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A crucial subroutine in quantum computing is to load the classical data of N complex numbers into the ampli-
tude of a superposed n = �log2 N�-qubit state. It has been proven that any algorithm universally implementing
this subroutine would need at least O(N ) constant weight operations. However, the proof assumes that only
n qubits are used, whereas the circuit depth could be reduced by extending the space and allowing ancillary
qubits. Here we investigate this space-time tradeoff in quantum state preparation with classical data. We propose
quantum algorithms with O(n2) circuit depth to encode any N complex numbers using only single- and two-qubit
gates, and local measurements with ancillary qubits. Different variances of the algorithm are proposed with
different space and runtime. In particular, we present a scheme with O(N2) ancillary qubits, O(n2) circuit depth,
and O(n2) average runtime, which exponentially improves the conventional bound. While the algorithm requires
more ancillary qubits, it consists of quantum circuit blocks that only simultaneously act on a constant number of
qubits, and at most O(n) qubits are entangled. We also prove a fundamental lower bound �(n) for the minimum
circuit depth and runtime with an arbitrary number of ancillary qubits, aligning with our scheme with O(n2). The
algorithms are expected to have wide applications in both near-term and universal quantum computing.
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I. INTRODUCTION

Various quantum algorithms have been designed for solv-
ing different types of problems [1]. A critical subroutine of
many quantum algorithms is to encode classical data into a
superposed quantum state [2–8], which prepares a general
multiqubit state with classically given amplitudes. An effi-
cient state preparation scheme is the prerequisite of many
algorithms, including quantum linear system algorithms
[9,10], quantum versions of data fitting [11], principal compo-
nent analysis [12], support vector machines [13], Hamiltonian
simulation algorithms [14–16], quantum machine learning
[17–23], etc. Theoretically, the minimal number of constant-
weight operations (i.e., operations applied on no more
than a constant number of qubits) to prepare an arbitrary
N-dimensional or n = �log2 N�-qubit state is lower bounded
by �(N/ ln n) [1,24], which corresponds to the circuit depth
of �(N/(n ln n)). For instance, one may construct a unitary to
transform |0〉⊗n to the target state with only single-qubit and
CNOT gates, and existing algorithms [4,5,7,8] require O(N )
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circuit depth, which is close to the fundamental limit. Since
the complexity is linear in the dimension N or exponential in
the number of qubits n, it requires a deep circuit for large N .
For example, the circuit depth is already challenging for the
current technology when N ≈ 103 or n = 10.

However, the proof of the lower bound considers opera-
tions on exactly n qubits, and one may trade the circuit depth
(time) with ancillary qubits (space). Along these lines, quan-
tum circuits with O(n2) depth have been proposed to encode
binary vectors [25] and general nonbinary vectors [26,27] into
special types of entangled states. The key idea is to apply
operations on N qubits in parallel so that the circuit depth is
polylogarithmic in N . In Ref. [26], the method has also been
applied for improving quantum machine-learning algorithms.
Nevertheless, the output quantum state is encoded with N
qubits, which is exponentially larger than n and is in a com-
plicated entangled basis of all the N qubits, which may not be
universally usable as the input to other quantum algorithms.
While there are other methods with logarithmic costs, includ-
ing controlled-rotation-based [3,28] and Grover-oracle-based
[29] methods, they require global unitaries or global oracles
acting on all qubits, which is challenging based on current
technologies. Therefore, it remains an open question whether
it is possible to more efficiently and directly prepare a general
N-dimensional (n-qubit) quantum state with constant-weight
operations and a shallow circuit depth.

In this work, we address this problem by introducing prob-
abilistic quantum state preparation algorithms. We consider
the task of preparing an N-dimensional (n-qubit) state, and
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we introduce several quantum algorithms that use circuits
with polylogarithmic depth O(n2). With different numbers of
ancillary qubits, the algorithms have different success prob-
abilities, which could be enhanced to O(1) with a runtime
that is inversely proportional to the success probability. As
a result, the sequential algorithm uses O(n) ancillary qubits
with an average runtime O(N2), and the parallel algorithms
uses more ancillary qubits with a smaller average runtime.
Specifically, the extreme parallel algorithm has an average
runtime of O(n2) with O(N2) ancillary qubits. Note that for
all the proposed algorithms, one only needs to maintain en-
tanglement of at most O(n) qubits. Our results thus show the
space-time tradeoff in quantum state preparation. Moreover,
we have shown that fundamentally, the circuit depth and run-
time is lower bounded by �(n) even with an arbitrarily large
amount of ancillary qubits, which is comparable to our result
of O(n2).

II. FRAMEWORK

We first introduce the task of quantum state preparation.
Given a vector u := [u0, u1, . . . , uN−1] ∈ CN of N complex
numbers satisfying ‖u‖2 = 1, we consider the preparation of
the n-qubit state

|ψ (u)〉 :=
N−1∑
i=0

ui|n, i〉, (1)

where |n, i〉 is the n-qubit binary representation of i. For
example, |3, 7〉 = |111〉, |3, 6〉 = |110〉, and |4, 7〉 = |0111〉.
Here, the state |ψ (u)〉 is also called the amplitude encoding
[30–35] of the vector u, and it serves as our target state.
The reason for including an additional index n is that there
are states with different numbers of qubits involved in our
algorithms. The main problem we consider is as follows:

Given an arbitrary quantum state described in Eq. (1), find
a preparations method with constant-weight operations and a
polylogarithmic circuit depth.

In addition, we will also discuss the tradeoff between
circuit-depth, number of ancillary qubits, and preparation
fidelity.

To prepare |ψ (u)〉, we consider a resized vector v :=
u/ max(|ui|) and define the label encoding state of v with
n + 1 qubits (below, quantum states may be represented up
to a normalization factor),

|v〉 :=
N−1∑
i=0

|n, i〉|vi〉 =
N−1∑
i=0

|n, i〉[vi|0〉 + (1 − vi )|1〉], (2)

where |n, i〉 and |vi〉 = vi|0〉 + (1 − vi )|1〉 represent the
n-qubit label and the value single qubit, respectively. Note
that if we project the value qubit to |0〉 and trace it out, we
can probabilistically obtain the target state |ψ (u)〉. Thus we
focus first on the preparation of the label encoding state.

III. POSITIVE LABEL STATE PREPARATION

We first consider the special case with positive amplitudes
v ∈ [0, 1]N . Our algorithm is based on the following result
about concatenating two label encoding states.

FIG. 1. Low-depth concatenation circuit for preparing the label
encoding state |v(a) ⊕ v(b)〉 with input |v(a)〉 ⊗ |v(b)〉 and ancillary
qubit |+〉. Meter represents projecting qubits to state |+〉, and red
represents the target output state. See Appendix A for details.

Result 1. Given two quantum states |v(a)〉 and |v(b)〉 with
v(a), v(b) ∈ [0, 1]N , there exists an O(n) depth concatenation
circuit, such that the state |v(a) ⊕ v(b)〉 can be obtained with a
probability larger than 1/2.

We have defined v(a) ⊕ v(b) = [v(a)
0 , . . . , v

(a)
N−1, v

(b)
0 , . . . ,

v
(b)
N−1]. The concatenation circuit is shown in Fig. 1, where

we perform a joint controlled-swap operation on each pair
of qubits for |v(a)〉 and |v(b)〉 with a control ancillary qubit
initialized in |+〉 = 1/

√
2(|0〉 + |1〉). The state then becomes

1√
2

(|0〉|v(a)〉 ⊗ |v(b)〉 + |1〉|v(b)〉 ⊗ |v(a)〉), (3)

where ⊗ is the Kronecker product. Next, the key step is to
disentangle the last (n + 1) qubits by projecting the last value
qubit to |+〉. The success probability of the projection satisfies
p+ � 1/2 (see Appendix A). After the projection, the last n +
1 qubits are disentangled with the remaining n + 2 qubits, and
the full quantum state is given by

(|0〉|v(a)〉 + |1〉|v(b)〉) ⊗ |vuni〉 = |v(a) ⊕ v(b)〉 ⊗ |vuni〉,
where we have defined vuni = [1/2, 1/2, . . . , 1/2]. Note that
|v(a) ⊕ v(b)〉 = ∑2N−1

i=0 |n + 1, i〉[vi|0〉 + (1 − vi )|1〉], where
vi = v

(a)
i for i < N and vi = v

(b)
i−N for i � N . By tracing out

|vuni〉, the label encoding state of the concatenated vectors
|v(a) ⊕ v(b)〉 is obtained. Because |v(a)〉 and |v(b)〉 are (n + 1)
qubit states, and each control swap gate can be realized
with a constant number of single- and two-qubit gates, the
concatenation circuit has O(n) circuit depth.

The sequential scheme works by applying the concate-
nation circuit with a divide-and-conquer strategy (see also
Algorithm 1). As shown in Fig. 2(a), we sequentially prepare
the (i + 1)-qubit label encoding state via the concatenation
circuit. All ancillary qubits are disentangled after the mea-
surement and can be reused, so only O(i) ancillary qubits
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FIG. 2. (a),(b) Low-depth quantum circuit for preparing a posi-
tive label encoding state for (a) sequential parallel preparation and
(b) parallel preparation. (c) A parallel concatenation circuit B′

i con-
tains multiple (nonparallel) concatenation circuits Bi. (d) Circuit for
preparing arbitrary states |ψ (ṽ)〉 with four positive label encoding
states. Red represents the target output state.

are required at each step. The sequential scheme thus requires
O(i) ancillary qubits and O(n) circuit depth. Meanwhile, we
need to repeat the concatenation circuit several times to ob-
tain the output state with constant probabilities. We denote
the average runtime for preparing (i + 1) qubit positive label
encoding states as Tpos(i). We also assume that each layer
of quantum gates takes a constant operation time. Because
the success probability of each concatenation circuit is larger
than 1/2, we have Tpos(i) � 2[2Tpos(i − 1) + k1i + k0]. Here,
k1 characterizes the runtime for a single control swap gate, and
k0 characterizes the runtime for processes that are independent
of i, such as detection time and latent time. We show that
Tpos(n) � O(N2).

The runtime can be improved by parallelization. First,
two input states of the concatenation circuit (see Fig. 1) can
be prepared in parallel. Second, one can prepare sufficient
copies of the input state and then perform the concatenation
circuit for multiple pairs of input states in parallel. In this
way, the success probability of the projection (with at least
one successful transformation) will be much higher, and the
total runtime could be reduced dramatically. In practical im-
plementation, this can help to reduce the decoherent error
significantly. In Fig. 2(c), we show the parallel concate-
nation circuit B′

i for preparing (i + 1)-qubit label encoding

Algorithm 1: fseq(x)

1: If x is two-dimensional:
2: prepare |x〉 with the unitary preparation method
3: Output |x〉
4: Else:
5: let x(a) ⊕ x(b) = x
6: prepare |x(a)〉 with fseq(x(a))
7: prepare |x(b)〉 with fseq(x(b))
8: perform transformation |x(a)〉 ⊗ |x(b)〉 → |x〉 (with

success probability on less than 1/2)
9: If the transformation in line 8 fails:
10: go to line 6
11: Else:
12: Output |x〉

states, which receives state |v(a)〉⊗ca ⊗ |v(b)〉⊗cb . One performs
the concatenation circuit cmin = min{ca, cb} times in parallel,
with a total of c′ successful trials, and we obtain the output
state |v(a) ⊕ v(b)〉⊗c′

. Note that c′ follows a binomial distribu-
tion c′ ∼ B(cmin, p+) with p+ � 1/2.

The parallel preparation of an (n + 1)-qubit label encod-
ing state is shown in Fig. 2(b), where we have denoted
vi: j = [vi, vi+1, . . . , v j]. We prepare c0 copies of the low di-
mensional label encoding states, i.e., |v0:1〉⊗c0 , |v2:3〉⊗c0 , . . . ,
which are concatenated recursively to state |v〉. Whenever
the parallel concatenation circuit has zero copies of out-
put, we repeat the preparation of the input state of the
corresponding block (see also Algorithm 2). The average
runtime and space complexity depend on c0. For example,
when c0 = �N + N3/4�, the ancillary qubit number scales as
O(N2), while Tpos(n) scales polylogarithmically as O(n2) (see
Appendix B). When c0 = 1, we need O(N ) ancillary qubits,
and we numerically find that Tpos(n) = O(N1.52) in the worst
case, i.e., p+ = 0.5 (see Appendix B). We note that although
more ancillary qubits are needed in the parallel schemes, only
the entanglement among at most (n + 1) qubits is required,
and all ancillary qubits can be reused after the preparation.

With the label encoding state, the amplitude encoding state
|ψ (v)〉 can be obtained by projecting the value qubit to |0〉

Algorithm 2: fpara(x, c0 )

1: If x is two-dimensional:
2: prepare c0 copies of |x〉 with the unitary preparation

method in parallel
3: Output |x〉⊗c0

4: Else:
5: let x(a) ⊕ x(b) = x
6: query fpara(x(a), c0 ) and fpara(x(b), c0 ) in parallel, get

return |x(a)〉⊗ca and |x(b)〉⊗cb

7: define cmin = min{ca, cb}
8: perform transformation |x(a)〉 ⊗ |x(b)〉 → |x〉 for cmin

times in parallel, with c trials success
9: If c = 0:
10: go to line 6
11: Else:
12: Output |x〉⊗c
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with probability ps, the value of which will be discussed in
the Sec. IV A. In this way, an arbitrary quantum state [Eq. (1)]
with real amplitudes ui can be prepared with a low circuit
depth. We summarize the result as follows:

Result 2. With probability ps, an arbitrary n-qubit quantum
state with real amplitudes can be prepared via the sequential
and parallel algorithms with O(n2) depth of single-qubit gates,
two-qubit gates, and local measurements.

We note that the runtime T of preparing the state with con-
stant probabilities is O(Tpos/ps), and we will shortly discuss
how to bound it in the general case.

The sequential and parallel algorithms also work for the
general case with complex amplitudes. However, the success
probability of the concatenation circuit with two arbitrary
vectors can only be lower bounded by p+ � 1/10, instead
of p+ � 1/2 for the positive amplitudes case. Therefore, the
runtime or the number of qubits will be significantly increased
(Appendix A).

The pseudocode of sequential and parallel preparation
methods for preparing positive quantum label encoding states
are provided as Algorithms 1 and 2, where x represents the
(unnormalized) amplitude of the target state, and fseq(x),
fpara(x, c0) are the target output quantum states. The quantum
devices mainly realize lines 2 and 8 in both algorithms.

IV. ARBITRARY STATE PREPARATION

Now we propose an alternative strategy to prepare the
label encoding state with arbitrary complex amplitudes.
We rewrite v as the combination of four positive vec-
tors, v = va − vb + ivc − ivd , whose elements are defined
as va

i = max (Re(vi ), 0), vb
i = max ( − Re(vi ), 0), vc

i =
max (Im(vi ), 0), and vd

i = max ( − Im(vi ), 0), respectively.
First, the four positive label encoding states |va〉, |vb〉,
|vc〉, and |vd〉 could be prepared with the above scheme.
Then, we introduce two ancillary qubits prepared in states
(|0〉 + i|1〉)/

√
2 and (|0〉 − |1〉)/

√
2. The entire system is

described by

(|00〉 − |01〉 + i|10〉 − i|11〉) ⊗ |vabcd〉, (4)

where we have used the abbreviation |vabcd〉 ≡ |va〉 ⊗ |vb〉 ⊗
|vc〉 ⊗ |vd〉. To obtain |v〉, we perform three sets of controlled-
controlled-swap gates, which swap |va〉 and one of the states
among |vb〉, |vc〉, and |vd〉, with two ancillary qubits as con-
trol qubits. The corresponding quantum circuit is shown in
Fig. 2(d), where the hollow nodes represent control on |0〉,
and the solid nodes represent control on |1〉. The state then
becomes

|00〉|vabcd〉 − |01〉|vbacd〉 + i|10〉|vcbad〉 − i|11〉|vdbca〉. (5)

The above operations require a total of 3(n + 1) control-
control-swap gates, each of which can be decomposed to
constant numbers of single- and two-qubit gates, so the cor-
responding circuit depth is O(n).

In the next step, we project two ancillary qubits and the
label qubits of the last three label encoding states to |+〉. If
the projection succeeds (the success probability p′

s will be
discussed later), the quantum state becomes

|+〉⊗2(|va〉 − |vb〉 + i|vc〉 − i|vd〉) ⊗ |vuni〉⊗3. (6)

Since |va〉 − |vb〉 + i|vc〉 − i|vd〉 = √
2|ψ (v)〉 ⊗ |−〉, we can

trace out |+〉⊗2 and |−〉 ⊗ |vuni〉⊗3 to have the target state
|ψ (v)〉. Together with Result 2, we have the following result:

Result 3. With probability p′
s, an arbitrary n-qubit quantum

state can be prepared via the sequential and parallel algorithms
with O(n2) depth of single-qubit gates, two-qubit gates, and
local measurements.

We note that the average runtime is proportional to Tpos

for preparing each |va〉, |vb〉, |vc〉, or |vd〉, divided by the
projection success probability p′

s, i.e., O(Tpos/p′
s). Next we

show how to estimate the success probabilities.

A. Projection success probability

To exactly prepare the amplitude encoding state |ψ (u)〉,
the projection probabilities ps (for positive data) and
p′

s (for complex data) are both lower bounded by
�(

∑
i |ui|2/ max(|ui|2)N ). The worst-case lower bound is

�(1/N ) and it could be tightened with a detailed analy-
sis. Denoting ui = |ai|/

√∑
i |ai|2 for positive data or ui =

ai/
√∑

i |ai|2 for general complex data, we consider that the
classical data u are randomly generated in two ways.

(i) For the first way, we let ai = bieiφi , and we uniformly
generate each bi from [−1, 1], and φi from [0, π ].

(ii) For the second way, we let ai = a(r)
i + ia(m)

i , and we
generate each a(r)

i , a(m)
i according to the standard normal dis-

tribution N (0, 1).
The first way corresponds to the case where the classical

data, i.e., each ui, are uniformly random; the second way cor-
responds to the case where the state vector |ψ (u)〉 is uniformly
random in the Hilbert space [36]. Then we can lower bound
the projection probability from the Chernoff bound as follows
(see Appendix C 1).

Result 4. With failure probability δ ∈ (0, 1), the projection
probabilities are lower bounded by

case 1 : ps, p′
s � �(δ1/N ),

case 2 : ps, p′
s � �(δ1/N/ ln(N/δ)). (7)

Therefore, for fixed δ, the projection probabilities could be
lower bounded by a constant for case 1 and by �(1/n) for case
2 given sufficiently large N .

We can further improve the projection probabilities
for case 2 by allowing approximate state preparation.
We introduce a cutoff value ucut and define ṽi ≡
arg(ui ) min(|ui|/ucut, 1). After preparing |ψ (ṽ)〉 with
ṽ = [ṽ0, ṽ1, . . . , ṽN−1], we can achieve the preparation
fidelity F ≡ |〈ψ (ṽ)|ψ (u)〉|2 � 1 − εth by appropriately
choosing the cutoff ucut. Note that a perfect preparation
F = 1 corresponds to ucut = max(|ui|). In the worst cases,
we have ps � mean(|ṽi|2) and p′

s � mean(|ṽi|2)/64 (see
Appendix C). These values decrease with ucut, whereas the
preparation fidelity F increases with ucut, indicating a tradeoff
between projection probability and fidelity (Appendix C 2).
By setting ucut appropriately, ps (p′

s) has a logarithmic relation
with εth and δ. We summarize our results as follows:

Result 5. With threshold infidelity εth ∈ (0, 1) and failure
probability δ ∈ (0, 1), the projection probabilities of obtaining
the final quantum states with fidelities F � 1 − εth are lower

043200-4



LOW-DEPTH QUANTUM STATE PREPARATION PHYSICAL REVIEW RESEARCH 3, 043200 (2021)

TABLE I. Comparison of different state preparation methods.
Depth, circuit depth; Runtime, circuit runtime × repetitions; Qubits,
total number of qubits; Parallel-1 and -2 correspond to parallel prepa-
ration with c0 = �N + N3/4� and c0 = 1. The average runtime for the
parallel-2 method is estimated with numerical simulation.

Depth Runtime Qubits

Unitary [4,5] O(N ) O(N ) O(n)
Sequential O(n2) O(N2) O(n)
Parallel-1 O(n2) O(n2) O(N2)
Parallel-2 O(n2) O(N1.52) O(N )

bounded by

ps, p′
s � �

(
δ2/N

ln δ−1 ln(δ−1ε−1
th

))
(8)

if the quantum states are sampled according to case 2.
Recall that the total runtime T scales as O(Tpos/ps) or

O(Tpos/p′
s). Combining the above results, we summarize the

circuit depth, runtime, and number of qubits in Table I.

B. Space-time tradeoff

We note that all three listed algorithms have a circuit depth
O(n2) with a different runtime and number of qubits. We can
see that the runtime decreases with more qubits, indicating
a space-time tradeoff in quantum state preparation. Further-
more, we change c0 for parallel preparation such that there
are a total of �Nβt � qubits with 1 � βq < 2, and we assume
the average runtime is in the form of T = O(Nβq ). We numer-
ically estimate the exponents βt for different βq. As shown in
Fig. 3, the exponents βt decrease rapidly with larger βq. Note
that with βq, T does not follow the polynomial scaling, which
is consistent with our analytical estimation.

Moreover, it can be noticed that both Algorithms 1
and 2 begin with the direct preparation of label encoding
states of two-dimensional vectors. One may begin with the
direct preparation (e.g., with methods in Ref. [5]) of higher-
dimensional states instead. In this way, the qubit numbers
can be reduced, at the cost of increasing the runtime. In
Appendix D, we further discuss this tradeoff with different
starting state vector dimensions.

FIG. 3. Space-time tradeoff in state preparation. The relation be-
tween time �Nβt � with exponent βt and space O(Nβq ) with exponent
βq for different parallel preparation schemes. When βq = 2, T no
longer follows polynomial scaling.

C. Circuit depth and runtime lower bound

Here, we introduce a fundamental lower bound of both the
circuit depth and the runtime for quantum state preparation
(Appendix E). If only constant-weight operations are allowed
and u is stored classically, we have the following result.

Result 6. Preparing an arbitrary quantum state from clas-
sical amplitudes u requires at least a circuit depth and
runtime �(n).

The basic idea is that when u is stored classically, one
requires at least 2n bits to store it. To “compress” the infor-
mation spread over 2n bits, at least �(n) layers of the local
operations circuit are required. This lower bound is indepen-
dent of the number of ancillary qubits, and measurement and
postselections are also taken into consideration. We note that
a similar result has also been derived in Ref. [37]. Our work
gives an explicit construction with circuit depth and runtime
O(n2), which is comparable to the lower bound.

V. DISCUSSION

We have demonstrated several protocols to prepare an arbi-
trary N-dimensional quantum state with O([log2(N )]2) circuit
depth, a different number of ancillary qubits, and a different
runtime. A comparison of our methods to existing methods
has been summarized in Table I. We also discuss the space-
time tradeoff of the parallel preparation. In addition to the
low-depth nature, there are other advantages of our work.
First, our methods only require to simultaneously maintain
entangled states of at most O(n) qubits, and the rest of the
ancillary qubits are prepared in a separate state. Second, our
methods have a much weaker requirement on the circuit pro-
grammability, since most parts of the circuit are fixed except
for the first few layers. Moreover, our methods do not require
heavy classical computation to compile the circuit, which
typically takes a time of O(N ) for unitary state preparation.
We note that very recently, another important protocol with a
logarithmic circuit depth has been proposed [37]. While the
method in Ref. [37] requires fewer ancillary qubits, the cir-
cuit compiling procedure is more time-consuming and more
complicated.

Our method can be generalized to the decomposition with
discrete quantum gate set cases. We take the fault-tolerant
elementary gate set {CNOT, H, T } [38] as an example. The
controlled-swap gate can be implemented with CNOT gate
and single-qubit gates. According to Ref. [38], an arbitrary
single-qubit gate can be approximated to accuracy ε using
O(ln 1/ε) number of H and T gates, so O(ln 4n/ε) gates lead
to an accuracy O(ε/4n). Therefore, with a total circuit depth
O(n2 ln(4n/ε)), an n-qubit quantum state can be approximated
to accuracy ε.

There are several open questions to be addressed. First, the
preparation time could be much longer in the worse case. For
example, if v is a sparse vector with only a constant number of
nonzero elements and bounded values, the success rate p′

s of
the projection in Eqs. (5) and (6) decreases linearly with N and
the total runtime will be N times larger. For a too small success
rate, interesting future work will be to design alternative state
preparation methods that exploit the sparsity and the struc-
ture of the amplitudes. Second, it is currently unclear if our
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methods are optimal in terms of either circuit depth or run-
time. While a lower bound has been derived in Result 6,
closing the gap between �(n) and O(n2) would be compelling
for both theoretical and practical purposes. Moreover, the
noise robustness of our method under different noise mod-
els is also an interesting question. Finally, it is interesting
to investigate applications of our methods in existing quan-
tum algorithms and to study their performance with noisy
intermediate-scaled quantum hardware [39–44]. The state
preparation is a crucial subroutine for many near-term quan-
tum algorithms [45–50], and the quantum advantage [41,51–
54] could be expected with a robust, efficient, and general
quantum state preparation protocol.
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APPENDIX A: POSITIVE LABEL ENCODING STATES

Here, we provide more details on the concatenation circuit.
We will provide the proof of Result 1, and discuss the success
probability for the general complex vectors.

Initially, we are given the product of an extra qubit at state
|+〉 = (|0〉 + |1〉)/

√
2 and the label encoding states of v(a)

and v(b). The initial state is given by (up to a normalization
factor)

|+〉|v(a)〉|v(b)〉. (A1)

According to the definition, v(a), v(b) satisfies v
(a)
i , v

(b)
i ∈ C

and |v(a)
i |, |v(b)

i | � 1. Our goal is to transform Eq. (A1) to
|v(a) ⊕ v(b)〉 = |0〉|v(a)〉 + |1〉|v(b)〉. As described in the main
text, we first apply a set of controlled-swap gates on |v(a)〉 and
|v(b)〉 with the extra qubit as the control gate (see Fig. 4). The
(unnormalized) quantum state then becomes

|	0〉 = 1√
2
|0〉|v(a)〉 ⊕ |v(b)〉 + 1√

2
|1〉|v(b)〉 ⊕ |v(a)〉

= 1√
2
|0〉|v(a)〉

N−1∑
i=0

|n, i〉∣∣v(b)
i

〉

+ 1√
2
|1〉|v(b)〉

N−1∑
i=0

|n, i〉∣∣v(a)
i

〉
. (A2)

FIG. 4. Abbreviation of the control swap gate set.

We then project the last qubit (at state |v(a)
i 〉 or |v(b)

i 〉) to state
|+〉. This is equal to applying the projection operator M =
I22n+2 ⊗ |+〉〈+| to Eq. (A2). Because 〈+|v(a)

i 〉 = 〈+|v(b)
i 〉 =

1/
√

2, we have

|	1〉 = M|	0〉

= M

(
1√
2
|0〉|v(a)〉

N−1∑
i=0

|n, i〉∣∣v(b)
i

〉

+ 1√
2
|1〉∣∣v(b)〉 N−1∑

i=0

|n, i〉∣∣v(a)
i

〉)

= 1

2
|0〉|v(a)〉

N−1∑
i=0

|n, i〉|+〉 + 1

2
|1〉|v(b)〉

N−1∑
i=0

|n, i〉|+〉

=
√

2

2
(|0〉|v(a)〉 + |1〉|v(b)〉) ⊗ |vuni〉

= 1√
2
|v(a) ⊕ v(b)〉 ⊗ |vuni〉. (A3)

The normalization factors in Eqs. (A2) and (A3) are

〈	0|	0〉 =
(

N−1∑
i=0

∣∣v(a)
i

∣∣2 + ∣∣1 − v
(a)
i

∣∣2

)

×
(

N−1∑
i=0

∣∣v(b)
i

∣∣2 + ∣∣1 − v
(b)
i

∣∣2

)

= AaAb, (A4a)

〈	1|	1〉 = 1

2

N−1∑
i=0

(∣∣v(a)
i

∣∣2 + ∣∣1 − v
(a)
i

∣∣2 + ∣∣v(b)
i

∣∣2

+ ∣∣1 − v
(b)
i

∣∣2)
N

(
1

2

)2

× 2

= N

4
(Aa + Ab), (A4b)

where we have defined Aa = ∑N−1
i=0 |v(a)

i |2 + |1 − v
(a)
i |2

and Ab = ∑N−1
i=0 |v(b)

i |2 + |1 − v
(b)
i |2. The success probability
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Algorithm 3: ĝpara(x, c0 ) (subroutine of Algorithm 4)

1: If x is two-dimensional:
2: prepare c0 copies of |x〉 with unitary preparation method in parallel
3: Output |x〉⊗c0

4: Else:
5: let i = log2[dim(x)] − 1
6: let x(a) ⊕ x(b) = x
7: query gpara(x(a), c0 ) and gpara(x(b), c0 ) in parallel, get return |x(a)〉⊗ca and |x(b)〉⊗cb

8: define cmin = min{ca, cb}
9: perform transformation |x(a)〉 ⊗ |x(b)〉 → |x〉 for cmin times in parallel, with c′(i) trials success
10: Output |x〉⊗c′ (i)

of the projection can be calculated with the normalization
factor of the quantum states before and after the projection,

p+ = |〈	1|	1〉|
|〈	0|	0〉| = N

4

Aa + Ab

AaAb
. (A5)

In Result 1, all amplitudes are assumed to be positive,
i.e., v

(a,b)
i ∈ [0, 1]. So we have Aa,b ∈ [ 1

2 N, N]. According to
Eq. (A5), the success probability satisfies

p+ ∈ [
1
2 , 1

]
. (A6)

So Result 1 holds true.
If v

(a,b)
i are complex values, we have Aa,b ∈ [ 1

2 N, 5N],
which gives

p+ ∈ [
1

10 , 1
]
. (A7)

So p+ is lower bounded by 1/10.

APPENDIX B: RUNTIME FOR PARALLEL PREPARATION
OF A POSITIVE LABEL ENCODING STATE

In parallel quantum state preparation (Algorithm 2 in the
main text), c0 determines how many copies of each two-qubit
state we should prepare. With larger c0, it is less likely to
have c = 0 at line 9, and therefore the average runtime is
lower. In Appendix B 1, we estimate the average runtime for
c0 = �Nβq−1� (1 � βq < 2) numerically; in Appendix B 2, we
prove that when c0 = �K (N + N3/4)�, the average runtime is
O((ln N )2).

1. c0 = �Nβq−1�
The average runtimes are estimated numerically by sim-

ulating Algorithm 2. At each run, we initialize the number
of steps as tstp = 0. Whenever line 8 is reached, we update
tstp = tstp + log2 dim(x). This is because the runtime for line
8 dominates the total runtime, and its circuit depth is propor-
tional to log2 dim(x). Algorithm 2 is run 1000 times for N ∈
[4, 10]. We assume that the total average runtime increases
polynomially as O(Nβt ). For each βq, the time exponent βt

is estimated according to the slope of plot log2(tstp) versus
log2(N ). Here, tstp is the mean of tstp at the final step. For
example, in Fig. 5, the slope for c0 = 1 is 1.52, so the average
runtime Tpos can be estimated as O(N1.52).

2. c0 = �N + N3/4�
In the following, we show that by setting c0 = �N + N3/4�,

the parallel preparation with Algorithm 2 has an average

runtime of O(n2). To facilitate the discussion, we introduce
a variance of parallel preparation Algorithm 4. Obviously,
the average runtime of Algorithm 4 is always lower than
Algorithm 2. So we can just focus on Algorithm 4 in the
following, and show that it has an average runtime of O(n2).

For a 2n+1-dimensional input vector x, the average runtime
of Algorithm 4 is O(n2). If one can show that, at line 10,
Pr[c′(n) > 0] [the probability that c′(n) > 0] is larger than a
nonzero constant (for arbitrarily large n), the average runtime
of Algorithm 4 can be bounded by O(n2).

To facilitate the discussion, we define cbnd(n, i) ≡
2n−i + 23(n−i)/4 [note that cbnd(n, i) > 0], and denote Pn,i ≡
Pr[c′(i) > cbnd(n, i)], Pn ≡ Pn,n. Now, one just needs to show
that Pn is always lower bounded by a nonzero constant.

At line 7 of Algorithm 4, the probability of both ca >

cbnd(n, i − 1) and cb > cbnd(n, i − 1) is Pn,i−1. So for cmin at
line 8, we have Pr[cmin > cbnd(n, i − 1)] = P2

n,i−1. Therefore,

Pn,i � Pr[c′(i) > cbnd(n, i)|cmin > cbnd(n, i − 1)]

× Pr[cmin > cbnd(n, i − 1)]

� Pr[c′(i) > cbnd(n, i)|cmin > cbnd(n, i − 1)]P2
n,i−1

� Pr[c′(i) > cbnd(n, i)|cmin = cbnd(n, i − 1)]P2
n,i−1.

(B1)

FIG. 5. Numerical results of the average runtime for Algorithm 2
for c0 = 1 (black), c0 = �N0.2� (blue), c0 = �N0.4� (red), c0 = �N0.6�
(magenta), and c0 = �N0.8� (green). Dots are simulation results of tstp

averaged over 1000 times; lines are the corresponding linear fittings.
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Algorithm 4: gpara(x, c0 )

1: query ĝpara(x, c0 ) to obtain |x〉⊗c.
2: If c > 0:
3: Output |x〉⊗c

4: Else if c = 0:
5: go to line 1

The last inequality is because c′(i) follows binomial distribu-
tion c′(i) ∼ B(cmin, p+) with p+ > 1/2, and the probability
that c′(i) > cbnd(n, i) increases monotonically with cmin.
Pr[c′(i) > cbnd(n, i)|cmin = cbnd(n, i − 1)] is just the cumu-
lative distribution function of binomial distribution, and
according to Hoeffding’s inequality, we have

Pr[c′(i) > cbnd(n, i)|cmin = cbnd(n, i − 1)] > f (n, i), (B2)

where

f (n, i) ≡ 1− exp

(
−2cbnd(n, i − 1)

(
1

2
− cbnd(n, i)

cbnd(n, i − 1)

)2)
.

(B3)

So we have

Pn,i > P2
n,i−1 f (n, i) (B4)

and

Pn = Pn,n > P2
n,n−1 f (n, n) > P2

n,n−2 f (n, n − 1)2 f (n) · · ·

>

n−1∏
i=1

f (n, i)2n−i
. (B5)

Because f (n, i) < 1 for all i, the cumulative product∏n−1
i=1 [1 − f (n, i)]2n−i

decreases with n monotonically. So we
have

Pn > lim
n→∞ Pn > lim

n→∞

n−1∏
i=1

[1 − f (n, i)]2n−i
> 0.006. (B6)

As Pn is lower bounded, Algorithm 4 has an average runtime
of O(n2). Because the average runtime of Algorithm 2 is
always lower than Algorithm 4, it also has an average runtime
of O(n2).

APPENDIX C: PROJECTION SUCCESS PROBABILITY
FOR PREPARING ARBITRARY QUANTUM STATES

Here, we discuss the projection success probability ps, p′
s.

In Appendix C 1 we discuss perfect preparation and prove
Result 4; in Appendix C 2 we discuss cutoff preparation and
prove Result 5.

1. Perfect preparation

With the preparation method used in Result 2 for positive
vectors, ps can be directly determined by the success proba-
bility of projecting the value qubit to |0〉:

ps =
∑N−1

i=0 |vi|2∑N−1
i=0 |vi|2 + ∑N−1

i=0 |1 − vi|2
� 1

N

N−1∑
i=0

|vi|2. (C1)

p′
s in Result 3 for general complex vectors is more involved.

From Eqs. (5) and (6), the projection operator can be written
as M ′ = |+〉〈+|⊗2 ⊗ I2n+1 ⊗ (I2n ⊗ |+〉〈+|)⊗3. The quantum
state before measurement is [Eq. (5) in the main text]

|	 ′
0〉 = (|00〉|vabcd〉 − |01〉|vbacd〉

+ i|10〉|vcbad〉 − i|11〉|vdbca〉), (C2)

and the state after the projection is [Eq. (6) in the main text]

|	 ′
1〉 = M ′|	0〉

= 1

2
|+〉⊗2(|va〉 − |vb〉 + i|vc〉 − i|vd〉) ⊗ |vuni〉⊗3

= 1

2
|+〉⊗2

N−1∑
i=0

|n, i〉[(v(a)
i − v

(b)
i + iv(c)

i − iv(d )
i

)|0〉

− (
v

(a)
i − v

(b)
i + iv(c)

i − iv(d )
i

)|1〉)
] ⊗ |vuni〉⊗3

= 1

2
|+〉⊗2

N−1∑
i=0

vi|n, i〉(|0〉 − |1〉) ⊗ |vuni〉⊗3

= 1√
2
|+〉⊗2|ψ (v)〉 ⊗ |−〉 ⊗ |vuni〉⊗3. (C3)

Therefore, p′
s can be calculated as

p′
s = |〈	 ′

1|	 ′
1〉|

|〈	 ′
0|	 ′

0〉|
. (C4)

Because |〈va|va〉| = ∑N−1
i=0 (va

i )2 + (1 − va
i )2 � N and simi-

larly for |vb〉, |vc〉, |vd〉, we have |〈vabcd |vabcd〉| � N4. So we
have |〈	 ′

0|	 ′
0〉| � 4N4. In addition, one can calculate that

|〈	 ′
1|	 ′

1〉| = N3

16

∑N−1
i=0 |vi|2. Therefore,

p′
s �

1

64N

N−1∑
i=0

|vi|2. (C5)

In the following, we prove Result 4 for sampling case 1 and
sampling case 2 separately.

a. Sampling case 1

In case 1, |vi| distributes uniformly in [0,1], so we have

mean

(
1

N

N−1∑
i=0

|vi|2
)

= 1/3, (C6a)

mean

(
1

N

N−1∑
i=0

|vi|2 + |1 − vi|2
)

= 2/3. (C6b)

043200-8



LOW-DEPTH QUANTUM STATE PREPARATION PHYSICAL REVIEW RESEARCH 3, 043200 (2021)

For x, y > 0, we have

Pr[ps � x/y] � Pr

[
1
N

∑N−1
i=0 |vi|2

1
N

∑N−1
i=0 |vi|2 + |1 − vi|2

� x/y

]

� Pr

[
1

N

N−1∑
i=0

|vi|2 � x and
1

N

N−1∑
i=0

|vi|2 + |1 − vi|2 � y

]

� 1 − Pr

[
1

N

N−1∑
i=0

|vi|2 < x

]
− Pr

[
1

N

N−1∑
i=0

|vi|2 + |1 − vi|2 > y

]
, (C7)

where we have used the relation Pr[A and B] = 1 − Pr[A and B] − Pr[A and B] − Pr[A and B] = 1 − Pr[A and B] − Pr[A] �
1 − Pr[B] − Pr[A].

According to the Chernoff bound, for any t1, t2 > 0, we have

Pr

[
1

N

N−1∑
i=0

|vi|2 < x

]
�

[
mean

(
e−t1|vi|2)]N

et1Nx =
[√

πerf(
√

t1)

2
√

t1
et1x

]N

�
[√

π

2

et1x

√
t1

]N

, (C8a)

Pr

[
1

N

N−1∑
i=0

|vi|2 + |1 − vi|2 > y

]
� mean

(
et2(|vi|2+|1−vi|2 )

)N
e−Nt2y =

[
et2/2√π/2erfi(

√
t2/2)√

t2
e−t2y

]N

�
[

0.9
et2(1−y)

√
t2

]N

. (C8b)

Letting x = 1
5 (δ/2)2/N , y = 1 − 1

5 (δ/2)2/N , and setting
t1 = 1/(2x), t2 = 1/(2 − 2y), Eq. (C8) becomes

Pr

[
1

N

N−1∑
i=0

|vi|2 <
1

5
(δ/2)2/N

]
� δ/2, (C9a)

Pr

[
1

N

N−1∑
i=0

|vi|2 + |1 − vi|2 > −1

5
(δ/2)2/N

]
� δ/2, (C9b)

so Eq. (C7) becomes

Pr

[
ps �

1
5 (δ/2)2/N

1 − 1
5 (δ/2)2/N

]
� 1 − δ. (C10)

In other words, ps is at the order of �(δ1/N ). For p′
s, the proof

is similar.

b. Sampling case 2

Because vi = ui/ max(|ui|), we can rewrite Eqs. (C1) and
(C5) as

ps �
1

N

∑N−1
i=0 |ai|2

max |ai|2 , (C11a)

p′
s �

1

64N

∑N−1
i=0 |ai|2

max |ai|2 . (C11b)

In case 2, ai = a(r)
i + ia(m)

i , and the real and imaginary
parts of ai are independently sampled from standard normal
distribution. |ai| follows Rayleigh distribution, and for am ∈
(0,∞), we have

Pr[|ai| < am] = 1 − e−a2
m/2. (C12)

So the maximum over all |ai| is given by

Pr[max |ai|2 < a2
m] = (

1 − e−a2
m/2

)N

� 1 − Ne−a2
m/2. (C13)

By setting am = √
2 ln(2N/δ), we have

Pr[max |ai|2 � 2 ln(2N/δ)] < δ/2. (C14)

Moreover, it can be calculated that

mean(|ai|2) = 2, (C15a)

mean
(
e−t |ai|2) = 1/(1 + 2t ). (C15b)

According to the Chernoff bound, for any t > 0, we have

Pr

[
1

N

N−1∑
i=0

|ai|2 � x

]
�

(
etx

1 + 2t

)N

�
(

etx

2t

)N

. (C16)

Letting x = 1
2 (δ/2)1/N and t = 1/x, we have

Pr

[
1

N

N−1∑
i=0

|ai|2 � (δ/2)1/N

2

]
� δ/2. (C17)

Combining Eqs. (C11), (C14), and (C17), we have

Pr

[
ps �

(δ/2)1/N

4 ln(2N/δ)

]
� Pr

[ ∑N−1
i=0 |ai|2

N max |ai|2 � (δ/2)1/N

4 ln(2N/δ)

]

� 1 − Pr

[
1

N

N−1∑
i=0

|ai|2 <
(δ/2)1/N

2

]

− Pr[max |ai|2 > 2 ln 2N/δ]

� 1 − δ/2 − δ/2

= 1 − δ. (C18)

In other words, ps = �( δ1/N

ln(N/δ) ). For p′
s the proof is similar.

2. Cutoff preparation

With the cutoff value ucut and defining ṽi ≡
arg(ui ) min(|ui|/ucut, 1), the normalized cutoff target state
becomes |ψ (ṽ)〉 = 1√∑N−1

i=0 |ṽi|2
∑N−1

i=0 ṽi|n, i〉. For sampling
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case 2, it can be further rewritten as

|ψ (ṽ)〉 = 1

‖ã‖2

N−1∑
i=0

ãi|n, i〉, (C19)

where ‖ã‖2 ≡
√∑N−1

i=0 |ãi|2, and ãi ≡
arg(ai ) min(|ai|, ucut‖a‖2). The proof of Result 5 follows
from two lemmata as follows.

Lemma 1. By setting u2
cut = 8

N (4/δ)1/N ln (12/(εthδ)),
we have

Pr[F � 1 − εth] �1 − δ/2. (C20)

Proof. Because

|〈ψ (u)|ψ (ṽ)〉| = 1

‖a‖2‖ã‖2

∑
i

|aiãi|

� 1

‖a‖2
2

∑
i

|aiãi|

= 1

‖a‖2
2

∑
i

(|ai|2 − |ai| max(0, |ai| − ucut‖a‖2))

= 1 − 1

‖a‖2
2

∑
i

|ai| max(0, |ai| − ucut‖a‖2), (C21)

we have

F = |〈ψ (u)|ψ (ṽ)〉|2

� 1 − 2
1

‖a‖2
2

∑
i

|ai| max(0, |ai| − ucut‖a‖2). (C22)

For any x > 0, we have

Pr[F � 1 − εth] �Pr

[
1

‖a‖2
2

∑
i

ai max(0, |ai| − ucut‖a‖2) � εth

2

]

�Pr

[
‖a‖2

2 � Nx2 and
∑

i

ai max(0, |ai| − ucut‖a‖2) � εthNx2

2

]

�Pr

[
‖a‖2

2 � Nx2 and
∑

i

ai max(0, |ai| − ucut

√
Nx) � εthNx2

2

]

�1 − Pr
[‖a‖2

2 < Nx2
] − Pr

[∑
i

ai max(0, |ai| − ucut

√
Nx) >

εthNx2

2

]

= 1 − Pr
[‖a‖2

2 < Nx2] − Pr

[∑
i


i >
εthNx2

2

]
, (C23)

where we have defined 
i = |ai| max(0, |ai| − ucut

√
Nx). After some calculation, we find that for any t > 0, we have

mean(e−t |ai|2 ) = 1/(1 + 2t ) (C24)

and

mean(
i ) � 2e−N (ucutx)2/2. (C25)

From the Chernoff bound, we have

Pr
[‖a‖2

2 < Nx2
]
�

[
etx2

1 + 2t

]N

. (C26)

Letting x2 = (δ/4)1/N

2 and t = (δ/4)−1/N , we have

Pr

[
‖a‖2

2 < N
(δ/4)1/N

2

]
�

(
e0.5

1 + 2(δ/4)−1/N

)N

�
(

e0.5

2

)N(
1

(δ/4)−1/N

)N

� δ/4. (C27)
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Letting u2
cut = 1

x2
4
N ln( 12

εthδ
) = 8

N ( 4
δ

)1/N ln( 12
εthδ

), from the Markov inequality, we have

Pr

[∑
i


i > N
εthx2

2

]
� Nmean(
i )

Nεthx2/2
�

4 exp
[− ln

(
144/ε2

thδ
2
)]

εthx2
� 4ε2

thδ
2

144εth
(δ/4)1/N

2
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Combining Eqs. (C23), (C27), and (C28), Lemma 1 holds true.
Lemma 2. By setting u2

cut = 8
N (4/δ)1/N ln (12/(εthδ)), we have

Pr[ps � Cp] � 1 − δ/2, (C29)

where

Cp = (δ/4)1/N

u2
cut12N ln(4/δ)

(C30)

= (δ/4)2/N

96 ln (8/(εthδ)) ln (4/δ)
. (C31)

Proof. According to Eq. (C1), we have ps � 1
N

∑N−1
i=0 min( |ai|2

(ucut‖a‖2 )2 , 1). So for any y > 0,
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3
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, (C32)

where we have defined 
′
i = min (|ai|2, (ucuty)2). Here, u2

cut =
8
N (4/δ)1/N ln (12/(εthδ)) as set in Lemma 1. For 0 < t1 < 1/2,
we have

mean(et1|ai|2 ) = 1/(1 − 2t1). (C33)

So according to the Chernoff bound, we have

Pr
[‖a‖2

2 > y2] � e−t1y2[
mean(et1|ai|2 )

]N

� e−t1y2
/(1 − 2t1)N . (C34)

Let y2 = 4N ln(8/δ) and t1 = 1/(4N ). It can be verified that

Pr
[‖a‖2

2 > y2
]
� e−t14N ln(8/δ)

(1 − 2t1)N

� δ/8

[
1

1 − 1/(2N )

]N

� δ/4. (C35)

Moreover, we have

mean(e−t2
′
i ) = 1 + 2t2e−(ucuty)2(1+2t2 )/2

1 + 2t2
, (C36a)
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= N
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3
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(C36b)

Therefore, according to the Chernoff bound,

Pr
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Because u2
cuty

2 = 32(4/δ)1/N ln (12/(εthδ)) ln(8/δ) >

32 ln 12 ln 8, when t2 > 1 we have 2t2e−(ucuty)2(1+2t2 )/2

< 1, and

Pr

[
N−1∑
i=0
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Letting t2 = 3(4/δ)1/N , we have

Pr

[
N−1∑
i=0


′
i < N (δ/4)1/N

]
�

[
e

3

1

(4/δ)1/N

]N

� δ/4. (C39)

Combining Eqs. (C32), (C35), (C39), and y2 = 4N ln(8/δ),
Lemma 2 holds true.
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FIG. 6. Tradeoff performance between parallel low-depth prepa-
ration and the unitary preparation method. nbit is the total number
of available qubits. Tu and Du are the leading order of runtime and
circuit depth of the unitary preparation method in Ref. [5].

Result 5 follows directly from Lemmas 1 and 2:

Pr[ps � Cp and F � 1 − εth]

� 1 − Pr[ps < Cp] − Pr[F < 1 − εth]

� 1 − δ. (C40)

Note that

Cp = �

(
δ2/N

ln δ−1 ln
(
δ−1ε−1

th

))
. (C41)

For p′
s, the proof of Result 5 is similar.

APPENDIX D: TRADEOFF WITH UNITARY
PREPARATION

As described in Algorithm 5, the tradeoff preparation
method is similar to Algorithm 2 in the main text except that
at line 2, unitary preparation is applied when the input state is
2nu -dimensional. Algorithm 2 can be considered as an extreme
case of Algorithm 5 when nu = 1. For larger nu, the circuit
depth is higher but the average runtime is lower.

As an example, in Fig. 6 we consider the preparation of
a 16-qubit target state. We use the case 2 sampling method,
and the results are averaged over 100 random states. When
estimating circuit depth and runtime, all controlled-swap gates
and control-control swap gates are decomposed into single-
qubit and CNOT gates. As can be seen, with more available

ancillary qubits we have both a lower circuit depth (of single-
qubit and CNOT gates) and a lower runtime.

APPENDIX E: LOWER BOUND OF THE CIRCUIT DEPTH
FOR PREPARING AN ARBITRARY QUANTUM STATE

Our protocols show that the state preparation can be done
with O(n2) circuit depth. The question remains whether there
is a lower bound of the circuit depth for state preparation, and
how close our protocol is to the fundamental limit. In this
Appendix, we will address this problem under the following
framework:

(i) Initially, v is stored classically and there is no other prior
knowledge about the target state.

(ii) All operations are applied on at most k qubits.
(iii) Ancillary qubits are allowed, and qubits have all-to-all

connections.
Under the above framework, we have Result 6. The main

idea of the proof for Result 6 is as follows. First, we introduce
the concept of a light cone, and we show that the light cone
size required for quantum state preparation is �(N ), as there
are a total of N elements in v. Second, we show that in order
to obtain a light cone with �(N ), at least �(n) layers of local
operations are required.

We begin by introducing several definitions.
Qubit connections and light cone. At each layer of the quan-

tum circuit, we make a grouping of all qubits. We denote π (i)
m

as the ith group of qubits at the mth layer. Operations are ap-
plied only among the qubits in the same group. For example,
if there are four qubits (ntot = 4), and π

(1)
1 = {1, 4}, π (2)

1 =
{2, 3}, it means that at the first layer, qubits with label 1,4
are connected to each other, and qubits with label 2,3 are
connected to each other. We also denote the group contain-
ing qubit j at the lth layer as π ′

l ( j). In the example above,
we have π ′

1(1) = {1, 4}, π ′
1(2) = {2, 3}, π ′

1(3) = {2, 3}, and
π ′

1(4) = {1, 4}. Note that at each layer, each qubit belongs to
only one group.

The light cone of qubit j is defined as all qubits having a
connection to it. More rigorously, for an L-layer circuit, the
light cone of qubit j is

S ( j) ≡ S1( j), (E1)

Algorithm 5: ftradeoff(x, c0, nu)

1: If x is 2nu -dimensional:
2: prepare c0 copies of |x〉 with unitary preparation method in parallel
3: Output |x〉⊗c0

4: Else:
5: let x(a) ⊕ x(b) = x
6: query ftradeoff(x(a), c0, nu) and ftradeoff(x(b), c0, nu) in parallel, get return |x(a)〉⊗ca and |x(b)〉⊗cb

7: define cmin = min{ca, cb}
8: perform transformation |x(a)〉 ⊗ |x(b)〉 → |x〉 for cmin times in parallel, with c trials success
9: If c = 0:
10: go to line 6
11: Else:
12: Output |x〉⊗c
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where

Sm( j) ≡
{

π ′
m( j), m = L,⋃

k∈Sm+1( j) π
′
m(k), 1 � m < L.

(E2)

Because the operations are applied on at most k qubits,
the light cone size [number of elements of S( j)] satisfies
|S( j)| � kL.

Quantum operations and classical encoding of v. If there
are a total of Ntot qubits (Ntot is even), the operations at the mth
layer generally take the following form:

Em = E
π

(Ntot/2)
m

◦ · · · E
π

(2)
m

◦ E
π

(1)
m

, (E3)

where E
π

(i)
m

can be arbitrary quantum operations (with unitary,
measurement, and postselection) in the subspace containing
qubits in π (i)

m . The full operation of an L-layer quantum circuit
is just

E = EL ◦ · · · ◦ E2 ◦ E1. (E4)

For simplicity, we restrict ourselves to v ∈ [0, 1]N , and the
generalization to v ∈ C is straightforward. As v has a total of
N elements, it takes at least N qubits (or a classical bit) to store
v. Without a loss of generality, we assume that v is stored in
the following form:

N−1⊗
i=0

(|vi〉〈vi|)⊗Nc , (E5)

where we have allowed multiple copies (Nc) of the classical
information. We also assume that the n-qubit system encoding
v is initialized to ρenc, and there is an ancillary qubits system
initialized to ρanc.

The target state takes the form of Eq. (1) in the main
text, so in the most general cases, quantum state preparation

processes, E , should satisfy the following:

E
(
ρenc ⊗ ρanc ⊗

N−1⊗
i=0

(|vi〉〈vi|)⊗Nc

)
= α(v)|ψ (v)〉〈ψ (v)| ⊗ ρ ′

(E6)

for all v ∈ [0, 1]N . Here α(v) ∈ (0, 1] as postselections are
allowed, and ρ ′ can be an arbitrary quantum state of the
joint system of ancillary qubits and the qubits encoding the
classical information. Our goal is to find the lower bound of L
in Eq. (E4) for quantum operations satisfying Eq. (E6).

We first introduce a Lemma relating the light cone to
the reduced density matrix (RDM) of the final output states.
Lemma 3 can be considered as a generalization of Lemma 2.3
in [55].

Lemma 3. The RDM of qubit j of the final output state
depends only on the RDM of the input state for the subsystem
containing qubits in its light cone S ( j).

Proof. The RDM of the final output state for qubit j de-
pends only on the RDM of SL( j) at the (L − 1)th layer.

Similarly, the RDM of Sm( j) at the mth layer depends only
on the RDM of Sm−1( j) at the (m − 1)th layer. Therefore, the
RDM of qubit j of the final output state depends only on the
RDM of the total input state of S1( j) = S ( j), i.e., the light
cone of qubit j.

The proof of Result 6 follows directly from Lemma 3 as
follows:

Proof. According to Eq. (E6), the final state of the encoding
system and the RDM of each qubit in it depends on at least one
copy of the state

⊗N−1
i=0 |vi〉〈vi|.

According to Lemma 3, for qubits in the encoding system,
the light cone S ( j) contains at least N qubits, i.e., |S ( j)| � 2n.
If the elementary quantum operations are k-local, for an L-
layer quantum circuit we have |S( j)| � kL. Therefore, in order
to obtain an operation satisfying Eq. (E6), the circuit depth is
lower bounded by L � ln 2

ln k n = O(n).
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