/kB as in Eq. (8), and αn

i are
the VV coefficients defined in Eq. (7). The form of Eq. (A1) is
exact within the mean-field approximation, and by consider-
ing only n = 0 (the ground-state doublet) it reduces to Eq. (8).

APPENDIX B: COMPARISON TO THE CURIE-WEISS
MAGNETIC SUSCEPTIBILITY OF A SPIN-1/2 SYSTEM

To illustrate how the VV coefficients alter even the low-
T limit of the full susceptibility expression, where only the
lowest Kramers doublet is relevant, we repeat Eq. (8) in the
form

χ−1
ab(c) =

kB

Nμ0μ
2
Bg2

J

⎡⎢⎢⎢⎣ T(
g⊥(z)

2gJ

)2

− 2kBα0
⊥(z)

μ2
0μ

2
Bg2

J
T

+ 	CW
⊥(z)

⎤⎥⎥⎥⎦. (B1)

Only when the VV term is negligible does this expression
reduce to the familiar CW form,

χCW
ab(c) = Nμ0μ

2
Bg2

⊥(z)

4kB

(
T + 	̃CW

⊥(z)

)−1
, (B2)

with a CW temperature for the effective S = 1/2 model given
by qJ ′⊥(z)/4kB, where the parameters J ′⊥ and J ′

z are de-
fined in Appendix C below.

APPENDIX C: EFFECTIVE SPIN-1/2 PROJECTION

At the lowest temperatures, where the physics is dominated
by the properties of the lowest Kramers doublet, {|0±〉}, it
is helpful to formulate a pseudospin-1/2 model in terms of
effective spin-1/2 operators with the action

Ŝx = 1
2 (|0+〉〈0−| + |0−〉〈0+|), (C1)

Ŝz = 1
2 (|0+〉〈0+| − |0−〉〈0−|). (C2)

The equivalent pseudospin-1/2 model for a Hamiltonian Ĥ
is obtained formally by projecting onto the lowest Kramers-
doublet subspace using the projection operator

P̂0 ≡ |0+〉〈0+| + |0−〉〈0−|. (C3)

For the full J = 7/2 Hamiltonian in the form

Ĥ =
∑
〈i, j〉

(
J⊥Ĵi,xĴ j,x + JzĴi,zĴ j,z

) + μ0μBgJH ·
∑

i

Ĵi, (C4)

the equivalent pseudospin-1/2 model is

ĤPS = P̂0ĤP̂0, (C5)

=
∑
〈i, j〉

(
J ′

⊥Ŝi,xŜ j,x + J ′
z Ŝi,zŜ j,z

)
+ μ0μB

∑
i

(
g⊥H⊥Ŝi,x + gzHzŜi,z

)
, (C6)

from which it follows that the equivalent g factors and ex-
change constants of the pseudospin-1/2 model are related to
J = 7/2 operator matrix elements and exchange constants by
the expressions

g⊥(z) = 2gJ |〈0±|Ĵx(z)|0∓(±)〉|, (C7)

J ′
⊥(z) =

(
g⊥(z)

gJ

)2

J⊥(z). (C8)

Applying these relations using gJ = 8/7 gives the g factors
g⊥ = 3.77 and gz = 1.76 shown in the second line of Table II,
and using the results J⊥ = 0.54 ± 0.01 K and Jz = 0.61 ±
0.01 K obtained in Sec. III B for the J = 7/2 system gives
the values J ′

⊥ = 5.12 K (� 0.44 meV) and J ′
z = 0.84 K (�

0.07 meV) for the interaction parameters of the pseudospin-
1/2 model.

APPENDIX D: MAGNETOTROPIC COEFFICIENTS

In an anisotropic magnetic material, a magnetic-field-
angle-dependent contribution to the Helmholtz free energy,

F (T, H, ϑ ) = − 1

β
ln Tr

[
e−βĤ(H,ϑ )

]
, (D1)

can be modelled using the explicit field dependence of the
microscopic spin Hamiltonian, Ĥ(H, ϑ ). In Sec. II, we model
this at the mean-field level, using Ĥsg

MF [Eq. (5)]. RTM is a
direct probe of the curvature of the magnetic free energy with
respect to changes in the angle at which the field is applied,
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and this curvature is defined as the magnetotropic coefficient,

k(H, ϑ ) = ∂2F

∂ϑ2
= −∂τ (H, ϑ )

∂ϑ
, (D2)

where τ (H, ϑ ) = M × H is the magnetic torque and ϑ is the
angular direction of H measured in the plane of vibration of
the sample. For the system of a piezoresistive cantilever with a
tip-mounted sample, the angle-dependent magnetotropic coef-
ficient at finite field produces the proportional frequency shift
specified in Eq. (9) [45,46]. For the cases considered here,
we define the total vector magnetization in a finite field with
components H⊥ = H sin θ and Hz = H cos θ in terms of its
component magnetizations as

M(H) = Mab(H⊥, Hz )x̂ + Mc(H⊥, Hz )ẑ. (D3)

The torque as function of angle then takes the explicit form

τ (θ ) = M × H = MabH cos θ − McH sin θ. (D4)

In addition to the conventional susceptibilities,

χab = lim
h→0

Mab(H⊥ = h, Hz = 0)

h
,

χc = lim
h→0

Mc(0, h)

h
,

one may define the transverse susceptibilities at finite field, for
a magnetization induced by a small field h applied perpendic-
ular to an arbitrarily large (but finite) field H , as

χT
ab(H ) = lim

h→0

Mab(H⊥ =h, Hz =H ) − Mab(0, H )

h
, (D5)

χT
c (H ) = lim

h→0

Mc(H, h) − Mc(H, 0)

h
. (D6)

With these definitions we express the magnetotropic coef-
ficients at the high-symmetry angles as kab(H ) = k(H, θ =
π/2) and kc(H ) = k(H, θ = 0), with

kab(H ) = HMab(H, 0) − H2χT
c (H ), (D7)

kc(H ) = HMc(0, H ) − H2χT
ab(H ). (D8)

In the low-field limit, the transverse susceptibilities are in fact
identical to their zero-field values, so that kab = −kc = (χab −
χc)H2. The low-field expressions are no longer valid when
the magnetization ceases to be H-linear, necessitating a more
detailed description in terms of Eqs. (D1) and (D2). From
the expressions at low and high fields, one may interpret the
magnetotropic coefficient at a given applied-field angle, θ , as
the energy difference between the real magnetostatic potential
energy at that angle and the “naive” energy cost of magnetiz-
ing the sample in a completely perpendicular direction based
on a linear extrapolation of the transverse susceptibility.
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