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Chaos in nonlinear random walks with nonmonotonic transition probabilities
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Random walks serve as important tools for studying complex network structures, yet their dynamics in
cases where transition probabilities are not static remain under explored and poorly understood. Here we study
nonlinear random walks that occur when transition probabilities depend on the state of the system. We show that
when these transition probabilities are nonmonotonic, i.e., are not uniformly biased towards the most densely
or sparsely populated nodes, but rather direct random walkers with more nuance, chaotic dynamics emerge.
Using multiple transition probability functions and a range of networks with different connectivity properties,
we demonstrate that this phenomenon is generic. Thus, when such nonmonotonic properties are key ingredients
in nonlinear transport applications complicated and unpredictable behaviors may result.
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I. INTRODUCTION

Random walks have long served as a powerful tool for
studying and understanding the structural properties of com-
plex networks due to the wealth of information they provide
with remarkably simple dynamics [1,2]. Examples of the
widespread utility of using random walks and diffusion dy-
namics in the context of complex networks include Google’s
PageRank centrality [3–5], network search and exploration
[6–8], modeling transport, diffusion, and movement processes
[9–11], detecting communities and other network structures
[12,13], and finding geometric properties and topological em-
beddings for dimensionality reduction [14]. The Markovian,
i.e., memoryless, property of a random walk coupled with
the static nature of transition probabilities (or transition rates)
yields a linear dynamical system where, assuming the rela-
tively mild condition of a network structure being primitive,
the dynamics are guaranteed to converge to a unique glob-
ally attracting fixed point or stationary distribution [15,16].
However, in an effort to generalize these conditions to bet-
ter model more realistic and complex phenomena, the static
nature of transition probabilities may be relaxed, giving rise
to nonlinear random walks [17–19]. In particular, by focusing
on the case of discrete-time where nonlinearity arises from
the the dependence of transition probabilities on the current
system state in a manner that biases random walkers towards
or away from nodes that are heavily populated, a rich land-
scape of nonlinear phenomena has been observed, including
period-doubling bifurcations, multistability, and quasiperiodic
dynamics [20,21].
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In this paper, we extend this paradigm to consider nonlin-
ear random walks with nonmonotonic transition probabilities.
In particular, although the nonlinear random walks with
monotonic transition probabilities studied in Refs. [20,21]
operate on the modeling premise that random walkers are
preferentially biased towards nodes with either proportion-
ally more or fewer random walkers present, allowing for
nonmonotonic transition probabilities allows this bias to be
generalized. For instance, depending on the shape of the func-
tion that defines the transition probabilities, random walkers
might be biased strongly towards both nodes where very
many and very few random walkers are present, whereas
being biased away from moderately populated nodes. Al-
ternatively, random walkers might be biased more strongly
towards nodes where a moderate number of random walk-
ers are present, whereas being biased away from nodes that
are both heavily and sparsely populated. In general, such
nonmonotonic transition probabilities may arise in nonlinear
transport applications where the decision-making process that
informs movement is nuanced. Examples may include per-
sonal travel where an individual or family may prefer to visit
either very remote (e.g., camping) or very densely populated
(e.g., large cities) vacation destinations and finances and in-
vestments where individuals may seek to invest in or choose
to purchase commodities from institutions that are neither
exceedingly large nor small. Here we explore the dynamics
that emerge from nonlinear random walks with nonmonotonic
transition probabilities and show that they give rise to chaotic
dynamics that are not present when transition probabilities
are monotonic. We show that this phenomenon is widespread
by exploring multiple choices for functions that define the
transition probabilities of a system as well as a range of differ-
ent network topologies. Our results suggest that in nonlinear
transport processes where nonmonotonicity in transition prob-
abilities or transition rates is a key ingredient, the resulting
behavior may be extremely complicated, making prediction
and forecasting difficult even with very accurate system
information.
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FIG. 1. Chaos in nonlinear random walks. For a small network of size N = 8 and the transition probability function f1 given in Eq. (3)
using z = 1.288/N , (a) the bifurcation diagram using the quantity ‖p − p∗

1‖ and (b) the largest Lyapunov exponent λ as α is increased from 0
to 60. (c) For the chaotic parameter value α = 52.2, the strange attractor plotted in the (‖p − p∗

1‖, ‖p − p∗
2‖) plane with (d) a zoomed-in view

of the fractal structure. (e) The network structure used for panels (a)–(d) and (f) illustration of the transition functions f1 and f2 using α = 3
and z = 1.288 and 2, respectively.

The remainder of this paper is organized as follows. In
Sec. II, we present the governing equations and present our
main results, illustrating the emergence of chaotic dynamics in
nonlinear random walks with nonmonotonic transition proba-
bilities. In Sec. III, we explore dynamics on different network
topologies using both a minimal model and a large real-world
network. In Sec. IV, we present an initial exploration of mean
return times. In Sec. V, we conclude with a discussion of our
results.

II. GOVERNING EQUATIONS AND CHAOTIC DYNAMICS

We focus our attention on the case of discrete-time
nonlinear random walks on complex networks. In the ther-
modynamic limit of infinitely many random walkers, the
dynamics on a network with N nodes evolves according to

pi(t + 1) =
N∑

j=1

πi j[p(t )]p j (t ), (1)

where pi(t ) is the fraction of random walkers present at node i
at time t for i = 1, . . . , N and πi j[p(t )] denotes the transition
probability of a random walker moving from node j to node
i at time t . Importantly, the transition probabilities in the
transition matrix �[p(t )] depend on the current system state,
denoted by the vector p(t ) = [p1(t ), . . . , pN (t )]T , yielding a
nonlinear dynamical system. Since the entries of �[p(t )] may
also be viewed as conditional probabilities, the columns must
sum to one, conserving the total probability in the vectors p(t )
under the dynamics of Eq. (1), which may also be written
in vector form p(t + 1) = �[p(t )]p(t ). The most natural for-
mulation for the transition probabilities πi j[p(t )] is that they
depend proportionally on the set of states pi(t ) at destination
nodes i that stem from node j, yielding

πi j[p(t )] = ai j f (pi )∑N
l=1 al j f (pl )

, (2)

where ai j is the entry in the adjacency matrix A corresponding
to the existence/strength of the link j → i and f is a function

that maps non-negative values to positive values, f : [0,∞) →
(0,∞). Unless otherwise noted, here we focus on the case
undirected, binary networks such that ai j, a ji = 1 if nodes
i and j are connected, and otherwise ai j, a ji = 0, although
these conditions may be easily relaxed to explore dynamics
on weighted or directed networks.

Previous work investigating the dynamics of Eqs. (1)
and (2) focused on the monotonic function f (p) = exp(αp),
where α is a biasing parameter that resulted in random walkers
being preferentially moved towards heavily or sparsely popu-
lated nodes for positive and negative values of α, respectively.
However, to relax this condition and allow for more nuanced
biasing properties, we consider the following functions:

f1(p) = exp[α(p/z) − α(p/z)2], (3)

and

f2(p) = exp{α tanh(p/z) − α tanh[(p/z)2]}. (4)

For positive α, the function f1(p) increases from f (0) = 1,
reaches a local maximum at p = z/2, then decreases with
f1(p) → 0+ as p → ∞. Similarly, f2(p) initially increases,
reaches a local maximum (roughly at p = 0.43z), begins to
decrease, but then reaches a local minimum before leveling
off with f2(p) → 1− as p → ∞. [Both f1(p) and f2(p) are
plotted in Fig. 1(f) using α = 3 and z = 1.288 and 2 for f1 and
f2, respectively.] Noting that α controls the range of both f1

and f2 whereas z controls the location of the local maxima and
minima, we treat α as the primary bifurcation parameter that
will be varied in this paper and use z as a scaling parameter
that primarily is chosen to suit the size of the underlying net-
work topology. Note also that setting α = 0 yields f (p) = 0,
which, in turn, yields πi j = ai j/k j in Eq. (2), i.e., the classical
static unbiased random walk. In this case, provided that the
network structure is primitive (i.e., the adjacency matrix is
irreducible and aperiodic) the dynamics converge to a unique
stationary state given by the normalized degree vector p∗ =
k/

∑
i ki where k = [k1, . . . , kN ]T and ki = ∑

j=1 ai j . In con-
trast to these simple linear dynamics, transition probabilities
defined by the function f in Eq. (3) yields richer dynamics.
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We begin by illustrating our main result using a small
network of size N = 8 with the function f1 given in Eq. (3).
Setting z = 1.288/N , we plot in Fig. 1(a) the bifurcation di-
agram using the quantity ‖p(t ) − p∗

1‖ as α is increased from
0 to 60. For sufficiently small α, the dynamics converge to a
fixed point near p ≈ p∗

1 but soon undergo a period-doubling
bifurcation at α ≈ 0.6. Beyond this point, we observe a
cascade of further period-doubling bifurcations, eventually
giving way to chaotic dynamics with subsequent bands of
higher-order periodic and chaotic behavior as is typical in
other generic maps displaying chaotic dynamics [22]. To con-
firm that the dynamics are, in fact, chaotic, we plot in Fig. 1(b)
the largest Lyapunov exponent λ, which agrees nicely with
the bifurcation diagram. We note here that the conservation of
probability [or more generally, the conservation of the sum of
p(t )] in Eqs. (1) and (2) implies that the dynamics lie on the
simplex characterized by

∑N
i=1 pi(t ) = 1, pi(t ) � 0 for i =

1, . . . , N . Moreover, the Jacobian matrix for Eq. (1) always
has, at least, one eigenvalue given precisely by λ = 1, making
this simplex a center manifold that is marginally stable in the
transverse direction away from the simplex. Since perturba-
tions in this direction neither grow or decay, this guarantees
that, at least, one Lyapunov exponent will always be zero, so
the largest Lyapunov exponent will be λ = 0 for nonchaotic
(e.g., periodic and quasiperiodic) dynamics and λ > 0 for
chaos. Next we probe the chaotic dynamics further, setting
α = 52.2 and plotting the chaotic attractor on the [‖p(t ) −
p∗

1‖, ‖p(t ) − p∗
2‖] plane, where p∗

2 = 1/N is the normalized
constant vector in Fig. 1(c). The stretching and folding that
is typically present in strange attractors can be more easily
identified by zooming in on, e.g., the upper-right-hand side
of the attractor as shown in Fig. 1(d). To confirm the fractal
nature of the structure, we perform a fractal analysis that
reveals a correlation dimension [22] given by the noninteger
value of dcorr ≈ 1.1015. In Fig. 1(e), we illustrate the network
structure used in Figs. 1(a)–1(d).

Before continuing on, we pause to discuss the implications
of these new findings. Although the applicability of classical

FIG. 2. A minimal system for chaos. (a) A three-node network
with a single directed link strengthened to twice that of the other
directed links. For this minimal network, (a) the bifurcation diagram
using the quantity ‖p − p∗

1‖ and (b) the largest Lyapunov exponent λ

as α is increased from 0 to 20 using f1 with z = 1.288.

FIG. 3. Varying transition probability functions and network
topologies. For the probability transition function f2 given in Eq. (4)
with z = 2/N , the bifurcation diagram using the quantity ‖p −
p∗

1‖ with network topologies given by (a) the network depicted in
Figs. 1(e) and 1(c) the 2002 US airport network. (b) and (d) The
largest Lyapunov exponent λ as α is increased from 0 to 20 for the
same networks.

random walks (i.e., those with static transition probabilities,
either biased or not) cannot be overstated, the relaxation of
static transition probabilities is a key ingredient in modeling
transport dynamics when decision-making is more nuanced.
The results presented above show that when nonmonotonicity
is a feature in such a process, then not only may the the
system not converge to a simple fixed point or periodic orbit
of low order but possibly a higher-order periodic orbit or even
a chaotic state. Moreover, in the case of a chaotic state, we
lose long-term predictability of the system behavior, posing a

FIG. 4. Effect of dynamics on mean return times. (a) and
(b) Mean and standard deviation of return times observed in sim-
ulations with period-2, period-4, period-8, and chaotic dynamics
obtained from choosing α = 3, 10, 15, and 20, respectively, il-
lustrated by blue circles, green squares, orange triangles, and red
diamonds. The function f1 is used with z = 1.288 on the network
illustrated in Fig. 1(a) with nodes 1–8 in the clockwise direction
starting from the top. (c) For each of the four cases, the standard
deviation of the mean return times across the network.
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FIG. 5. Random networks: N = 8. (a)–(h) Bifurcation diagrams (top) and largest Lyapunov exponent (bottom) as a function of α for eight
randomly generated networks of size N = 8 with mean degree 〈k〉 = 2 using transition probability function f1 with z = 1.288/N .

hurdle for forecasting beyond the very short term, even with
very accurate system information.

III. MINIMAL MODEL AND VARYING NETWORK
TOPOLOGY

We now demonstrate that the chaotic dynamics illustrated
in the example above are generic in the sense that they occur
for multiple transition probability functions as well as over a
wide range of network topologies. We begin with the funda-
mental task of finding a minimal system that exhibits chaos.
Note that since we do not allow for self-links, i.e., random
walkers may not remain at the same node from one time step
to the next, N = 3 is the smallest network with nontrivial
dynamics. In fact, chaos can be observed by breaking the
symmetry of a complete three-node network by increasing
the strength of one directed link in the network as illustrated
in Fig. 2(a) where the thick arrow indicated a directed link
with strength two whereas the rest of the directed links have
strength one. Using f1 and z = 1.288/N , we plot in Fig. 2(b)
the bifurcation diagram for the probability pi(t ) describing the
uppermost node in Fig. 2(c), and in Fig. 2(c), we plot the
corresponding largest Lyapunov exponent. Thus, with only
three nodes we observe hallmarks of chaos such as period-
doubling bifurcations, bands of periodicity and chaos, and
positive Lyapunov exponents. We note here that we found
the symmetry breaking described above to be necessary to

destabilize the stationary state fixed point, although this does
not rule out the possibility for multistability with a chaotic
orbit, although we found no such structures in our exploration.

Next, we demonstrate that the chaotic dynamics exhibited
in the previous examples persists for different probability
transition functions and for different network structures. First,
using f2(p) given in Eq. (4) with z = 2/N on the same net-
work structure depicted in Fig. 1(e), we plot the bifurcation
diagram and largest Lyapunov exponent as α is increased from
0 to 20 in Figs. 3(a) and 3(b), respectively. Again, we observe
a cascade of period-doubling bifurcations that eventually give
way to chaotic dynamics just above α = 10 that agree with
a positive Lyapunov exponent. We also consider the same
dynamics on a much larger network structure generated from
real data describing the interactions between the 500 busiest
airports in the United States in 2002 [23] with nodes repre-
senting airports and links existing between airports if they
have a direct flight going from one to the other. (Here we
consider the undirected unweighted version of this network.)
In addition to being a larger real-world network, this structure
is much more heterogeneous with several of the N = 500
nodes having a nodal degree larger than 100 whereas many
others have only one or a handful of links. Again, using f2

with z = 2/N we plot the bifurcation diagram and largest
Lyapunov exponent as α is increased from 0 to 20 in Figs. 3(c)
and 3(d), respectively. (Here we have plotted the bifurcation
diagram using the probability pi(t ) corresponding to the node
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FIG. 6. Random networks: N = 24. (a)–(h) Bifurcation diagrams (top) and largest Lyapunov exponent (bottom) as a function of α for eight
randomly generated networks of size N = 24 with mean degree 〈k〉 = 4 using transition probability function f1 with z = 1.288/N .

of largest degree, given by ki = 145.) With the increased
size, heterogeneity, and overall complexity of the network
topology, some signature effects, such as period-doubling
bifurcations and intermittent bands of periodic and chaotic
dynamics are lost, however, the largest Lyapunov exponent
indicates chaos shortly after α = 5.

In addition to the network structures used so far in this
paper, namely, the first toy network (N = 8), the minimal
network (N = 3), and the US airport network (N = 500), we
have simulated the random walk dynamics of Eqs. (1) and (2)
for a number of number of random networks with different pa-
rameters. In the Appendix, we present these results, showing
several examples for each combination of network structures:
(i) of size N = 8 with mean degree 〈k〉 = 2, (ii) N = 24 with
〈k〉 = 4, and (iii) N = 100 with 〈k〉 = 10 with both f1 and
f2, given by Eqs. (3) and (4). We also explore the effect
of different choices of nonmonotonic functions, specifically
presenting results using two additional functions that differ
from f1 and f2 in that they begin by decreasing before hitting
a pair of local extrema. This larger collection of simulations
show qualitatively similar results as those presented above and
demonstrate that the chaos we observe is generic in the sense
that it occurs over a wide range of network structures and for
multiple transition functions.

IV. MEAN RETURN TIMES

Before we conclude, we explore the effect that the com-
plicated dynamics that emerge in nonlinear random walks
with nonmonotonic transition functions have on characteristic
return times, i.e., the typical time it takes for a random walker
to return to a particular node. In particular, returning to the
toy network illustrated in Fig. 1(e), f1 with z = 1.288, we
consider the four choices α = 3, 10, 15, and 20, yielding
period-2, period-four, period-8, and chaotic dynamics. In each
scenario, we simulate the trajectory throughout the network of
a particular random walk (using 106 time steps) to calculate
the mean and standard deviation of return times for each
node, which we plot in Figs. 4(a) and 4(b), using blue circles,
green squares, orange triangles, and red diamonds for the four
different kinds of dynamics. In particular, as the underlying
dynamics become more complicated, the return times for
different nodes become more heterogeneouswith mean return
times ranging between 4.73 and 2.03 × 101 when dynamics
are period-2, but 2.04 and 9.65 × 103 when dynamics are
chaotic. The overall spread of mean return times across the
network is described in Fig. 4(c) where we plot the stan-
dard deviation of mean return times across the network for
each of the four cases. Although this results constitute only
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FIG. 7. Random networks: N = 100. (a)–(h) Bifurcation diagrams (top) and largest Lyapunov exponent (bottom) as a function of α for
eight randomly generated networks of size N = 100 with mean degree 〈k〉 = 10 using transition probability function f1 with z = 1.288/N .

four specific parameter choices, they tend to agree with other
exploratory simulations that suggest that more complicated
dynamics result in larger heterogeneity in mean return times
throughout a network. The topic of return times (as well as
hitting times, etc.) in nonlinear random walks on networks
deserves further attention in future research.

V. DISCUSSION

In this paper, we have studied the dynamics that take place
in a class of discrete-time nonlinear random walks where tran-
sition probabilities depend on the current state of the system.
Specifically, we showed that when transition probabilities are
nonmonotonic, that is, they are defined by a nonmonotonic
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FIG. 8. Random networks: N = 8. (a)–(h) Bifurcation diagrams (top) and largest Lyapunov exponent (bottom) as a function of α for eight
randomly generated networks of size N = 8 with mean degree 〈k〉 = 2 using transition probability function f2 with z = 2/N .
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FIG. 9. Random networks: N = 24. (a)–(h) Bifurcation diagrams (top) and largest Lyapunov exponent (bottom) as a function of α for eight
randomly generated networks of size N = 24 with mean degree 〈k〉 = 24 using transition probability function f2 with z = 2/N .

function of the state of the random walk dynamics, compli-
cated behaviors that include chaos emerge. In the case of small
networks, the classical signatures of low-dimensional chaotic
systems, such as cascades of period-doubling bifurcations and
intermittent bands of chaos and periodicity can be observed.
For larger systems, however, these fingerprints become dif-
ficult to identify with added complexity, but chaos remains
a prominent feature. We also illustrated that these dynamics

are generic in the sense that they occur over a wide range
of network topologies and with several transition functions
with different properties. (In addition to the examples given
here, see the Appendix). These results suggest that when the
rules governing nonlinear transport throughout a system are
made nonstatic and nonmonotonic, for instance, by nuanced
decision-making that directs individuals’ trajectories, the re-
sulting dynamics may become very rich and complicated,
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FIG. 10. Random networks: N = 100. (a)–(h) Bifurcation diagrams (top) and largest Lyapunov exponent (bottom) as a function of α for
eight randomly generated networks of size N = 100 with mean degree 〈k〉 = 10 using transition probability function f2 with z = 2/N .
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FIG. 11. Additional transition functions. (a) and (b) Bifurcation diagrams (top) and largest Lyapunov exponent (bottom) as a function of α

for the transition function f3 and f4, respectively, with z = 2/N and 2.8/N . In both cases, the original network topology illustrated in Fig. 1(e)
of the main text is used. (c) Illustration of the transition functions f3 and f4 for α = 3 using z = 2 and 2.8, respectively.

making long-term prediction and forecasting difficult even
with very accurate system information.

APPENDIX: EXPLORING DIFFERENT NETWORK
TOPOLOGIES AND TRANSITION FUNCTIONS

We begin by exploring the dynamics described above
on different network topologies. First, using the function f1

with z = 1.288/N , we consider many randomly generated
networks each from three different ensembles: (i) networks
of size N = 8 with mean degree 〈k〉 = 2, (ii) N = 24 with
〈k〉 = 4, and (iii) N = 100 with 〈k〉 = 10. In Figs. 5–7, we
plot the bifurcation diagram using the quantity ‖p(t ) − p∗

1‖
(top) and the largest Lyapunov exponent λ (bottom) as a
function of α for several different realization of networks from
ensembles (i)–(iii), respectively. In Figs. 8–10, we plot the
same results from the same network ensembles but instead
using the function f2 with z = 2/N .

Overall, this collection of simulations points to a two im-
portant features of the dynamics of nonlinear random walks
with nonmonotonic transition functions. First, the chaos and
other nonlinear dynamical phenomena observed in the main
text is generic in the sense that it occurs over a wide range
of network topologies. Second, as the size of the system
increases the fine structures that are typically observed in low-

dimensional dynamical systems become less apparent and
more washed out. This is perhaps not surprising given the
increased complexity. However, using the largest Lyapunov
exponent, we confirm that the ensuing dynamics are still
chaotic.

Next, we consider the dynamics that occur for different
choices of the transition function. Specifically, we consider
two additional choices given by

f3(p) = exp[−α(p/z) + 2α(p/z)2 − α(p/z)3], (A1)

f4(p) = exp{−α tanh(p/z) + α tanh[(p/z)2]}. (A2)

Note that both f3 and f4 differ from f1 and f2 in that,
for positive α, beginning at p = 0, they decrease until they
reach a local minimum, then increase until they reach a lo-
cal maximum, then asymptotically level off at zero and one,
respectively. [These functions are illustrated in Fig. 11(c)
using α = 3 and z = 2 and 2.8 for f3 and f4, respectively.]
In Figs. 11(a) and 11(b), we plot the bifurcation diagram
using the quantity ‖p(t ) − p∗

1‖ (top) and the largest Lyapunov
exponent λ (bottom) for the dynamics using the functions f3

and f4 using z = 2/N and 2.8/N , respectively. In both cases,
we use the original network structure illustrated in Fig. 1(e)
of the main text. These results show that chaotic dynamics
may occur in nonlinear random walks with several different
transition functions f , each with different properties.
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