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Chaos in coupled Kerr-nonlinear parametric oscillators
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A Kerr-nonlinear parametric oscillator (KPO) can generate a quantum superposition of two oscillating states,
known as a Schrödinger cat state, via quantum adiabatic evolution and can be used as a qubit for gate-based
quantum computing and quantum annealing. In this work, we investigate complex dynamics, i.e., chaos, in two
coupled nondissipative KPOs at a few-photon level. After showing that a classical model for this system is
nonintegrable and consequently exhibits chaotic behavior, we provide quantum counterparts for the classical
results, which are quantum versions of the Poincaré surface of section and its lower-dimensional version defined
with time integrals of the Wigner and Husimi functions and also the initial and long-term behavior of out-of-time-
ordered correlators. We conclude that some of them can be regarded as quantum signatures of chaos, together
with energy-level spacing statistics (conventional signature). Thus, the system of coupled KPOs is expected to
offer not only an alternative approach to quantum computing but also a promising platform for the study on
quantum chaos.
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I. INTRODUCTION

Computational basis states for quantum computing are
usually taken from quantized energy levels. An alternative
approach is to use oscillator states consisting of multiple
quanta (photons or phonons). In this approach, multiple num-
ber states are used to represent each basis state, like logical
qubits for quantum error correction [1]. Thus the oscillator
approach to quantum computing will offer qubits robust to
noise or hardware-efficient quantum error-correcting codes,
which are known as bosonic codes [2–9].

One of such oscillator approaches is to use parametric
oscillators. Their two stable oscillating states can be used
for qubits. There are two types of parametric-oscillator ap-
proach: Dissipative and Kerr. In the dissipative-type approach,
parametrically two-photon driven oscillators with large two-
photon loss (larger than single-photon loss) are used for qubits
[10,11]. Such a two-photon dissipative parametric oscillator
becomes a Schrödinger cat state (superposition of two os-
cillating states) as a steady state [10–12], which has been
demonstrated experimentally using superconducting circuits
[13–15]. Since this type of qubit is insensitive to bit-flip errors
[15], this approach is expected to be useful for fault-tolerant
quantum computation [16,17].

In the Kerr-type approach, parametrically two-photon
driven oscillators with large Kerr nonlinearity [18,19], which
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we call Kerr-nonlinear parametric oscillators (KPOs) [20,21],
are used for qubits. Low-loss KPOs have recently been real-
ized experimentally using superconducting circuits [22–24].
An ideal KPO is lossless (nondissipative), and it can generate
a Schrödinger cat state from the vacuum state via quantum
adiabatic evolution (quantum bifurcation) [3,20]. Moreover,
a network of KPOs can solve a combinatorial optimization
problem (ground-state search in the Ising model) by adia-
batic quantum computation [25–27] or quantum annealing
[28,29], the final state of which is a highly entangled state,
a superposition of many-mode coherent states correspond-
ing to two optimal solutions [20]. Quantum annealing using
KPOs has been developed in the past 5 years [30–35]. The
KPOs can also be used for qubits in gate-based quantum
computing [21,36–40]. Since the KPO qubit, also known as
a Kerr-cat qubit, is robust against bit-flip errors, like the
above dissipative-type qubit, fault-tolerant quantum compu-
tation using KPOs has been developed [41,42]. The KPO has
also offered physically interesting topics, such as nonclassical
traveling-state generation [43,44], quantum heating leading to
Boltzmann sampling [45], steady-state entanglement genera-
tion [46,47], and phase transition [48,49].

In this work, we investigate nonlinear dynamics of cou-
pled KPOs from the viewpoint of chaos [50,51]. The KPO,
which is nondissipative in an ideal case, is more desirable for
the study on chaos than the two-photon dissipative paramet-
ric oscillator (and also optical parametric oscillators [21,52],
another dissipative type), because dissipation inevitably intro-
duces noise (so-called quantum noise) [12,53,54], and such
stochastic noise is undesirable for the study on chaos [50].
Nonlinear dynamics of a KPO have been studied [18,55].
To our knowledge, however, the coupled-KPO case has not
been explored so far, though it has been suggested that the
studies on chaos in a KPO network would be interesting [20].
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(Chaos in a simplified classical model for the KPO network
has also been suggested in the proposal of a quantum-inspired
algorithm called simulated bifurcation [56], but it has not
been investigated in detail.) Here we treat a system of two
nondissipative KPOs with time-independent parameters as the
simplest example sufficient for the study on chaos. (Similar
studies on more KPOs are an interesting next step.)

This paper is organized as follows. In Sec. II, we intro-
duce the quantum and classical models for the system. In
Sec. III, we show our results for the classical model, where
the nonintegrability of this model is shown by the Poincaré
surface of section (SOS) [50,51] and its lower-dimensional
version, and the sensitivity to initial conditions is also shown.
These indicate chaos in the classical model. In Sec. IV, we
provide our results for the quantum model, where the SOS
and its lower-dimensional version are extended to quantum
cases using the Wigner and Husimi functions [12,51,57], and
the initial-condition sensitivity is also examined using out-
of-time-ordered correlators (OTOCs) [58–69]. Energy-level
spacing statistics, which are a conventional quantum signature
of chaos [51,70–73], are also discussed. Finally, we summa-
rize our results in Sec. V.

II. MODELS FOR TWO COUPLED KPOS

The quantum and classical models for the KPO network
have been introduced in Ref. [20] and well summarized in
Ref. [21]. In the following, we provide these models in the
case of two KPOs.

A. Quantum model

The quantum model for two KPOs is given by the follow-
ing Hamiltonian:

H = H1 + H2 + HI, (1)

Hi = h̄
K

2
a†2

i a2
i − h̄

pi

2

(
a2

i + a†2
i

) + h̄�a†
i ai, (2)

HI = −h̄ξ0(a†
1a2 + a†

2a1), (3)

where ai and pi are the annihilation operator and the para-
metric pump amplitude, respectively, for the ith KPO; K is
the Kerr coefficient; � is the detuning of the KPO resonance
frequency from half the pump frequency; ξ0 is the coupling
strength between the two KPOs; and h̄ is the reduced Planck
constant. In this work, we assume that K , pi, �, and ξ0 are
nonnegative.

B. Classical model

The corresponding classical model is derived by re-
placing the annihilation operator ai with a dimensionless
complex amplitude αi = xi + iyi (classical approximation) in
the Heisenberg equations of motion for ai [20,21]. Thus we
obtain the equations of motion in the classical model:

dxi

dt
= ∂Hc

∂yi
= [

K
(
x2

i + y2
i
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]
yi − ξ0y j, (4)
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= −∂Hc
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i
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]
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∑
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[
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4
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)] − ξ0(x1x2 + y1y2), (6)

where j �= i. Note that the equations of motion are no longer
Newtonian mechanical ones, but still canonical Hamiltonian
equations of motion [74]. In the following, we use “energy”
for the value of the Hamiltonian.

For convenience, we introduce the potential energy Vc(x)
defined by the minimum of Hc(x, y) with respect to y. Here
we assume ξ 2

0 < p1 p2, which is the stability condition for y at
the origin. Then, the Hamiltonian has a single minimum with
respect to y at y = 0. Thus the potential is given by Hc(x, 0),
that is,

Vc(x) =
∑
i=1,2

(
K

4
x4

i − pi − �

2
x2

i

)
− ξ0x1x2. (7)

This implies that the coupled-KPO model may resemble quar-
tic oscillator models [75–78]. But here we focus on KPOs
and leave the interesting relation between KPOs and quartic
oscillators for future work.

C. Parameter setting

In this work, we take the following values for the above
parameters:

h̄ = K = 1, (8)

p1 = 3K, (9)

p2 = πK, (10)

� = 0, (11)

ξ0 = 0, 0.3K, or K. (12)

Here Eq. (8) means that the units of energy and frequency are
defined as h̄K and K , respectively (thus the unit of time is
K−1). The pump amplitudes around 3K lead to mean photon
numbers around 3, because the mean photon numbers for
oscillating states are given by pi/K when � = 0 [20]. We
choose such small values because we are interested in the
dynamics at a few-photon level. Also, we set p2 to πK such
that p2 � p1 but p2/p1 becomes an irrational number, because
then the ratio between the periods of the two KPOs in the
decoupled case (ξ0 = 0) is irrational, and the dynamics be-
come relatively complex. The three values of ξ0 correspond to
regular (integrable), intermediate, and chaotic (nonintegrable)
cases, respectively, as shown in the next section. (Note that
when ξ0 = 0, that is, the two KPOs are decoupled, then the
Hamiltonian for each KPO is conserved, and the system is
integrable by definition [79].)

The potential energy Vc(x) with the above parameters is
shown in Fig. 1. There is a minimum in each quadrant and
a maximum at the origin. Thus the origin is unstable. In this
work, we investigate the dynamics started around the origin
(around the vacuum state in the quantum case).
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FIG. 1. Potential energy Vc(x) in Eq (7). (a) ξ0 = 0. (b)
ξ0 = 0.3K . (c) ξ0 = K . The other parameters are set as Eqs. (8)–(11).

III. CHAOS IN THE CLASSICAL MODEL

A. SOS

We start with nonintegrability of the classical model. To
check nonintegrability, the Poincaré SOS [50,51] is useful,
in particular for systems with two degrees of freedom (four-
dimensional phase space), like the present system. The SOS in
the phase space is defined by the section of the energy surface
Hc(x, y) = E (E is a constant) by a plane, e.g., y2 = 0. In
the case of two degrees of freedom (four-dimensional phase
space), the object consisting of the intersection points between
the SOS and a trajectory, which we call the SOS plot, is two-
dimensional in general. If the system is integrable, however,
there is another constant of motion [79], and consequently
the SOS plot must be one-dimensional. Thus we can check
whether the system is integrable or not by the dimension of
the SOS plot.

Figure 2 shows the SOS plots in the classical model. The
SOS plot is one-dimensional [80] (integrable and regular)
in the decoupled case (ξ0 = 0) [Fig. 2(a)], two-dimensional
(nonintegrable and chaotic) in the strong-coupling case

(a)

(b)

(c)

x1

y 1

-2

-1

0

1

2

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

-4 -3 -2 -1 0 1 2 3 4
x1

y 1

-2

-1

0

1

2

-4 -3 -2 -1 0 1 2 3 4
x1

y 1
FIG. 2. SOS plots in the classical model given by Eqs. (4)–(6).

Circles are obtained by plotting (x1, y1) when trajectories in numer-
ical simulation cross the plane y2 = 0. (a) ξ0 = 0. (b) ξ0 = 0.3K .
(c) ξ0 = K . The other parameters are set as Eqs. (8)–(11). See
Appendix A for details.

(ξ0 = K) [Fig. 2(c)], and intermediate in the intermediate case
(ξ0 = 0.3K) [Fig. 2(b)], as expected.

B. Momentum plot at a minimum of potential (MPMP)

To demonstrate the nonintegrability more clearly, here we
introduce another plot, which we call the MPMP. Instead of
the plane y2 = 0 for the SOS, here we fix the two positions,
x1 and x2, at a minimum of the potential Vc(x) and plot the
momenta in the y1y2 plane. We focus on a potential min-
imum, because at such a point, the energetically allowable
region of the momenta becomes the largest, and that will be
desirable for visualization. (For such a plot, any point can be
chosen as long as the probability that the trajectory comes
near it is nonzero. If the point is not a potential minimum,
however, the energetically allowable region becomes smaller,
and consequently the probability becomes lower, which will
be undesirable for visualization.) If the system is integrable,
the MPMP must be zero dimensional (i.e., points), otherwise
one dimensional.

Figure 3 shows the results of the MPMP, where we choose
the potential minimum in the first quadrant of the x1x2

plane. The MPMP is zero dimensional for ξ0 = 0 [Fig 3(a)],
one dimensional for ξ0 = K [Fig 3(c)], and intermediate for
ξ0 = 0.3K [Fig 3(b)], as expected. As we will see in Sec. IV,
the MPMP is particularly useful in the quantum case in
comparison with the SOS plot. (Although here we focus on
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FIG. 3. MPMPs in the classical model given by Eqs. (4)–(6). We
choose the potential minimum (X1, X2) in the first quadrant of the
x1x2 plane. Circles are obtained by plotting (y1, y2) when trajectories
in numerical simulation pass by close to (X1, X2). (a) ξ0 = 0 and
(X1, X2) = (1.73, 1.77). (b) ξ0 = 0.3K and (X1, X2) = (1.82, 1.85).
(c) ξ0 = K and (X1, X2) = (2, 2.03). The other parameters are set as
Eqs. (8)–(11). See Appendix B for details.

coupled KPOs, the MPMP approach will be applicable to
other systems, such as coupled quartic oscillators [75–78].)

C. Sensitivity to initial conditions

Here we also observe the sensitivity to initial conditions
in the classical model. The results are shown in Fig. 4. When
ξ0 = 0, the Euclidean distance between two trajectories, x(t )
and x′(t ), with a very small deviation in their initial condi-
tions saturates at a small value, as shown in Fig. 4(a). This
is because in this case, the system is integrable, and then
the trajectories from close initial conditions must always be
close to each other. In contrast, when ξ0 = 0.3K or K , the
distance exponentially grows, as shown in Figs. 4(b) and 4(c),
because of nonintegrability, as expected. (The saturation in the
nonintegrable cases comes from the fact that the energetically
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FIG. 4. Initial-condition sensitivity in the classical model given
by Eqs. (4)–(6); x(t ) and x′(t ) are two trajectories with a very small
deviation in their initial conditions. (a) ξ0 = 0. (b) ξ0 = 0.3 K . (c)
ξ0 = K . The other parameters are set as Eqs. (8)–(11); t is in unit of
K−1. See Appendix C for details.

allowable regions are finite.) This together with the above re-
sults for SOS and MPMP indicates chaos in the coupled-KPO
system.

IV. QUANTUM SIGNATURES OF CHAOS

A. Quantum SOS plots

Here we introduce quantum versions of the SOS plot. In-
stead of plotting intersection points in the classical case, we
use the time integral of a quasiprobability distribution, the
Wigner function or the Husimi function (also known as the
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FIG. 5. Quantum SOS plots defined by Eqs. (13) and (14) in the quantum model given by Eqs. (1)–(3). Corresponding classical results are
shown in Fig. 2. (a), (d) ξ0 = 0. (b), (e) ξ0 = 0.3K . (c), (f) ξ0 = K . The other parameters are set as Eqs. (8)–(11). See Appendix D for details.

Q function) [12,20,51,57], with y2 = 0. Thus we define the
quantum versions of the SOS plot as

WSOS(x1, y1) =
∫ T

0
dt

∫ ∞

−∞
dx2W (x1, x2, y1, 0, t ), (13)

QSOS(x1, y1) =
∫ T

0
dt

∫ ∞

−∞
dx2Q(x1, x2, y1, 0, t ), (14)

where W (x1, x2, y1, 0, t ) and Q(x1, x2, y1, 0, t ) are the Wigner
and Husimi functions with y2 = 0 for the state vector, |ψ (t )〉,
at time t , and T is the final time in each simulation. (A
different kind of quantum SOS plot based on the Husimi
function was proposed and investigated for a quartic oscillator
model [78].)

Figure 5 shows the results of the quantum SOS plots
corresponding to the classical ones in Fig. 2. Although the
Husimi-type SOS plots shown in Figs. 5(a)–5(c) indicate
the classical SOS plots in Figs. 2(a)–2(c) to some extent, it
is hard to distinguish integrability (one dimensional) from
nonintegrability (two dimensional) because of large quan-
tum fluctuations. (The large fluctuations come from the small
mean photon numbers.) The situation is worse in the Wigner
case, as shown in Figs. 5(d)–5(f), because of quantum inter-
ference. (Similar results have been reported for a single driven
pendulum [81].) This is the reason why we have introduced
the MPMP in this work.

B. Quantum MPMPs

Here we introduce quantum versions of the MPMP as

WMPMP(y1, y2) =
∫ T

0
dtW (X1, X2, y1, y2, t ), (15)

QMPMP(y1, y2) =
∫ T

0
dtQ(X1, X2, y1, y2, t ), (16)

where (X1, X2) is the position of a minimum of the potential
Vc(x) in Eq. (7).

Figure 6 shows the results of the quantum MPMPs together
with the corresponding classical results in Fig. 3. The Husimi-
type MPMPs shown in Figs. 6(a)–6(c) clearly indicate the
classical MPMPs even with large quantum fluctuations, which
can be regarded as a quantum signature of chaos (noninte-
grability). The Wigner-type MPMPs shown in Figs. 6(d)–6(f)
also indicate the classical MPMPs to some extent even with
quantum interference. Thus the MPMP is particularly useful
in quantum cases, in comparison with the SOS plot. (Although
here we show the usefulness of the MPMP only for coupled
KPOs, this will be useful for other systems, such as coupled
quartic oscillators [75–78].)

C. OTOCs

Here we discuss the sensitivity to initial conditions in the
quantum model. In quantum cases, the initial-condition sensi-
tivity can be evaluated by the OTOCs [58–69] defined by

Ci, j (t ) = −4〈ψ (0)|[xi(t ), y j (0)]2|ψ (0)〉, (17)

where |ψ (0)〉 is an initial state vector, [O1, O2] = O1O2 −
O2O1 is the commutation relation between two operators,
xi(t ) is the position operator for the ith KPO at time t in the
Heisenberg representation, and y j (0) is the initial momentum
operator for the jth KPO. The factor of 4 comes from the def-
initions of the quadrature amplitudes and their commutation
relations:

xi(0) = ai + a†
i

2
, (18)

yi(0) = ai − a†
i

2i
, (19)
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FIG. 6. Quantum MPMPs defined by Eqs. (15) and (16) in the quantum model given by Eqs. (1)–(3). (X1, X2) is set to the position
of the potential minimum in the first quadrant of the x1x2 plane. Circles represent classical results shown in Fig. 2. (a), (d) ξ0 = 0 and
(X1, X2) = (1.73, 1.77). (b), (e) ξ0 = 0.3K and (X1, X2) = (1.82, 1.85). (c), (f) ξ0 = K and (X1, X2) = (2, 2.03). The other parameters are set
as Eqs. (8)–(11). See Appendix E for details.

[xi(0), yi(0)] = i

2
. (20)

The physical meaning of the OTOCs can be extracted by
naively replacing the commutator with the classical Poisson
bracket (i/2){xi(t ), y j (0)} = (i/2)∂xi(t )/∂x j (0) [58,60]. That
is, the classical counterpart of Ci, j (t ), which is denoted by
C̃i, j (t ), is given by

C̃i, j (t ) =
〈(

∂xi(t )

∂x j (0)

)2〉
, (21)

where 〈·〉 represents the average over trajectories with differ-
ent initial conditions related to the quantum initial state. This
classical interpretation suggests that the OTOCs are related to
the initial-condition sensitivity.

Figure 7 shows the results of the OTOCs, where the solid
and dotted lines represent Ci, j (t ) and C̃i, j (t ), respectively. First
of all, the classical results are in good agreement with the

quantum results, in particular, around the initial time. This
indicates that the above classical interpretation of the OTOCs
is valid.

However, unlike the classical initial-condition sensitivity
shown in Fig. 4, the OTOCs rapidly increase only around the
initial time and soon saturate. This may be due to quantum
fluctuations. Here it should be noted that the initial rapid
increase of the OTOCs does not indicate chaos because this
can be seen even in the integrable case, as shown in Fig. 7(a).
Instead, this naturally occurs when the initial state is around
an unstable point (maximum of the potential), as discussed
recently [65,66].

On the other hand, we can find that the oscillation
amplitudes of C1,1 in the nonintegrable case (ξ0 = 0.3K
and K) shown in Figs. 7(b) and 7(d) seem smaller than
those in the integrable case (ξ0 = 0) shown in Fig. 7(a).
This difference may be due to more chaotic behavior
in the nonintegrable case. This is another quantum sig-
nature of chaos proposed recently [62]. (More detailed
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FIG. 7. OTOCs in the quantum model (solid lines) and classical
counterparts (dotted lines). (a) ξ0 = 0. (b), (c) ξ0 = 0.3K . (d), (e)
ξ0 = K . (C2,1 for ξ0 = 0 is not shown because in the decoupled case,
C2,1 is exactly zero.) The other parameters are set as Eqs. (8)–(11); t
is in unit of K−1. See Appendix F for details.

studies using OTOCs are desirable, but left for future
work.)

D. Energy-level spacing statistics

Finally, we check a conventional quantum signature of
chaos: Energy-level spacing statistics [51,70–73]. (There are

FIG. 8. Cumulative energy-level spacing distributions in the
quantum model given by Eqs. (1)–(3). N (�E ) denotes the number
of level spacing equal to or smaller than �E. Curves and three
parameters (ω, A, and β) are fitting results using the function form
A(1 − e−β�ω+1

E ). (a) ξ0 = 0. (b) ξ0 = 0.3K . (c) ξ0 = K . The other
parameters are set as Eqs. (8)–(11). See Appendix G for details.

more approaches to quantum chaos using energy eigenvalues
[76,82–87] and eigenstates [75,77,88,89]. However, here we
focus on the most conventional approach and leave other ones
for future work.) It is known that the energy-level spacing �E

defined by the difference between two neighboring energy
levels obeys the Poisson distribution (∝e−β�E ) in the inte-
grable (regular) case and the Wigner distribution (∝�Ee−β�2

E )
in the nonintegrable (chaotic) case (β is a constant). This
means that the probability for zero spacing decreases as the
system becomes more chaotic, which is due to avoided cross-
ings of energy levels induced by complex interactions in
chaotic systems [51].

The two distributions are unified as �ω
Ee−β�ω+1

E [70,71],
where ω = 0 and 1 correspond to Poisson and Wigner, respec-
tively. Note that this distribution can be integrated analytically,
which leads to the cumulative level spacing distribution
∝(1 − e−β�ω+1

E ). Figure 8 shows the cumulative distributions
of the present quantum model together with fitting curves
using the function form A(1 − e−β�ω+1

E ) and the fitting results
of the three parameters. The exponent ω is larger for stronger
coupling and exceeds 0.5 when ξ0 = K . This is another quan-
tum signature of chaos in the coupled-KPO system.
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V. CONCLUSIONS

We have investigated the quantum and classical models
for two coupled nondissipative KPOs from the viewpoint of
chaos. Using the Poincaré SOS plot, the MPMP (a lower-
dimensional version of the SOS plot), and the initial-condition
sensitivity, we have shown that the classical model with
nonzero coupling is nonintegrable and hence exhibits chaotic
behavior. We have also provided quantum signatures of chaos
using quantum versions of the SOS plot and the MPMP de-
fined with time integrals of the Wigner and Husimi functions,
OTOCs, and energy-level spacing statistics. We have found
that the quantum MPMP can distinguish integrability and non-
integrability clearly even at a few-photon level (more clearly
than the quantum SOS plot), and also that the long-term be-
havior, not the initial behavior, of the OTOCs can be regarded
as a quantum signature of chaos. The present results suggest
that the system of coupled KPOs will be useful not only for
quantum computing but also for the study on quantum chaos.
We also expect that such an understanding of the nonlinear
dynamics in the KPO network will be useful for its appli-
cations, such as quantum computing and quantum-inspired
algorithms [56].
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APPENDIX A: SOS PLOT IN THE CLASSICAL MODEL

To obtain the SOS plots in Fig. 2, we numerically solve
Eqs. (4)–(6) by the fourth-order Runge-Kutta method with
a time step of �t = 10−4 from t = 0 to 20. The initial
conditions are set as x1(0) = x2(0) = 0 and yi(0) = 10−6ri,
where r1 and r2 are independent random numbers from
the standard normal distribution. We plot (x1, y1) when
y2(t )y2(t − �t ) < 0, which means that the trajectory have
crossed the plane y2 = 0. We iterated the simulation 200 times
to obtain enough points.

APPENDIX B: MPMP IN THE CLASSICAL MODEL

To obtain the MPMPs in Fig. 3, we did the same sim-
ulation as in the SOS case explained in Appendix A. We
plot (y1, y2) when |x − X| < 10−3, where X denotes the po-
sition of the potential minimum in the first quadrant of the
x1x2 plane. X is numerically found as X = (1.73, 1.77) for
ξ0 = 0, X = (1.82, 1.85) for ξ0 = 0.3K , and X = (2, 2.03)
for ξ0 = K . We iterated the simulation 105 times to obtain
enough points.

APPENDIX C: INITIAL-CONDITION SENSITIVITY
IN THE CLASSICAL MODEL

To obtain Fig. 4, we did the same simulation as above with
the following initial conditions (no iteration):

x1(0) = x2(0) = x′
2(0) = 0, (C1)

x′
1(0) = 10−6, (C2)

y1(0) = y′
1(0) = 0.5 cos(0.65π ), (C3)

y2(0) = y′
2(0) = 0.5 sin(0.65π ). (C4)

APPENDIX D: QUANTUM SOS PLOTS

Here we give the formulations of WSOS(x1, y1) and
QSOS(x1, y1) defined by Eqs. (13) and (14) in the photon-
number basis.

First of all, the Wigner and Husimi functions are defined as
[20,57]

W (x, y, t ) =
(

2

π

)2

tr[D(1)(2α1)P1D(2)(2α2)P2ρ(t )], (D1)

Q(x, y, t ) = 1

π2
〈α1|〈α2|ρ(t )|α1〉|α2〉, (D2)

where αi = xi + iyi, D(i)(α) = eαa†
i −α∗ai is the so-called

displacement operator, Pi = eia†
i ai is the parity operator,

|αi〉 = D(i)(αi )|0〉 is a coherent state (|0〉 is the vacuum state),
and ρ(t ) = |ψ (t )〉〈ψ (t )| is the density operator corresponding
to the state vector |ψ (t )〉.

In the photon-number basis {|n1〉|n2〉}, we obtain [20]

W (x, y, t ) =
(

2

π

)2 ∞∑
m1=0

∞∑
m2=0

∞∑
n1=0

∞∑
n2=0

(−1)n1+n2 D(1)
m1,n1

(2α1)D(2)
m2,n2

(2α2)ψn1,n2 (t )ψ∗
m1,m2

(t ), (D3)

Q(x, y, t ) = 1

π2

∞∑
m1=0

∞∑
m2=0

∞∑
n1=0

∞∑
n2=0

〈α1|n1〉〈α2|n2〉ψn1,n2 (t )ψ∗
m1,m2

(t )〈m1|α1〉〈m2|α2〉, (D4)

with

ψn1,n2 (t ) = 〈n1|〈n2|ψ (t )〉, (D5)

D(i)
mi,ni

(α) = e−|α|2/2
√

mi!ni!
min(mi,ni )∑

k=0

1

k!

αmi−k

(mi − k)!

(−α∗)ni−k

(ni − k)!
, (D6)

〈ni|αi〉 = α
ni
i√
ni!

e−|αi|2/2. (D7)
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The integrals
∫ ∞
−∞ dx2W (x1, x2, y1, 0, t ) and

∫ ∞
−∞ dx2Q(x1, x2, y1, 0, t ) required for WSOS(x1, y1) and QSOS(x1, y1) are obtained

by Eqs. (D3)–(D7) together with the following formulas:
∫ ∞

−∞
dx2D(2)

m2,n2
(2x2) =

√
π

2
m2!n2!

min(m2,n2 )∑
k=0

(−1)n2−k (m2 + n2 − 2k − 1)!!

k!(m2 − k)!(n2 − k)!
δeven(m2 + n2), (D8)

∫ ∞

−∞
dx2〈α2|m2〉〈n2|α2〉 =

√
π

m2!n2!

(m2 + n2 − 1)!!

2(m2+n2 )/2
δeven(m2 + n2), (D9)

where δeven(n) = 1 if n is even, otherwise δeven(n) = 0.
The numerical results of WSOS(x1, y1) and QSOS(x1, y1)

shown in Fig. 5 are obtained by accumulating the integrals∫ ∞
−∞ dx2W (x1, x2, y1, 0, t ) and

∫ ∞
−∞ dx2Q(x1, x2, y1, 0, t ) mul-

tiplied by a time step of �t = 10−3 from t = 0 to T = 20.
Here ψn1,n2 (t ) necessary for the integrals is obtained by solv-
ing the Schrödinger equation with the Hamiltonian in Eq. (1)
in the photon-number basis by the fourth-order Runge-Kutta
method with the time step of �t = 10−3, the initial state set to
the vacuum state, and the maximum photon number of 30.

APPENDIX E: QUANTUM MPMPS

The numerical results of WMPMP(y1, y2) and QMPMP(y1, y2)
shown in Fig. 6 are obtained by accumulating the Wigner and

Husimi functions multiplied by a time step of �t = 10−3 from
t = 0 to T = 20, where the Wigner and Husimi functions are
obtained by using Eqs. (D3)–(D7) with ψn1,n2 (t ) obtained by
the same simulation as in Appendix D. (X1, X2) is numerically
found, as mentioned in Appendix B.

APPENDIX F: OTOC

The results shown in Fig. 7 are obtained as follows.
Using x(t ) = eiHt x(0)e−iHt , the OTOC defined by Eq. (17)

is formulated in the eigenenergy basis {|Ek〉} as [60]

Ci, j (t ) = −4
∞∑

k=0

∞∑
m=0

∞∑
n=0

〈ψ (0)|Ek〉〈Ek|[xi(t ), y j (0)]|Em〉〈Em|[xi(t ), y j (0)]|En〉〈En|ψ (0)〉, (F1)

〈Ek|[xi(t ), y j (0)]|Em〉 =
∞∑

l=0

[
ei(Ek−El )t 〈Ek|xi(0)|El〉〈El |y j (0)|Em〉 − ei(El −Em )t 〈Ek|y j (0)|El〉〈El |xi(0)|Em〉]. (F2)

Thus we can obtain Ci, j (t ) by using {|Ek〉} obtained by numer-
ically diagonalizing the Hamiltonian in the photon-number
basis with the maximum photon number of 30, the same as
the above simulation, and using the definitions of xi(0) and
yi(0) in Eqs. (18) and (19). For the comparison with the
results in Fig. 4, the initial state is set to coherent states as
|ψ (0)〉 = |α(0)

1 〉|α(0)
2 〉, where α

(0)
1 = x(0)

1 + iy(0)
1 [x(0)

1 = 0 and
y(0)

1 = 0.5 cos(0.65π )] and α
(0)
2 = x(0)

2 + iy(0)
2 [x(0)

2 = 0 and
y(0)

2 = 0.5 sin(0.65π )], which correspond to the initial condi-
tions for Fig. 4 in Eqs. (C1)–(C4). The resultant Ci, j (t ) are
shown by the solid lines in Fig. 7.

For the classical counterparts, we calculate two trajecto-
ries, x(t ) and x′(t ), with the following initial conditions:

x1(0) = x(0)
1 + �xr1, (F3)

x′
1(0) = x1(0) + δx, (F4)

x2(0) = x′
2(0) = x(0)

2 + �xr2, (F5)

y1(0) = y′
1(0) = y(0)

1 + �yr3, (F6)

y2(0) = y′
2(0) = y(0)

2 + �yr4, (F7)

where r j ( j = 1, . . . , 4) are independent random numbers
from the standard normal distribution, �x = �y = 0.5 corre-
spond to the standard deviations of the quantum fluctuations

of xi and yi, and δx = 0.5 is the deviation for the evaluation
of the partial derivative in Eq. (21). (The large δx comparable
to the quantum fluctuations is used to mimic the saturation of
the OTOCs in the quantum model.) Using the two trajectories,
C̃i,1(t ) shown by the dotted lines in Fig. 7 are obtained as
follows:

C̃i,1(t ) =
〈(

x′
i (t ) − xi(t )

δx

)2〉
, (F8)

where the average was taken over 104 iterations.

APPENDIX G: ENERGY-LEVEL SPACING STATISTICS

The results in Fig. 8 are obtained as follows. First we
numerically diagonalize the Hamiltonian in Eq. (1) in the
photon-number basis with the maximum photon number of
30, the same as above. Then, taking the parity invariance of the
Hamiltonian into account, we classify the energy eigenstates
into two groups with even and odd total photon numbers. Here
we focus on the even eigenstates and sort the corresponding
energies in ascending order. Thus we obtain the energy-level
spacing as the difference between two neighboring energies.
To avoid the effects of the finite photon numbers, we take 50
spacings from the smallest, which are plotted in Fig. 8. The
curves in Fig. 8 are obtained by fitting A(1 − e−β�ω+1

E ) to the
50 points, where ω, A, and β are fitting parameters.
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