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Machine learning statistical gravity from multi-region entanglement entropy
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The Ryu-Takayanagi formula directly connects quantum entanglement and geometry. Yet the assumption
of static geometry lead to an exponentially small mutual information between far-separated disjoint regions,
which does not hold in many systems such as free fermion conformal field theories. In this paper, we proposed
a microscopic model by superimposing entanglement features of an ensemble of random tensor networks of
different bond dimensions, which can be mapped to a statistical gravity model consisting of a massive scalar field
on a fluctuating background geometry. We propose a machine-learning algorithm that recovers the underlying
geometry fluctuation from multi-region entanglement entropy data by modeling the bulk geometry distribution
via a generative neural network. To demonstrate its effectiveness, we tested the model on a free fermion system
and showed mutual information can be mediated effectively by geometric fluctuation. Remarkably, locality
emerged from the learned distribution of bulk geometries, pointing to a local statistical gravity theory in the
holographic bulk.
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I. INTRODUCTION

The holographic duality [1–5] is a duality between bound-
ary d-dimensional quantum field theories and bulk (d + 1)-
dimensional gravitational theories in asymptotically anti-de
Sitter (AdS) space. It provides an appealing explanation
for the emergence of spacetime geometry from quantum
entanglement [6–16]. The connection is manifested in the
Ryu-Takayanagi (RT) formula [17,18] S(A) = 1

4GN
minγA |γA|

that relates the entanglement entropy S(A) of a boundary
region A to the area of the extremal surface γA in the bulk
that is homologous to the same region A. Progress has been
made to reconstruct the bulk geometry from the boundary
data in terms of geodesic lengths [19–22], extremal ar-
eas [23–25] or entanglement entropies [26,27]. A majority
of the effort has been focused on reconstructing a classi-
cal geometry from single-region entanglement entropies (or
independent extremal surfaces). However, multi-region en-
tanglement entropies further encode the correlation among
multiple extremal surfaces, which could reveal how the bulk
geometry fluctuations around its classical background (assum-
ing a semiclassical description of the bulk gravity). In this
paper, we will explore the possibility to extract information
about fluctuating holographic bulk geometries from multi-
region entanglement entropies of a quantum system using
generative models in machine learning.

A feature of the holography entanglement entropy based
on the RT formula is that the mutual information IA:B = SA +
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SB − SAB vanishes between two disjoint boundary regions A
and B that are far separated from each other [28,29], because
the minimum surface enclosing the combined region AB will
be a disjoint union of γA and γB such that the entropies simply
add up as SAB = SA + SB, leaving no room for mutual infor-
mation. While the vanishing mutual information is a correct
feature of holographic conformal field theories (CFT), it is
not generally the case for many other quantum systems (e.g.,
free-fermion CFT). One idea to remedy the problem is to
introduce bulk matter fields to mediate the mutual information
[30–32]. Another possibility is to consider statistical fluctua-
tions of bulk geometries such that γA and γB are correlated to
produce the finite mutual information. The statistical gravita-
tional fluctuation may be viewed as an effective description
arising from tracing out bulk matter fields. We will further
explore the second possibility of fluctuating geometry using
a concrete model of random tensor network (RTN) [33,34]
with fluctuating bond dimensions. The bond dimension fluctu-
ation translates to the bulk geometry fluctuation in the context
of tensor network holography [35–37], which is presumably
governed by some statistical gravity model.

However, it is unclear what should be the appropriate bulk
statistical gravity model that best reproduces the entangle-
ment feature of a given quantum system on the boundary. To
address this challenge, we propose to apply data-driven and
machine-learning approaches to uncover the statistical gravity
model behind the observational data of quantum many-body
entanglement. What needs to be learned is the joint proba-
bility distribution of bond dimensions (or bulk geometries).
Generative models [38–44] in machine learning provide us
precisely the tool to learn unknown distributions from data.
In particular, we apply a deep generative model [39,41] to
describe the bulk geometry fluctuation. We train the model
by matching the model predictions of multi-region entangle-
ment entropies with their actual values evaluated in the given
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FIG. 1. (a) Details of the RTN near an edge. (b) The planar graph
G on which the RTN is defined. The vertices are classified into the
bulk vertices (in red) and the boundary vertices (in green). (c) The
dual graph G̃ of the RTN graph G.

quantum many-body state. After training, the generative
model should tell us the statistical gravity model that emerges
from learning.

The approach developed in this work extends the general
idea of entanglement feature learning [26], which aims to
reconstruct the bulk geometry by learning from the entangle-
ment data on the boundary. Compare to the previous work, this
paper makes significant progress in including the gravitational
fluctuation in the model, which will enable us to learn an
emergent gravity theory rather than a static classical geom-
etry. We will focus on (1+1)D quantum systems, and assume
that the system admits an approximate semiclassical geome-
try description in the holographic bulk. Based on a random
tensor network model with fluctuating bond dimensions, we
first establish a holographic model for quantum entanglement
involving a scalar matter field on a statistically fluctuating spa-
tial geometry. Applying our approach to a free-fermion CFT
state with a large central charge, we uncover a statistical grav-
ity model governed by Weyl field fluctuations propagating on
the hyperbolic background geometry. We show that the Weyl
field fluctuation has the emergent bulk locality by studying
its bulk correlation. We further analyze the spectrum and the
leading collective modes of the emergent gravity theory. We
also show that the matter field mass gets renormalized by the
gravitational fluctuation as expected.

II. HOLOGRAPHIC MODELS OF ENTANGLEMENT

A. Random tensor network model

The random tensor network (RTN) model is an intuitive
toy model for holographic duality, which directly connects
quantum states and emergent geometries. The original pro-
posal [33] of RTN assumes a fixed bond dimension on every
link of the tensor network. It can be generalized to include
bond dimension fluctuations (or more precisely, bond entan-
glement fluctuations) [34,45]. The generalized RTN model
in consideration is defined as follows: (i) A planar graph
G = (V, E ) is given to describe the background network ge-
ometry, where V denotes the vertex set and E denotes the
edge set. V = Vblk ∪ Vbdy is divided into two subsets: the bulk
Vblk and the boundary Vbdy sets, see Fig. 1(b). (ii) A local
Hilbert space He

v is associated with each pair (v, e) of vertex
v ∈ V and its adjacent edge e ∈ E (for e not adjacent to v, the
associated Hilbert space is considered trivial He

v
∼= C), see

Fig. 1(a). (iii) A random pure state |ψv〉 ∈ Hv ≡ ⊗
e∈dv He

v

is defined on every bulk vertex v ∈ Vblk. (iv) A random

entangled state |φe〉 ∈ He ≡ ⊗
v∈∂e He

v is defined across every
edge e ∈ E . (v) RTN defines an ensemble ERTN = {|�〉} of
pure states in the boundary Hilbert space Hbdy ≡ ⊗

v∈Vbdy
Hv

by taking a (partial) projection in the bulk Hilbert space
Hblk ≡ ⊗

v∈Vblk
Hv as

|�〉 = 〈ψ |φ〉 : |ψ〉 =
⊗
v∈Vblk

|ψv〉, |φ〉 =
⊗
e∈E

|φe〉. (1)

The probability measure of |�〉 in the RTN ensemble ERTN

is given by P(|�〉) = P(|ψ〉)P(|φ〉). The vertex state distri-
bution P(|ψ〉) = ∏

v∈Vblk
P(|ψv〉) is assumed to be factorized,

and on each vertex, the distribution P(|ψv〉) is taken to be the
Haar measure (i.e., uniform random states in Hv). The edge
(link) state distribution P(|φ〉) is generally a nontrivial joint
distribution depending on all |φe〉 on all edges, which allows
the quantum entanglement across different edges to fluctuate
collectively.

For any operator O(k) defined in k copies of the boundary
Hilbert space H⊗k

bdy, its expectation value in the product state

|�〉⊗k is defined to be

〈O(k)〉 = E
|�〉∈ERTN

Tr((|�〉〈�|)⊗kO(k) )

〈�|�〉k
. (2)

We assume that the correlation between denominator and
numerator is not important (which is generally valid in the
semiclassical regime when fluctuations are weak), so that we
can approximate the ensemble average of the ratio by the ratio
of separate averages,

〈O(k)〉 	 1

Nk
E

|�〉∈ERTN

Tr((|�〉〈�|)⊗kO(k) ), (3)

where Nk = E|�〉∈ERTN〈�|�〉k is the kth moment of the state
norm squared. For example, the 2nd Rényi entanglement en-
tropy SA (or more precisely, the purity e−SA ) of RTN states in
a boundary region A can be calculated by taking k = 2 and
O(k) = XA (the swap operator supported in region A),

e−SA ∝ E
|�〉∈ERTN

Tr((|�〉〈�|)⊗2XA). (4)

We will suppress the Rényi index throughout this paper, and
use SA to denote the 2nd Rényi entropy. The RTN model
provides an effective description of entanglement entropies of
typical quantum states on the holographic boundary, given the
background geometry G together with fluctuations of states
|ψv〉, |φe〉 in the holographic bulk.

It worth mention that in modeling the 2nd Rényi en-
tanglement entropy by Eq. (4), the average over the RTN
ensemble ERTN is taken neither on the state vector level
(i.e., not a pure state superposition E|�〉∈ERTN |�〉), nor on
the density matrix level (i.e., not a mixed state superposition
E|�〉∈ERTN |�〉〈�|), but on the double density matrix level (as
E|�〉∈ERTN (|�〉〈�|)⊗2). The same average strategy commonly
appeared in random tensor network/quantum circuit litera-
tures [26,33,34,46–48]. Such average may not have direct
physical realization, nevertheless it defines a RTN model for
entanglement entropy, which can produce (i) positive mutual
information IA:B that does not vanish between distant regions
and (ii) possibly negative tripartite information IA:B:C (see Ap-
pendix A for a perturbative proof). These features indicate that
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the generalized RTN model is expressive enough to describe
quantum chaotic states with information scrambling [49,50]
and to capture mutual information between distant entangle-
ment regions, which goes beyond holographic CFT states.

B. Ising and dual Ising models

Evaluating the ensemble average in Eq. (4) following the
approach developed in Ref. [33], the RTN purity e−SA can be
map to the partition function of an Ising model on the graph
G with fluctuating coupling constants

e−SA =
∑
[σ,J]

P[σ |J]P[J] δ[σbdy ⇔ A], (5)

with P[σ |J] given by

P[σ |J] = e−E [σ |J]

Z[J]
,

E [σ |J] = −
∑
e∈E

(
Je

2

∏
v∈∂e

σv

)
,

Z[J] =
∑
[σ ]

e−E [σ |J]δ[σbdy ⇔ ∅], (6)

and P[J] given by

P[J] =
∫

|φ〉

∏
e∈E

δ(Je − S(|φe〉))P(|φ〉). (7)

Here σv = ±1 is the Ising variable defined on every vertex
v ∈ V , Je � 0 is the ferromagnetic coupling strength on every
edge e ∈ E . Je is determined by S(|φe〉), the 2nd Rényi entropy
of the state |φe〉 (entangled between the Hilbert spaces Hv+e

and Hv−e where v± are the two vertices on the boundary
of e). Je characterizes how much the tensors are entangled
with each other across the edge e in the tensor network. It
corresponds to the notion of bond dimension when |φe〉 is
maximally entangled. The distribution P[J] describes the how
the effective bond dimension (bond entanglement) fluctuates
in the RTN ensemble. Finally, the partition function is subject
to the boundary condition that is set by the boundary region A
of SA,

∀v ∈ Vbdy : σv =
{+1 v /∈ A,

−1 v ∈ A,
(8)

which is denoted as δ[σbdy ⇔ A] in Eq. (5). The partition
function Z[J] properly normalizes the Boltzmann weight of
the Ising model, such that SA = 0 when the entanglement
region A = ∅ is empty.

Given that G is a planar graph [51], we can use the
Kramers-Wannier duality to rewrite the Ising model Eq. (5)
on the dual lattice G̃ = (Ṽ , Ẽ ), as shown in Fig. 1(c), where
Ṽ corresponds to the set of faces in G and Ẽ ∼= E . The dual
Ising model takes the similar form

e−SA =
∑
[σ̃ ,J̃]

( ∏
ṽ∈∂A

σ̃ṽ

)
P[σ̃ |J̃]P[J̃], (9)

FIG. 2. (a) Two-point correlation and (b) four-point correlation
of dual Ising spins.

with P[σ̃ |J̃] given by

P[σ̃ |J̃] = e−E [σ̃ |J̃]

Z[J̃]
,

E [σ̃ |J̃] = −
∑
ẽ∈Ẽ

(
J̃ẽ

2

∏
ṽ∈∂ ẽ

σ̃ṽ

)
,

Z[J̃] =
∑
[σ̃ ]

e−E [σ̃ |J̃], (10)

and P[J̃] related to P[J] by

P[J̃] =
(∏

e

∂Je

∂ J̃ẽ

)
P[J]. (11)

Here σ̃ṽ = ±1 is the dual Ising variable and J̃ẽ =
− ln tanh(Je/2) is the dual coupling. The boundary condi-
tion in the original Ising model translates to the insertion
of the dual Ising variable at every boundary point of en-
tanglement region A (i.e., at every entanglement cut). The
partition function Z[J̃] on the denominator ensures SA = 0
when the entanglement region A = ∅ is empty, i.e., when
there is no insertion of dual Ising variables. Both P[σ̃ |J̃] and
P[J̃] are normalized probability distributions, which defines
the joint distribution P[σ̃ , J̃] = P[σ̃ |J̃]P[J̃] for dual Ising
variables and their couplings. Therefore the purity of the
RTN state can be interpreted as the boundary correlation
of dual Ising variables e−SA = 〈∏ṽ∈∂A σ̃ṽ〉 in an Ising model
with fluctuating couplings. The RT formula can be recovered
in the classical limit when the RTN bond dimensions are
large and fixed, which corresponds to the deep ferromagnetic
phase of the original Ising model (Je � 1) or equivalently
the deep paramagnetic phase of the dual Ising model (J̃ẽ �
1). In such limit, the dual Ising correlation decays expo-
nentially with the geodesic distance 〈σ̃1σ̃2〉 ∝ e−|γ12|/ξ , as
illustrated in Fig. 2(a), which reproduces the RT formula
SA = |γ12|/ξ with some appropriate choice of the correlation
length ξ . Multi-region entanglement entropies will corre-
spond to higher-point correlations functions, such as e−SAB ∼
〈σ̃1σ̃2σ̃3σ̃4〉 ∼ e−|γ12|/ξ e−|γ34|/ξ in Fig. 2(b). Allowing the dual
Ising coupling J̃ to fluctuate collectively will introduce per-
turbations to the geodesic distance |γ12| → |γ12| + δ|γ12| in a
correlated manner, such that

e−SAB ∼ E(e−(|γ12|+δ|γ12|)/ξ e−(|γ34|+δ|γ34|)/ξ )

∼ e−|γ12|/ξ e−|γ34|/ξ e
1

2ξ2 E δ|γ12|δ|γ34|

∼ e−SA e−SB eIA:B . (12)
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Thus the correlated geometric fluctuation provides an effec-
tive mechanism to generate the mutual information between
far-separated regions A and B (beyond the classical RT for-
mula). Therefore we anticipate the fluctuating RTN model
to be a more expressive holographic model for entanglement
entropies. However, it is not clear how the dual Ising cou-
pling J̃ (or the effective bond dimension J) should fluctuate
precisely in order to quantitatively reproduce all multi-region
entanglement entropies of a given quantum many-body state.
The remaining task is learn the distribution P[J̃] (or other
equivalent distributions) from data.

C. Effective statistical gravity Model

Suppose the fluctuation of J̃ is small around its static back-
ground configuration, such that there is a meaningful notion
of background geometry in the bulk. The dual Ising model
can be described by an effective field theory in the continuum
limit

S[φ|g] = 1

2

∫
d2x

√
g(gi j∂iφ∂ jφ + m2φ2), (13)

where the dual Ising variable σ̃ṽ is coarse-grained to a massive
real scalar field φ(x), as the Ising model universally flows to
this massive Gaussian fixed point in the paramagnetic phase.
The theory is defined in the holographic space (without time
dimension). The fluctuating Ising coupling J̃ can be trans-
lated to a fluctuating bulk metric tensor g around a reference
background geometry ḡ [52], since a stronger local coupling
creates a larger local correlation, which effectively reduces the
local distance measure ds2 = gi jdxidx j between the corre-
lated Ising variables. Therefore the purity of RTN state Eq. (9)
can be effectively described by a statistical gravity model

e−SA =
∫

[φ,g]

(∏
x∈∂A

φ(x)

)
P[φ|g]P[g],

P[φ|g] = e−S[φ|g]

Z[g]
, Z[g] =

∫
[φ]

e−S[φ|g], (14)

where the gravity is “quenched” in the sense that the metric
configuration is generated with a probability distribution P[g]
independent of the scalar field φ configuration.

In two-dimensional space, the metric tensor has three inde-
pendent components. However two of them can be removed
by gauge transformation gi j → gi j + ∇iξ j + ∇ jξi. We can
choose the conformal gauge where the metric tensor gi j (x)
is parametrized by a Weyl field ω(x) that rescales a fixed
background ḡi j (x)

gi j (x) = e2ω(x)ḡi j (x), (15)

such that each Weyl field configuration represents a physically
distinct geometry. As a result, the integration

∫
[g] P[g] can be

replaced by
∫

[ω] P[ω] in Eq. (14). The unknown joint distribu-
tion P[ω] will be what we aim to learn from the entanglement
entropy data.

To numerically evaluate the multi-point scalar field corre-
lation, we can place the bulk field theory back on a lattice, say
on the dual graph G̃ = (Ṽ , Ẽ ). Using Regge calculus [53] to

discretize the action,

S[φ|ω] =
∑

〈xy〉∈Ẽ

Axy

2

(
φx − φy

�xy

)2

+
∑
x∈Ṽ

m2Ax

2
e2ωx φ2

x , (16)

where �xy can be interpreted as the geodesic distance between
two vertices x and y on the background geometry. Ax and
Axy are the areas associated to the vertex x and the edge
〈xy〉, respectively. �xy, Ax, Axy are all fixed according to the
choice of background metric, which will be specified later.
The statistical variables in the model are the scalar field φx and
the Weyl field ωx in the holographic bulk. The model predicts
the entanglement entropy on the holographic boundary by

e−SA =
∫

[φ,ω]

(∏
x∈∂A

φx

)
P[φ|ω]P[ω],

P[φ|ω] = e−S[φ|ω]

Z[ω]
, Z[ω] =

∫
[φ]

e−S[φ|ω] (17)

which is the underlying lattice model that will be used in the
machine-learning algorithm. The unknown distribution P[ω]
will be parameterized by a generative model. By matching
the model prediction with the actual data of entanglement
entropies calculated from a quantum state, the algorithm can
reconstruct the distribution P[ω] and infer the statistical grav-
ity model behind the entanglement structure.

III. MACHINE LEARNING METHOD

A. Generative modeling

Generative modeling is about learning probability dis-
tributions [54]. We will apply the simplest latent-variable
generative model [55] in this paper. The basic idea is to start
with a easy-to-sample prior distribution, such as a Gaussian
distribution. Draw a random vector z ∈ Rn (as a collection
of latent variables) from the prior distribution P(z). Then
transform the latent variables z by a deep neural network Gϑ

(parametrized by some variational parameter ϑ) to the desig-
nated random variable ω, i.e., z → ω = Gϑ (z). The mapping
Gϑ is called the generator, which defines the distribution of
generated samples

Pϑ [ω] =
∫

dz δ(ω − Gϑ (z))P(z). (18)

A large batch of ω can be sampled efficiently in parallel, when
hardware accelerators (e.g GPU or TPU) are available. If the
neural network Gϑ is expressive enough, Eq. (18) will provide
a sufficiently expressive probability model Pϑ [ω] for the Weyl
field ω configuration.

The distribution Pϑ [ω] defines the model prediction of the
purity based on Eq. (17)

e−SA|ϑ = E
[ω]∼Pϑ

〈∏
∂A

φ

〉
ω

. (19)

We will use SA|ϑ to denote the Rényi entropy predicted
by the machine-learning model as it depends on the model
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FIG. 3. Flow diagram of the machine-learning algorithm. Black
arrows denotes the forward evaluation of the loss function. Red-
dashed arrows denotes the gradient back propagation to train the
parameter.

parameters ϑ . In Eq. (19), we introduced the short-hand
notation 〈∏

∂A

φ

〉
ω

≡
∫

[φ]

(∏
x∈∂A

φx

)
P[φ|ω] (20)

to denote the scalar field correlation on a background Weyl
field configuration. The conditional distribution P[φ|ω] is de-
fined in Eq. (17) with S[φ|ω] given in Eq. (16). The scalar
field correlation 〈∏∂Aφ〉ω can be efficiently evaluated when
S[φ|ω] is a Gaussian action (which is the case here).

The task is to learn the optimal Weyl field distribution
Pϑ [ω] that gives the best prediction of the purity data based
on Eq. (19). The dataset will contain the purity {e−SA} of a
quantum state in different regions A. The distribution Pϑ [ω]
can be learned by optimizing model parameters ϑ to minimize
the following loss function (to be explained later)

Lϑ = avg
A

(1 − eSA|ϑ−SA )2. (21)

As illustrated in Fig. 3, the training initiates from randomly
choosing a batch of entanglement regions A. On one hand,
we query the dataset to get the ground truth of SA. On the
other hand, a collection of Weyl field configurations are sam-
pled from the generative model, based on which the model
prediction SA|ϑ is estimated. Then the loss function is cal-
culated by comparing SA|ϑ with SA, and the gradient signal
propagates back to train the parameters via gradient descent
ϑ → ϑ − r∂ϑLϑ . After some iterations, the parameters are
expected to converge. In the following, we will explain dif-
ferent modules in Fig. 3 in detail.

B. Entanglement dataset

While efficient experimental approaches [56,57] have been
developed to estimate Rényi entropies from randomized mea-
surements, which enables the acquisition of a large amount of
entanglement data to drive the entanglement feature learning,
preparing an entanglement dataset by numerically computing
entanglement entropies from a given quantum many-body

state remains difficult in general. As a proof of concept, we
choose to use the ground state of a free fermion system for
demonstration, on which entanglement entropies can be effi-
ciently calculated.

Consider N copies of the (1 + 1)D massless Majorana
fermion chain, described by the Hamiltonian

H =
N∑

a=1

∑
j

iχ j,aχ j+1,a, (22)

where {χi,a, χ j,b} = δi jδab. Let |�〉 be the ground state of H .
The 2nd Rényi entropy can be efficiently computed from the
fermion correlation function,

SA = − 1
2 Tr ln

(
C2

A + (1 − CA)2
)
, (23)

where CA,i j = 〈�|χi,aχ j,a|�〉 (for i, j ∈ A) is the two-point
correlation function (matrix) of Majorana fermions restricted
inside the entanglement region A. The quantum system is crit-
ical and is described by the free-fermion CFT at low energy.
To construct the dataset, we will take the Majorana fermion
chain of 32 sites, and randomly sample a large collection of
single-region, two-region, and three-region subsets. We then
compute the entanglement entropy using Eq. (23) for every
region and record the results in the entanglement dataset.

C. Bulk Model Solver

The bulk model solver is expected to calculate the scalar
field correlation given the Weyl field background ω and the
entanglement region A that specifies the scalar field inserting
position on the boundary. We will use the lattice model speci-
fied by the action in Eq. (16), which describe a free scalar field
φ. The action can be written as the bilinear form

S[φ|ω] = 1

2

∑
x,y∈Ṽ

φxK (φ)
xy [ω]φy (24)

where x, y label the vertices on the dual graph G̃ = (Ṽ , Ẽ )
on which the holographic model is defined. The kernel matrix
takes the form of K (φ)[ω] = ∇2 + M[ω], with

Mxy[ω] = m2Axe2ωx δxy (25)

being the mass term, and

∇2
xy =

∑
〈x′y′〉∈Ẽ

Ax′y′

�2
x′y′

(δxx′ − δxy′ )(δyx′ − δyy′ ) (26)

being the discrete Laplace operator on the dual graph. The
length �xy and area Ax, Axy constants are fixed and are set by
the background geometry, as to be specified soon. The two-
point correlation is given by the inverse of the kernel matrix,

〈φxφy〉ω = 1

β
((K (φ)[ω])−1)xy, (27)

where a trainable constant β is introduced to take care of the
field renormalization. Higher-point correlations follow from
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FIG. 4. Triangular lattice discretization of hyperbolic space in
(ρ, θ ) coordinate. The lattice is divided into different layers along
the the radius direction. The ith layer corresponds to the radius ρi.

Wick’s theorem. For example,

〈φxφyφzφw〉ω = 〈φxφy〉ω〈φzφw〉ω + 〈φxφz〉ω〈φyφw〉ω
+ 〈φxφw〉ω〈φyφz〉ω. (28)

We will treat β and m2 as trainable parameters, which will be
optimized (together with other model parameters for P[ω]) to
fit the entanglement data.

Since we intend to apply our approach to entanglement
data collected from CFTs, following the idea of AdS/CFT
correspondence, it is natural to choose the two-dimension
hyperbolic geometry (the spatial slice of AdS3) as the back-
ground geometry. We use the following background metric

ds2 = dρ2 + sinh2 ρ dθ2, (29)

where 0 � θ < 2π and ρ � ρbdy (the UV cutoff scale is set
by ρbdy, which is another parameter to learn). The geodesic
distance any two points on the boundary ρ = ρbdy separated
by θ is given by

|γ |(θ ) = arccosh(1 + 2 sinh2 ρbdy sin2(θ/2))

eρbdy �1−−−−→ 2 ln(sin(θ/2) + ρbdy).

Without loss of generality, we chose to discretize space
using a triangular lattice with periodic boundary condition
along the θ direction. All vertices in the same layer are of
the same ρ coordinate and their θ coordinates are uniformly
spaced, see Fig. 4. The geodesic distance �xy between two
vertices x and y is given by

cosh �xy = cosh ρx cosh ρy

− sinh ρx sinh ρy cos(θx − θy). (30)

The area of an elementary triangle in the ith layer reads

tan
A�

,i

4
= tanh

(
ρi+1 − ρi

2

)
tanh

(
bi

4

)
,

tan
A�

,i

4
= tanh

(
ρi − ρi−1

2

)
tanh

(
bi

4

)
,

cosh bi = cosh2 ρi − sinh2 ρi cos �θ, (31)

which defines the vertex and edge areas in a barycentric
scheme. Specifically, the vertex area Ax is given by

Ax = 1
3 (2A�

,i + 2A�
,i + A�

,i−1 + A�
,i+1), (32)

for ρx = ρi. The edge area Axy is given by

Axy =

⎧⎪⎨
⎪⎩

1
3 (A�

,i + A�
,i ) ρx = ρy = ρi;

1
3 (A�

,i + A�
,i+1) ρx = ρi, ρy = ρi+1;

1
3 (A�

,i−1 + A�
,i ) ρx = ρi, ρy = ρi−1.

(33)

These equations defines �xy, Ax, and Axy used in the lattice
model Eq. (16), which all rely on the values of ρi for different
layers. The discretization scheme in the radial dimension is
specified by how ρi is spaced from 0 to ρbdy. A bad choice of
the discretization scheme may cause some triangle elements to
have high aspect ratios, reducing the quality of the triangula-
tion in approximating the continuous background geometry.
We will take a data-driven approach to learn the optimal
discretization scheme by treating {ρi} as trainable parameters.

To summarize, the bulk model solver contains the follow-
ing parameters: the normalization β and the squared mass m2

associated with the scalar field dynamics, and the radial coor-
dinates {ρi} associated with the discretization of background
geometry. These parameters will be trained together with
other neural network parameters (see Sec. III D) to optimize
the model prediction of the entanglement entropy data.

D. Neural network design

The central goal is to learn the Weyl field distribution
P[ω] using a latent-variable generative model Pϑ [ω], recall
Eq. (18). The key component of the generative model is a
generator Gϑ that maps the latent variable z to a Weyl field
configuration ω = Gϑ (z). The generator is realized as a deep
neural network consists of consecutive layers of simpler maps

Gϑ (z) = gN ◦ · · · g2 ◦ g1(z), (34)

where each layer gn(z) is an affine transformation followed by
some nonlinearity such as ReLU [58]. The weight and bias
parameters are introduced to parametrize the affine transfor-
mations, which constitute part of the training parameters ϑ .

It is both practical and theoretically motivated to en-
force the neural network’s architecture such that the learned
distribution Pϑ [ω] will respects certain symmetries, i.e., to
construct an equivariant neural network [59]. Let Q be a sym-
metry transformation that we wish to impose. The sufficient
condition for the generated distribution to be symmetric (i.e.,
Pϑ [Qω] = Pϑ [ω]) is to require (i) Qgn(z) = gn(Qz) and (ii)
P(Qz) = P(z). The symmetries in consideration are

(1) ω(ρ,θ ) → ω(ρ,θ+a) [translation],
(2) ω(ρ,θ ) → ω(ρ,−θ ) [reflection].
The translation symmetry can be imposed by parameter

sharing between relation-related weights and biases, making
the affine transformation in each layer effectively a convolu-
tion along the translation direction. The reflection symmetry
can be imposed by using a reflection symmetric convolution
kernel. The prior distribution P(z) = ∏

x P(zx ) automatically
satisfies the symmetry condition as it factorizes to identical
independent Gaussian distributions on every site.
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We would like to emphasize that although each layer looks
like a convolutional layer under the symmetry constraint, we
do not restrict the convolution kernel to be local (the kernel
size extends to the whole lattice), because we do not want to
impose locality by hand. As we will see, a sense of locality
could emerge in the neural network as the holographic model
gets trained, which corresponds to the emergent locality in the
bulk gravity theory.

E. Loss function design

The loss function is designed to evaluate the average differ-
ence between the purity e−SA|ϑ predicted by the holographic
model and the purity e−SA given by the entanglement data.
A straightforward option would be the mean squared error
(MSE) loss

Lϑ,MSE = avg
A

(e−SA|ϑ − e−SA )2. (35)

The model prediction e−SA|ϑ should be evaluated according to
Eq. (19), which involves the ensemble expectation E[ω]∼Pϑ

.
In practice, the expectation value can only be estimated by
sampling a finite number of Weyl field configurations from
the generative model Pϑ and take the average

e−SA|ϑ = 1

Nω

∑
[ω]∼Pϑ

〈∏
∂A

φ

〉
ω

, (36)

where Nω denotes the number of Weyl field samples. With the
help of modern GPU, 〈∏∂Aφ〉ω can be computed in parallel
efficiently. The sample size Nω is thus ultimately limited by
the GPU memory. In our case, Nω ranges from 512 to 2048.

For any finite sample size Nω, the finite average e−SA|ϑ will
have a finite variance, which bias the MSE loss

Lϑ,MSE = avg
A

(
(E e−SA|ϑ − e−SA )2 + var e−SA|ϑ

Nω

)
, (37)

causing the parameter to converge to a wrong saddle point.
The bias can be corrected by assigning a larger weight to the
prediction with a higher precision, i.e.,

avg
A

(e−SA|ϑ − e−SA )2

var e−SA|ϑ , (38)

which can also be argued from the maximum-likelihood esti-
mation. The variance is generally proportional to the square
of the purity var e−SA|ϑ ∝ (e−SA|ϑ )2, which leads to the mean
squared relative error (MSRE) loss

Lϑ,MSRE = avg
A

(
e−SA|ϑ − e−SA

e−SA|ϑ

)2

= avg
A

(1 − eSA|ϑ−SA )2. (39)

We numerically test the loss function by generating some data
using a model with known parameters, and train new models
with different loss function on the generated data to see if
the parameter converges to the known result. Our test shows
that Eq. (39) indeed converges better compare to Eq. (35).
Therefore, we will use the MSRE loss function to train the
model, as mentioned in Eq. (21).

TABLE I. MSRE loss on test sets for different models and train-
ing sets. The model can be static geometry or fluctuating geometry.
The training set can include on single-regions or both single- and
double-regions. The test set can be either single-, double-, or triple-
regions separately.

Model static static fluctuating
Training set single single+double single+double

Test set single 8.7×10−6 2.1×10−2 1.5×10−3

double 1.1×10−1 3.9×10−2 5.7×10−3

triple 7.5×10−1 6.0×10−1 3.1×10−1

IV. NUMERICAL RESULTS

A. Fitting entanglement data with static and
fluctuating geometry

We apply the proposed machine-learning approach to learn
the entanglement feature of a Majorana fermion chain of
32 sites (16 unit cells) with a relatively large central charge
c = 8. The entanglement data is partitioned into the train-
ing set and the test set that does not overlap. Within the
training/test set, the data can be further classified by the num-
ber of subregions of the entanglement region, including the
single-region, double-region, and triple-region entanglement.
To demonstrate the effect of introducing gravitational fluc-
tuations, we will compare two holographic models: (i) the
fluctuating model, i.e., the model e−SA|ϑ = E[ω]∼Pϑ

〈∏∂A φ〉ω
proposed in Eq. (19) with fluctuating geometries, and (ii)
the static model, i.e., the model e−SA|ϑ = 〈∏∂A φ〉ω≡0 with a
fixed static geometry. We train both models using the MSRE
loss in Eq. (21). The algorithm is implemented in the Ten-
sorFlow [60] framework using the ADAM [61] optimizer.
Upon convergence, the MSRE loss is evaluated on the test
set to characterize the performance of the model. The result is
summarized in Table I.

If we train the static geometry model with single-region
data only, the model can easily achieve high accuracy
(MSRE ∼ 10−5) in predicting single-region entanglement, as
also shown in Fig. 5(a). But the prediction of multi-region
entanglement is rather inaccurate (MSRE ∼ 10−1), meaning
that the static geometry model overfits the single-region data
and can not be generalized to multi-region data. If we in-
clude the double-region data in the training set, and train the

FIG. 5. Model predicted entanglement entropy vs ground truth
for (a) static model trained on single-region entanglement data,
(b) static and fluctuating models trained on both single-region and
double-region entanglement data.
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FIG. 6. Mutual information IA:B between two equal-sized regions
A and B for different inter-region separations. Data points show
predictions by the static model (red) and the fluctuating model (blue).
Both models are trained with both single- and double-region entan-
glement data.

static geometry model with both single- and double-region
entanglement, the model will learn to predict double-region
entanglement better at the price of losing the accuracy in
predicting single-region entanglement, with the MSRE sat-
urates at the ∼10−2 level. This implies an intrinsic conflict
for the static geometry model in modeling the single- and
multi-region entanglement simultaneously.

However, by introducing gravitational fluctuations to the
model, the fluctuating geometry model achieves one order of
magnitude improvement in the prediction accuracy of both
single- and double-region entanglement, as the MSRE drops
to the ∼10−3 level, which is also manifest in Fig. 5(b). This
indicates that the gravitational fluctuation indeed helps to
reconcile the conflict between single- and multi-region en-
tanglements in the classical gravity model (RT formula) (see
Appendix B for an analytic analysis of how the conflict can
be reconciled in principle). Moreover, the prediction accuracy
in triple-regions is also improved significantly, even if the
model is never trained on the triple-region data. This speaks
for the better generalizability of the fluctuating geometry
model.

As argued previously, the static geometry model suffers
from the problem of vanishing mutual information between
far separated regions. One motivation to introduce gravi-
tational fluctuations is to mediate the mutual information
between distant regions through the holographic bulk. Indeed,
as shown in Fig. 6, by allowing the geometry to fluctuate, the
model can better capture the behavior of mutual information.
In particular, the static model fails to produce the nonvanish-
ing mutual information between distant regions, which is most
obviously seen in Fig. 6(a), where the regions are most far
separated (compare to their sizes). However, the fluctuating
model fixes this problem, demonstrating the importance of
introducing the geometric fluctuation in modeling the multi-
region entanglement.

FIG. 7. (a) Weyl field local covariance � (ω)
xx vs the radius co-

ordinate ρx . (b) Intralayer correlation C (ω)
xy of the Weyl field (in

logarithmic scale) vs the bulk geodesic distance dxy, where x, y
points are taken from the same layer. The distance between points
on a larger radius (or a higher layer) appears farther due to the
hyperbolic background geometry, but the inverse correlation length
� (the slope) remains roughly on the same order of magnitude across
layers.

B. Weyl field correlation and effective bulk gravity theory

After training, we want to open up the model and see what
bulk gravity theory has been learned. With the trained gener-
ative model Pϑ [ω] that describes the statistical fluctuation of
the Weyl field ω, we can explore various statistical properties
of the distribution Pϑ [ω] to gain a deeper understanding of the
optimal bulk gravity theory that emerges from learning the
boundary entanglement data.

We first study the covariance function �(ω)
xy of the Weyl

field ω, defined as

�(ω)
xy = E

[ω]∼Pϑ

ωxωy =
∫

[ω]
Pϑ [ω]ωxωy. (40)

We observe that its diagonal elements �(ω)
xx (i.e., the local

covariance) grows with the radius ρx coordinate (as x ap-
proaches the boundary), see Fig. 7(a). This is because the
discretization scale is changing along the radius direction. In
our discretization scheme as shown in Fig. 4, the hyperbolic
space is finer discretized towards the center of the bulk, there-
fore the field ω will appear to be stiffer near the bulk center,
and hence its covariance is smaller. To eliminate this influence
of the discretization scheme, we normalize (standardize) the
covariance and define the correlation function

C(ω)
xy = �(ω)

xy√
�

(ω)
xx �

(ω)
yy

. (41)

We found that the Weyl field correlation C(ω)
xy decays ex-

ponentially with respect to the geodesic distance dxy in the
holographic bulk

C(ω)
xy ∼ exp(−�dxy), (42)

where the inverse correlation length � remains almost the
same across different layers in the bulk, as shown in Fig. 7(b).
The short-ranged nature of the Weyl field correlation is more
obviously shown in Fig. 8, which is an unequivocal sign of
locality. In other words, the machine has learned from the
entanglement data that the Weyl field fluctuation can be de-
scribed by a local model (as the correlation is short-ranged) in
the bulk. This emergent locality is remarkable since locality
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FIG. 8. Weyl field correlation in the bulk, between a marked
reference point and the remaining points. Results are shown for the
reference point placed in different layers.

was never explicitly given to the generative model at the archi-
tecture level: the neural network in the generator Gϑ was fully
connected, which in principle allows nonlocal/long-ranged
correlation of ω across the bulk, yet a short-ranged correlation
emerges from learning the entanglement data.

Further more, we can learn about the leading modes of
gravitational fluctuations in the machine-learned distribution
Pϑ [ω] by computing the spectral decomposition of the covari-
ance function

�(ω)
xy =

∑
α

λ(α)ω(α)
x ω(α)

y , (43)

where λ(α) is the αth eigenvalue and ω(α) is the correspond-
ing eigenmode. The result is shown in Fig. 9. The long
wave-length collective fluctuations emerges as the leading
(low-energy) modes of gravitational fluctuation automatically.
Using the covariant function �(ω)

xy , one can reconstruct the ef-
fective gravitational action to the quadratic order (at Gaussian
level)

S[ω] = 1

2

∑
x,y

ωx�
(ω)
xy ωy + · · · , (44)

such that P[ω] ∝ e−S[ω] approximately. In this way, the
machine-learning model helps us to extract a statistical gravity
theory (in terms of the Weyl field theory) from the entangle-
ment data, demonstrating a data-driven approach to establish
the holographic duality.

C. Matter field mass renormalization effect

As we have seen, geometric fluctuation effectively intro-
duces interactions between the bulk scalar field φ, which
generates the desired behavior for mutual information. As a
consequence, the bare mass m of the scalar field should also be
renormalized by the gravitational interaction. Remarkably, we
can observe such a renormalization effect in our holographic
model, by comparing the static model (without geometric
fluctuation) and the fluctuating model (with geometric fluc-
tuation). The mass parameter m is trainable in both models,
but their optimal values are different due to the renormal-
ization effect. We train the static model on the single-region
entanglement data, and the fluctuating model on both the
single- and double-region entanglement data. For a range of
total central charge 11/2 � c � 8 studied, we observe that the
trained value of the (bare) mass m in the fluctuating model is
systematically larger than that m0 in the static model, as shown
in Fig. 10.

FIG. 9. Spectrum of the Weyl field fluctuation. (a) Leading
eigenvalues λ(α) of the covariance function (in logarithmic scale).
(b) Selected eigenmodes ω(α) labeled by the principal and angular
quantum numbers.

The mass renormalization effect can be understood heuris-
tically by consider a single-region entanglement. In the static
model, the entanglement entropy is modeled by e−SA ∼

FIG. 10. Trained values of the scalar field mass m for different
central charge c of the free fermion CFT, based on the static model
(red) and the fluctuating model (blue).
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e−m0|γA| where γA is the geodesic connecting the entanglement
cuts of A through the static bulk. With geometric fluctuation
|γA| → |γA| + δ|γA| (where δ|γA| is the additional geodesic
length due to the Weyl field ω), the entanglement entropy will
be modeled by

e−SA ∼ E
ω

e−m(|γA|+δ|γA|) 	 e−m(|γA|− m
2 Eω (δ|γA|)2 ). (45)

For these two models to match, we must have m > m0, which
qualitatively explains our observation.

V. SUMMARY AND DISCUSSION

We present a machine-learning approach to extract the
holography statistical gravity theory from the data of multi-
region entanglement entropy in a quantum many-body sys-
tem. Our paper advances both the field of tensor network
holography and the field of machine learning holography. (i)
On the tensor network holography side, we generalize the
random tensor network (RTN) model to incorporate the bond
dimension fluctuation, which makes the model more expres-
sive in capturing features of multi-region entanglement. We
derive the holographic bulk theory for the RTN with bond
dimension fluctuation and show that the dual gravity theory
consists of a massive scalar field on a fluctuating background
geometry. The idea of using Ising duality in the derivation
is also quite original, which provides an alternative view of
the bulk theory that has not been presented in literature, as
we are aware of. (ii) On the machine learning holography
side, our work goes beyond the previous approaches [26,62–
67] of inferring only a static background geometry from the
boundary quantum data. By modeling the bulk geometric fluc-
tuation with a generative model, our approach can extract a
statistical gravity theory from the quantum entanglement data.
Remarkably, we found that the machine-constructed gravity
theory exhibit an emergent locality, which reveals the hidden
bulk locality behind the nonlocal quantum entanglement on
the boundary.

Our paper provides a data-driven approach to explore the
emergent gravity from quantum entanglement. Combining
with the recent development of efficient numerical methods
to simulate entanglement dynamics in quantum many-body
systems [47,48,68], we can further explore the corresponding
gravity dynamics in the holographic bulk, which will deepen
our understanding of emergent gravity from quantum entan-
glement. On the practical side, our algorithm will boost the
efficiency to model the entanglement structure of quantum
many-body systems, which will find applications in quantum
algorithm optimization and quantum circuit design.
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APPENDIX A: PERTURBATIVE ANALYSIS OF MUTUAL
AND TRIPARTITE INFORMATION

The random tensor network model points to a bulk theory
described by the following action:

S[φ,ω] = S[φ|ω] + S[ω], (A1)

where S[φ|ω] = 1
2

∑
x,y φxK (φ)

xy [ω]φy follows from Eq. (24),

and we take a quadratic action S[ω] = 1
2

∑
x,y ωxK (ω)

xy ωy for
simplicity. In the perturbative limit, we assume that the fluc-
tuation of the field ω is small, such that we can expand
K (φ)

xy [ω] = K (φ)
xy + gωxδxy, where K (φ)

xy denotes the bare kernel
of φ on the ω = 0 background. Therefore, the bulk theory
becomes

S[φ,ω] = 1

2

∑
x,y

(
φxK (φ)

xy φy + ωxK (ω)
xy ωy

) + g

2

∑
x

ωxφ
2
x .

(A2)

Define the field theory average as

〈· · · 〉 = 1

Z

∫
[φ,ω]

· · · e−S[φ,ω], (A3)

then the entanglement entropy SA of a single-region A that
ends at the dual sites (x1, x2) can be written as

e−SA = 〈φx1φx2〉. (A4)

The entanglement entropy for multi-regions are modeled sim-
ilarly as multi-point covariance of the φ field among all
boundary points.

Now we consider three regions A, B and C boundaried
by (x1, x2), (x3, x4) and (x5, x6), respectively. The mutual
information IA:B = SA + SB − SAB and the tripartite informa-
tion IA:B:C = SA + SB + SC − SAB − SBC − SAC + SABC can be
evaluated by the following ratios of covariance function

e−IA:B = 〈φx1φx2〉〈φx3φx4〉
〈φx1φx2φx3φx4〉

,

e−IA:B:C = 〈φx1φx2〉〈φx3φx4〉〈φx5φx6〉〈φx1φx2φx3φx4φx5φx6〉
〈φx1φx2φx3φx4〉〈φx1φx2φx3φx4〉〈φx1φx2φx3φx4〉

.

(A5)

To simplify the notation in the following discussion, we
introduce a few graphs in Fig. 11. Let G4 be the complete
graph over x1, x2, x3, x4, and G6 be the complete graph over
x1, x2, x3, x4, x5. Further denote G ′

2n graph (with a prime) to be
the graph with edges (x2k−1x2k ) (for k = 1, · · · , n) removed
from G2n. Define the set of perfect matchings on a graph G by
M[G] (where each perfect matching is a subset of edges such
that every vertex is covered and only covered by one edge).
We define the bare propagators (the covariance functions)
�(φ) and �(ω) from the inverses of the bare kernels K (φ) and
K (ω) for both φ and ω fields, respectively,

�(φ)
xy = ((K (φ) )−1)xy, �(ω)

xy = ((K (ω) )−1)xy. (A6)

Using perturbative field theory [treating g in Eq. (A1) as
perturbation], to the 2nd order in g (and keeping only the tree
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FIG. 11. A few useful graphs.

level diagrams), we can calculate the covariance functions

〈φx1φx2〉 = �(φ)
x1x2

, (A7)

〈φx1φx2φx3φx4〉 =
∑

(xix j )(xkxl )∈M[G4]

(
�(φ)

xix j
�(φ)

xkxl
+ g2

∑
y1,y2

�(ω)
y1y2

�(φ)
xiy1

�(φ)
y1x j

�(φ)
xky2

�(φ)
y2xl

)
, (A8)

〈φx1φx2φx3φx4φx5φx6〉 =
∑

(xix j )(xkxl )(xmxn )∈M[G6]

(
�(φ)

xix j
�(φ)

xkxl
�(φ)

xmxn
+ g2

∑
y1,y2

�(ω)
y1y2

(
�(φ)

xiy1
�(φ)

y1x j
�(φ)

xky2
�(φ)

y2xl
�(φ)

xmxn

+ �(φ)
xiy1

�(φ)
y1x j

�(φ)
xkxl

�(φ)
xmy2

�(φ)
y2xn

+ �(φ)
xix j

�(φ)
xky1

�(φ)
y1xl

�(φ)
xmy2

�(φ)
y2xn

))
. (A9)

Substitute the correlation functions Eq. (A7)–Eq. (A9) to Eq. (A5), we find (to the g2 order)

IA:B =
∑

(xix j )(xkxl )∈M[G′
4]

�(φ)
xix j

�(φ)
xkxl

�
(φ)
x1x2�

(φ)
x3x4

+ g2
∑

(xix j )(xkxl )∈M[G4]

∑
y1,y2

�(ω)
y1y2

�(φ)
xiy1

�(φ)
y1x j

�(φ)
xky2

�(φ)
y2xl

�
(φ)
x1x2�

(φ)
x3x4

, (A10)

IA:B:C = −
∑

(xix j )(xkxl )(xmxn )∈M[G′
6]

�(φ)
xix j

�(φ)
xkxl

�(φ)
xmxn

�
(φ)
x1x2�

(φ)
x3x4�

(φ)
x5x6

− g2
∑

(xix j )(xkxl )(xmxn )∈M[G′
6]

∑
y1,y2

�(ω)
y1y2

(
�(φ)

xiy1
�(φ)

y1x j
�(φ)

xky2
�(φ)

y2xl
�(φ)

xmxn

�
(φ)
x1x2�

(φ)
x3x4�

(φ)
x5x6

+
�(φ)

xiy1
�(φ)

y1xk
�(φ)

x j y2
�(φ)

y2xl
�(φ)

xmxn

2�
(φ)
x1x2�

(φ)
x3x4�

(φ)
x5x6

+
�(φ)

xiy1
�(φ)

y1x j
�(φ)

xkxl
�(φ)

xmy2
�(φ)

y2xn

�
(φ)
x1x2�

(φ)
x3x4�

(φ)
x5x6

+
�(φ)

xiy1
�(φ)

y1xm
�(φ)

xkxl
�(φ)

x j y2
�(φ)

y2xn

2�
(φ)
x1x2�

(φ)
x3x4�

(φ)
x5x6

+
�(φ)

xix j
�(φ)

xky1
�(φ)

y1xl
�(φ)

xmy2
�(φ)

y2xn

�
(φ)
x1x2�

(φ)
x3x4�

(φ)
x5x6

+
�(φ)

xix j
�(φ)

xky1
�(φ)

y1xm
�(φ)

xl y2
�(φ)

y2xn

2�
(φ)
x1x2�

(φ)
x3x4�

(φ)
x5x6

)
. (A11)

In the case that �(φ)
xy � 0 and �(ω)

xy � 0 (which is typically
the case), we can ensure IA:B � 0 and IA:B:C � 0. The result
proves that random tensor network model can produce a neg-
ative tripartite information IA:B:C , which is a unique feature of
quantum many-body entanglement that can not be achieved
in classical systems. A negative tripartite information is an
indication of quantum information scrambling and chaotic
quantum dynamics in the quantum system. Although the bulk
theory is a classical statistical gravity model, it can still model
the quantum chaotic entanglement features on the holographic
boundary, which speak for the strong expression power of the
random tensor network model.

APPENDIX B: NECESSITY AND EXPECTED BEHAVIOR
OF WEYL FIELD FLUCTUATION

We would like to take a closer look at the mutual infor-
mation. It would more intuitive to present the diagrammatic

representation of Eq. (A10)

(B1)

where points on the boundary correspond to x1, x2, x3, x4 (fol-
lowing the arrangement of vertices in the G4 graph shown
in Fig. 11) and the small circles in the bulk correspond to
y1, y2 that should be summed over. The black lines represent
�(φ)

xy and the gray lines represent �(ω)
xy . The perturbation g

parameterizes the coupling strength of the bulk scalar field
φ to the background gravitational fluctuation (the Weyl field
ω). Setting g = 0 will decouple the gravitational fluctuation,
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which effectively corresponds to a static bulk model (because
gravitational fluctuation will have no effect in the decoupled
limit). Let us consider the case when regions A and B are far
separated, meaning that the spacings |x1 − x2| and |x3 − x4|
are small. In this case, we expect the mutual information to de-
cay with the inter-region spacing in a power-law manner with
the power set by the smallest scaling dimension of the critical
field in the quantum system on the holographic boundary,
because the mutual information upper bounds all correlation
function between regions A and B, which can not decay faster
than the lightest critical field. As we will see, this behavior can
only be reproduce via the bulk model gravitational fluctuation
is included.

To argue the necessity of including gravitational fluctu-
ation, we first consider the decoupled limit (i.e., g = 0) to
demonstrate why it fails to capture the correct behavior of mu-
tual information. In the g = 0 limit, the first two terms can still
contribute to a finite mutual information that decays with the
inter-region separation in a power-law manner, but the power
will be set by the central charge of the quantum system on
the holographic boundary. Because the power-law comes from
the φ-field correlation �(φ)

xy , whose scaling is determined by
the single-region entanglement entropy, as − ln �(φ)

x1x2
∼ SA ∼

c ln |A| (such that x1, x2 are boundary points of the region A).
However, the total central charge c = N/2 can be as large as
we wish in the large N limit. Therefore, although the first two
terms (the g0 terms) in Eq. (B1) can produce a power-law
decay mutual information, but the power will typically be too
large (i.e., the mutual information will decay too fast). This

reflects the internal inconsistency in describing both single-
and double-region entanglements using a holographic bulk
model without gravitational fluctuation.

An obvious solution is to introduce a different field from
φ to mediate the mutual information across the holographic
bulk. Then we will have an independent freedom, such that
we can tune its scaling dimension to match that of the lightest
critical field. This is one major motivation to introduce the
gravitational fluctuation (or to couple the scaler field φ to a
fluctuating Weyl field ω). As we turn on the coupling g, the
mutual information will be dominated by

IA:B = g2
∑
y1,y2

�(ω)
y1y2

�(φ)
x1y1

�(φ)
y1x2

�(φ)
x3y2

�(φ)
y2x4

�
(φ)
x1x2�

(φ)
x3x4

, (B2)

whose long-range behavior scales with ∼g2�(ω)
y1y2

. The Weyl
field ω has a different propagator �(ω)

xy , which can be indepen-
dently tuned to make − ln �(ω)

xy ∼ 2�min ln |x − y| with �min

being the smallest scaling dimension in the quantum critical
theory. Here |x − y| denotes the distance between two bound-
ary points x and y measured using the bound metric. Translate
|x − y| into the bulk distance dxy assuming the bulk has a
hyperbolic background geometry, we have dxy ∼ ln |x − y|,
which implies �(ω)

xy ∼ e−2�mindxy . This indicates that Weyl field
must be heavy in the bulk to produce the exponential decay of
its correlation function with the bulk distance. Indeed, such a
massive Weyl field fluctuation does emerge in the machine-
learnt bulk gravity theory.
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