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Kilo-Tesla axial magnetic field generation with high intensity spin and orbital
angular momentum beams
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Absorption of angular momentum from a high intensity laser pulse can lead to the generation of strong axial
magnetic fields in plasma. The effect, known as the inverse Faraday effect, can generate kilo-Tesla strength,
multipicosecond, axial magnetic fields extending over hundreds of microns in underdense plasma. In this paper
we explore the effect with ultrahigh intensity circularly polarized Gaussian beams and linearly polarized orbital
angular momentum beams comparing analytic expressions with three-dimensional particle-in-cell simulations.
We develop a model for the transverse magnetic field profiles, introduce a model for the temporal decay, and
show that while the magnetic field strength is independent of plasma density, it has a strong dependence on the
laser beam waist.
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I. INTRODUCTION

The inverse Faraday effect (IFE) describes the generation
of axial magnetic fields when angular momentum is trans-
ferred from a laser pulse to plasma. If the pulse is circularly
polarized (CP) and of relativistic intensity, the generated mag-
netic field strength can be on the order of hundreds of Teslas,
can last several picoseconds, and can extend over millimeter
scales [1]. The IFE has been studied extensively with CP
beams both theoretically [2–8] and experimentally [1,9,10],
yet the effect is not exclusive to CP beams but also applicable
to lasers carrying orbital angular momentum (OAM) [11–13].
Currently, we know of only one analytic model describing
OAM driven magnetic fields and its transverse profile [11],
but it has not been verified numerically or experimentally. Fur-
thermore, little is known about the axial extent of the magnetic
fields or their lifetimes for both CP and OAM drivers.

There are several advantages of using OAM beams in high
powered lasers as opposed to CP beams: unlike CP beams
that carry a maximum spin angular momentum of σz h̄ per
photon, where σz = {±1} is the spin number [σz = 0 for lin-
early polarized (LP) beams], OAM beams carry an angular
momentum of (σz + �)h̄ per photon, where � is an azimuthal
mode number that can take any integer value [14]. OAM has
also been shown to couple more efficiently to free electrons
due to an optimal overlap between the laser intensity profile
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and the angular momentum density, yielding greater coupling
at larger radial distances [15]. Additionally, high intensity
OAM beams have recently been produced with high power
lasers using off-axis spiral phase mirrors mitigating nonlinear
effects like temporal distortions and the B integral present
with transmissive optics such as quarter wave plates [16].

Recent works have looked at simulating IFE driven mag-
netic fields from OAM beams in various configurations: OAM
beams with radial and azimuthal polarizations [12], ampli-
fication of seeded magnetic fields [17], spatiotemporal light
springs [18], and, most recently, linearly polarized OAM
beams [13]. In these studies the laser intensities were of mod-
erate intensity (I0 ≈ 1018 W cm−2), verifying the existence of
weaker magnetic fields (≈10 T), with little modeling of the
spatial or temporal properties of the magnetic fields.

In this work, we explore the spatial and temporal scaling
of IFE magnetic fields driven by ultrahigh intensity (I0 ≈
1020 W cm−2) CP Gaussian and LP OAM beams. We develop
analytic models for both the spatial and temporal scales of
the magnetic field and verify them with full three-dimensional
(3D) relativistic particle-in-cell (PIC) simulations. We demon-
strate strong coupling of the laser angular momentum to the
plasma through ponderomotive forces, resulting in axial mag-
netic fields in excess of 1 kT, more than 200 μm in length,
and lasting several picoseconds, in good agreement with the
predictions of our analytic models and previous experiments
using CP Gaussian beams.

II. COUPLING OF HIGH INTENSITY ANGULAR
MOMENTUM TO PLASMA

A circularly polarized beam is classically defined by its po-
larization vector rotating about the laser propagation axis kz in
either a clockwise or counterclockwise direction. Similarly, a
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beam carrying a well-defined OAM is typically characterized
by a helical wave front also orientated about the kz vector with
the helix rotating in either a clockwise or counterclockwise
direction [14]. Unlike a Gaussian beam, paraxial focusing
of an OAM beam produces a complicated field structure de-
scribed by modified-Bessel or hypergeometric functions but
can be modeled using a suitably chosen basis set such as the
Laguerre-Gaussian (LG) modes [19]. The electric field magni-
tude of a general OAM laser pulse can then be approximately
given by E = E0ψ�g(t ) exp[i(ω0t − kzz)], where E0 is the
peak electric field strength of the fundamental Gaussian mode
(� = 0), g(t ) is the temporal envelope, and ω0 is the laser
frequency. ψ� are the azimuthal LG modes (zero-radial mode)
and can be given in the following compact form [14,20]:

ψ� = 1√|�|!
(

r
√

2

w0

)|�|( z0

Z

)|�|+1
exp

(
−kr2

2Z

)
ei�φ, (1)

where w0 is the beam waist in the focal plane, z0 = kw2
0/2

is the Rayleigh range, and Z = z0 + iz is the complex beam
parameter. Taking the modulus squared of the field amplitude
given in Eq. (1) for |�| � 1, we find the so-called donut mode
intensity profiles that are symmetric about the kz axis; the
helical phase is lost in the modulus, resulting in no azimuthal
structure in the intensity profile [14]. Increasing the azimuthal
mode integer |�| increases the OAM in the beam and increases
the donut radius, and by conservation of energy, the peak
intensity around the donut decreases for a fixed laser energy
and focusing geometry [21]. As the peak intensity varies for
different values of |�| in a nontrivial way, we opt to use the
beam power instead as it is constant for all |�| modes.

The ponderomotive force acting on an electron associ-
ated with a high intensity focal spot can be given by F p =
−mec2∇√

1 + |a|2, where a = eE/mecω0 is the normalized
vector potential, e and me are the electron charge and mass,
respectively, and c is the speed of light. In the standard
case of a high intensity Gaussian beam finite energy maybe
transferred from the laser to plasma electrons through pon-
deromotive scattering [22]. The same is true for higher order
LG modes [23], with some possibility for electron trapping
and additional energy transfer within the donut mode lead-
ing to a possible increased absorption rate [24,25]. However,
ponderomotive scattering to first order is an intensity driven
phenomenon, and no OAM is transferred to the plasma as the
LG mode intensity has no azimuthal component.

Recent work has analyzed the motion of free electrons in a
LG beam in more detail, expanding to first and second order
perturbations [13,15]. It was shown that angular momentum
can be transferred to free electrons in LP LG beams when
considering second order terms in the equations of motion;
the electron gains and loses angular momentum, but averaging
over one laser cycle yields zero net angular momentum trans-
fer. An asymmetry in the laser field such as the ponderomotive
force or collisions are therefore needed to transfer a net OAM
to the electrons.

III. THE INVERSE FARADAY EFFECT

To model the IFE, we start with the angular momentum
conservation model used by Haines [3]. In this model, cou-

pling of the angular momentum density in the plasma with that
of a driving laser is performed through an arbitrary absorption
parameter, yielding the conservation equation

nemer
dveθ

dt
= −neerEθ − neer(vezBr − verBz )

+αabsMzc − nemeνeirveθ . (2)

Here, ne is the electron density, αabs is the laser absorption
fraction per unit length, Mz is the laser angular momentum
density, ver and veθ are the radial and azimuthal electron
velocities, respectively, and νei is the electron-ion collision
frequency. Eθ , Br, and Bz are the plasma azimuthal electric,
radial magnetic, and axial magnetic fields, respectively. As-
suming the electrons are in steady state, ignoring the inertial
and collisional terms, and using Faraday’s law, we obtain the
time rate of change of the axial magnetic field approximately
as [3]

∂Bz

∂t
≈ c

re

∂

∂r

αabsMz

ne
. (3)

For an OAM mode that is either CP or LP, the angular mo-
mentum density can be given by [11,14]

Mz = I0|ψ�|2g(t )2

ω0c

[
� + σz

(
|�| − 2r2

w2
0

)]
. (4)

Radial differentiation of Eq. (4) is straightforward, and if we
assume a Gaussian temporal function, then the integration
of Eq. (3) is trivial given

∫
g(t )2dt ≈ 3τ/4, where τ is the

temporal full width at half maximum (FWHM). By intro-
ducing the pulse temporal function g(t ), we are limiting the
IFE to be driven only when the laser field is present. Al-
though the magnetic field does not instantaneously disappear
after the laser has passed, its evolution is no longer governed
by the IFE, but rather the plasma dynamics, which will be
discussed later.

Substituting Eq. (1) into Eqs. (3) and (4), assuming the
laser absorption rate and electron density are constant in space
and time (no ponderomotive channeling), assuming a Gaus-
sian temporal pulse shape, and substituting the laser power
P = π I0w

2
0/2, we obtain the following expression for the

axial magnetic field:

Bz = 3αabsPτ

πeneω0w
4
0

|ψ�|2

×
[
�

( |�|w2
0

r2
− 2

)
+ σz

( |�|2w2
0

r2
− 4|�| + 4r2

w2
0

− 2

)]
.

(5)

The direct proportionality on � and σz in Eq. (5) indicates
that the axial magnetic field direction can be controlled by
changing the sign of OAM helicity or the CP handedness. The
helicity of a LP OAM mode, the magnetic field direction, and
the corresponding electron motion are illustrated in Fig. 1.

Several transverse magnetic field profiles are plotted in
Fig. 2 with laser plasma parameters ne = 0.03nc, λ = 1 μm,
w0 = 6 μm, αabs = 0.435 mm−1, τ = 100 fs, and P =
65 TW, where λ is the laser wavelength and nc is the critical
plasma density. We note that the (|σz| = 1, |�| = 0) and (σz =
0, |�| = 1) modes produce the same magnetic field profiles
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FIG. 1. Illustration of an IFE driven B field with a LP � = 1
OAM mode and the corresponding electron helical trajectory in red,
with the arrowhead showing the velocity direction. The green and
yellow isosurfaces show the positive and negative electric fields of
the laser, respectively, while the blue isosurface shows the positive
magnetic field direction, as indicated by the arrow.

peaked on axis, while the higher order � modes produce more
complex coaxial structures that are zero on axis. Given the
magnetic field peak on axis and the higher magnetic field
strength, the (|σz| = 1, |�| = 0) and (σz = 0, |�| = 1) driven
fields are probably more desirable for most applications. For
the purpose of this work, we do not consider beams that are
circularly polarized and have OAM, but we remark that a
beam with (σz = ±1, � = ±1) produces the strongest on-axis
magnetic field with a peak field strength double that of the
(|σz| = 1, |�| = 0) case. Using these parameters and assuming
the laser is entirely absorbed, the peak ratio of the energy
per unit length contained in the magnetic field to the laser
energy per unit length is roughly 0.2% for the CP � = 0 and
LP |�| = 1 cases, slightly increasing for higher order � modes.

The dependence of αabs on � is not well understood for
any absorption mechanism. At laser intensities of Iλ2 �
1019 W cm−2 μm2 and pulse durations greater than 100 fs,
we can estimate the pump depletion length in underdense

FIG. 2. Transverse IFE driven magnetic field profiles driven
from a CP Gaussian beam and various LP OAM beams given by
Eq. (5) and the legend. The following laser plasma parameters
were used: ne = 0.03nc, λ = 1 μm, P = 65 TW, w0 = 6 μm, αabs =
0.435 mm−1, and τ = 100 fs.

plasma (ne > 0.01nc) as Lpd = nccτ/ne, where τ is the tem-
poral FWHM [26,27]. Rearranging, we obtain the absorption
rate as

αabs = ne

2nccτ
. (6)

Given the absorption is independent of beam intensity and
beam waist, we assume the model is approximately valid for
low order OAM modes. If τ � 100 fs and ne � 0.01nc, we
can use Eqs. (5) and (6) to estimate the peak axial magnetic
field strength of the (|σz| = 1, |�| = 0) and (σz = 0, |�| = 1)
modes,

|B|max ≈ 10
P[TW]λ3[μm]

w4
0[μm]

kT. (7)

The fourth power dependence on the laser beam waist
indicates a strong dependence on the beam f number and
relativistic self-focusing. Equation (7) should therefore be
considered an underestimate as the beam will self-focus
beyond the diffraction limit, giving rise to much stronger
magnetic fields. Using Eq. (7), we can compare its predic-
tion with the experimental results previously measured using
CP Gaussian beams [1]. In that experiment, the Vulcan laser
(40 TW, 1 ps, λ = 1.054 μm) was focused into an underdense
plasma, where it was observed to self-focus to a beam waist
of w0 ≈ 5 μm. A peak magnetic field strength of ≈700 T
was observed, in good agreement with our Eq. (7) estimate of
771 T. The same experiment also measured the independence
of the magnetic field strength from the plasma density, also in
agreement with our model.

Circularly polarizing large diameter, high power laser
beams is not trivial, requiring fragile and costly optics. How-
ever, with the new generation of PW class lasers coupled
with off-axis spiral phase mirrors [16], axial magnetic fields
on the order of tens of kilo-Teslas may be feasible using
LP OAM modes. Ultimately, the field strength will depend
on the absorption rate of the laser, which may diverge from
our simple model when using ultrahigh intensity beams (I0 �
1021 W cm−2), high |�| beams, or ultrashort pulse dura-
tions (τ < 100 fs). Additionally, realistic diffraction of OAM
beams when generated by spiral phase optics is more com-
plex, leading to larger beam waists and lower intensities than
one would expect using pure Gaussian beams [19,21]. While
we do not include these modified beam waists and intensities
here, it is simple to use the estimates from previous works to
estimate the reduction in the magnetic field strength.

IV. SIMULATION RESULTS

To simulate the IFE, we use the 3D relativistic PIC
code EPOCH [28]. We assume a fully ionized helium plasma
with a super-Gaussian longitudinal shape to mimic the elec-
tron density from a gas jet given by n(z) = ne exp{−[(z −
350 μm)/300 μm]10} with initial electron and ion tempera-
tures of 1 keV and 1 eV, respectively. Using this profile, the
plasma ramps from vacuum to ne over roughly 100 μm. The
laser is polarized along the x̂ axis, has a Gaussian temporal
pulse shape, and is focused on the plane z = 135 μm.

The laser pulse is tracked with a moving window 200 μm
long and 48 × 48 μm3 in the transverse directions with grid
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(a)

(b)

(d) (g)

(c)

(e) (h)

(f) (i)

FIG. 3. Simulation results for CP Gaussian driven magnetic fields at (from left to right) 0.6, 0.77, and 0.93 ps. (a), (d), and (g) Longitudinal
electron density slice maps normalized to the initial electron density. (b), (e), and (h) Longitudinal axial magnetic field slice maps averaged
over 33 fs; the laser pulse is overlayed in green, and lineout regions are given by the red dashed lines. (c), (f), and (i) Radial axial magnetic
field lineouts averaged azimuthally, temporally, and longitudinally between the red dashed lines in the corresponding panel above, given by the
red solid lines. The theoretical predictions of the model given by Eq. (5) are shown by blue dashed lines. Laser-plasma parameters are given in
the text.

cell sizes of 50 × 80 × 80 nm3. We use four particles per
cell and have open boundaries throughout. After the mag-
netic field has been generated and before significant laser
diffraction and filamentation occur, the moving window stops
at 1 ps, and the evolution of the magnetic field is observed.
Simulations were run for the (σz = 0, � = 0), (σz = 1, � = 0),
(σz = 0, � = 1), and (σz = 0, � = 2) laser modes, with pa-
rameters P = 65 TW, τ = 100 fs, λ = 1 μm, w0 = 6 μm, and
ne = 3 × 1019 cm−3. A fifth simulation with (σz = 0, � = 1),
P = 50 TW, τ = 100 fs, λ = 1 μm, w0 = 7.2 μm, and ne =
3 × 1019 cm−3 was also run to verify the decay model.

A. Circularly polarized Gaussian simulations

A simulation was first run for the linearly polarized Gaus-
sian beam to verify the null magnetic field result and also
to verify the absorption model. While we do not show the
simulation results in this work, the null field was verified, and
the absorption rate of this beam was found to be 0.43 mm−1, in
excellent agreement with the predicted value of 0.435 mm−1

from Eq. (6). A second identical simulation was run but with a
circularly polarized Gaussian beam (σz = 1, � = 0) that gave
a measured absorption slightly enhanced to 0.48 mm−1.

Given that the peak intensity of the CP Gaussian
beam is I0 = 1.15 × 1020 W cm−2, the interaction with the
plasma is strongly nonlinear, with effects such as relativistic
self-focusing, ponderomotive channeling, and filamentation

strongly dominating the interaction. This can make it chal-
lenging to get clean magnetic field profiles out of the
simulation, especially at later times, when the boundary
conditions start to have an effect on the simulation. Be-
cause of this, we examine the magnetic field at early
times before these nonlinear effects have time to sufficiently
grow.

Figure 3 shows the axial magnetic field generation from
the CP Gaussian mode at three early times in the simulation.
Figures 3(a), 3(d), and 3(g) give the electron density nor-
malized to the initial electron density at times of 0.6, 0.77,
and 0.93 ps, respectively. Below these panels are transverse
slices of the time averaged axial magnetic fields (averaged
over 33 fs output dumps) relative to the laser pulse overlayed
in green for each of the three times. The bottom three panels
give radial lineouts of the time averaged magnetic field that
have been averaged azimuthally, temporally (over 33 fs), and
longitudinally between the red dashed lines in Figs. 3(b), 3(e),
and 3(h). The simulation lineouts are given in red, whereas the
theoretical prediction of Eq. (5) are given by the blue dashed
line.

We find a remarkable overlap between the theory and the
simulations at early times, but later, simulations diverge from
the theory as the laser begins to diffract, self-focus, and fil-
ament. In particular we see the peak magnetic field strength
become enhanced beyond the vacuum theory at t = 0.93 ps
due to the self-focusing. We also note the persistence of the
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(a)

(b)

(d) (g)

(c)

(e) (h)

(f) (i)

FIG. 4. Simulation results for LP � = 1 Laguerre Gaussian driven magnetic fields at (from left to right) 0.6, 0.77, and 0.93 ps. (a), (d), and
(g) Longitudinal electron density slice maps normalized to the initial electron density. (b), (e), and (h) Longitudinal axial magnetic field slice
maps averaged over 33 fs; the laser pulse is overlayed in green, and lineout regions are given by the red dashed lines. (c), (f), and (i) Radial
axial magnetic field lineouts averaged azimuthally, temporally, and longitudinally between the red dashed lines in the corresponding panel
above, given by the red solid lines. The theoretical predictions of the model given by Eq. (5) are shown by blue dashed lines. Laser-plasma
parameters are given in the text.

magnetic fields after the laser pulse has passed due to the
residual magnetization of the plasma.

B. Linearly polarized OAM simulations

Next, simulations with LP OAM modes were run using
both � = 1 and � = 2 modes, the results of which are given
in Figs. 4 and 5, respectively, with the same layout de-
scribed for the CP Gaussian beams in Fig. 3. The absorptions
of the � = 1 and � = 2 modes were found to be 0.59 and
0.60 mm−1, respectively. This increase in absorption may
come from the larger cross section of the OAM modes, from
electron trapping within the donut mode leading to a more
efficient laser-plasma energy transfer, or from a reduced pon-
deromotive channeling leading to a higher plasma density
interacting and coupling with the laser directly.

Examining Fig. 4, we see a good overlap of the simulated
magnetic field and that predicted by the theory. Like for the
CP Gaussian simulations, we find the early times of the � = 1
simulation agree well, but at later times as the laser starts to
diffract, self-focus, and filament the agreement decreases. In
Figs. 4(g) and 4(h), we see the magnetic field expand radi-
ally outwards without compromising its peak strength. This
surprising result could be related to the compressed electron
density on axis giving rise to a higher azimuthal current and
a slow radial expansion outwards to fill the voids left by the
ponderomotive force.

For the � = 2 simulation shown in Fig. 5 we also see a good
overlap between theory and simulation at early times, but at
later times we find that the magnetic field amplifies to twice
that of the predicted field while still maintaining its shape.
This is likely due to the more complex self-focusing of the
LG modes as the donut mode pinches into a tighter ring, both
increasing intensity and maintaining the beam waist and then
collapsing to a smaller beam waist at later times. During this
self-focusing, additional angular momentum may be coupled
to the plasma, giving rise to the enhanced magnetic field. As
our model does not include self-focusing, we do not expect
to reproduce the results at later times. There is some infilling
of the null within the magnetic field on axis as the plasma
thermalizes and then eventual radial expansion as the laser
later diffracts.

In the current configuration the plasma is radially isotropic,
and the axial magnetic field length is essentially limited to the
Rayleigh length of the laser. For longer magnetic fields, one
could use a preformed plasma channel to guide the laser and
mitigate the effects of diffraction, but that is not explored in
the current work.

Figures 6(a), 6(b), and 6(c) give the time averaged (aver-
aged over 33 fs output dumps) axial magnetic field profile at
times of 1, 1.5, and 2 ps, respectively, for the (σz = 0, � = 1)
mode. We find the magnetic field extends the length of the
simulation box (200 μm) to approximately equal to twice the
Rayleigh range (z0 ≈ 113 μm).
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(a)

(b)

(d) (g)

(c)

(e) (h)

(f) (i)

FIG. 5. Simulation results for LP � = 2 Laguerre Gaussian driven magnetic fields at (from left to right) 0.6, 0.77, and 0.93 ps. (a), (d), and
(g) Longitudinal electron density slice maps normalized to the initial electron density. (b), (e), and (h) Longitudinal axial magnetic field slice
maps averaged over 33 fs; the laser pulse is overlayed in green, and lineout regions are given by the red dashed lines. (c), (f), and (i) Radial
axial magnetic field lineouts averaged azimuthally, temporally, and longitudinally between the red dashed lines in the corresponding panel
above, given by the red solid lines. The theoretical predictions of the model given by Eq. (5) are shown by blue dashed lines. Laser-plasma
parameters are given in the text.

At later times in Figs. 6(b) and 6(c), we find the � = 1
mode begins to pinch, kink, and twist into a 3D springlike
shape. Similar kinking is found for the (|σz| = 1, |�| = 0) and

(|σz| = 0, |�| = 2) modes (not shown). Figures 6(d), 6(e), and
6(f) show transverse slices of the electron azimuthal velocity
time averaged over 33 fs. We see the azimuthal velocity map

(a)

(b)

(d)

(c)

(e)

(f)

FIG. 6. Two-dimensional longitudinal slices of the time averaged (averaged over 33 fs output dumps) axial magnetic field and the
corresponding time averaged azimuthal electron velocity for the (σz = 0, � = 1) OAM mode for times t = 1, 1.5, 2 ps. The green dashed
lines indicate the regions used for sampling the field decay in Fig. 7.
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transition from a smooth cylindrical profile at 1 ps to a more
turbulent and kinked map at 2 ps. This could be related to the
wobble instability found in θ -pinch configurations [29].

V. MAGNETIC FIELD DECAY

The lifetimes of the magnetic fields driven by the IFE at
relativistic intensities in collisionless plasmas are poorly un-
derstood. If we consider the plasma beta β = 2μ0nekBT/B2,
where μ0 is the permeability of free space, kB is Boltzmann’s
constant, and T is the plasma temperature, we find that for
magnetic field strengths of 1000 T, electrons with energies
kBT < 100 keV are trapped in the magnetic field, while higher
energy electrons are able to escape, leading to the subsequent
decay of the magnetic field.

To model the decay, we consider the motion of the hot
electrons in helical motion with both azimuthal and radial
velocity components. From Figs. 6(d)–6(f), we find the bulk
of the hot electrons with OAM are born within a cylinder
with a radius approximately equal to the peak intensity radius
of the OAM mode rcyl ≈ w0

√
�/2. The higher order |�| � 2

modes are more complex with coaxial fields and will not be
considered in our model.

The magnetic field as a function of time from a rotating
cylinder of plasma can be derived from the Biot-Savart law
[30]. The current density can be given as j = qne(vr r̂ + vθ θ̂ );
the position vector can be given as r(t ) = (vrt + r0)r̂ + zk̂,
where r0 is the initial electron radius, and r̂ is the rotating
polar coordinate. Inserting these into the Biot-Savart equation,
we find

B(t ) = μ0ene

2

∫ cτ

0
dz

∫ rcyl

0

vθ (vrt + r0)r0dr0

[(vrt + r0)2 + z2]3/2 . (8)

We note that the axial length of the plasma for integration
is restricted to approximately one pulse length cτ . As the
plasma is collisionless, we can assume the angular momen-
tum acquired by the electrons is in the steady state; that is,
Lz = mevθ r0 is constant. Solving Eq. (8) is straightforward if
we perform the radial integral first, yielding the result

B(t ) = B0

[
sinh−1

( cτ

vrt

)
− sinh−1

(
cτ

vrt + rcyl

)]
. (9)

Here, B0 is the peak axial magnetic field at genesis.
To estimate the radial velocity of the electrons we can use

the gradient of the plasma pressure [3]. To first order, the
pressure can be attributed solely to the thermal pressure such
that the force equation is given by

nemi

Z

dvr

dt
= − ∂

∂r

(
2

3
αabs

∫
I (t )dt

)
. (10)

Here, mi and Z are the ion mass and ionization state, re-
spectively. By using the ion mass, we assume the plasma
is quasineutral, which was previously shown to be approxi-
mately valid on these timescales and for these laser intensities
[3]. Integrating the laser temporal function is trivial, as shown
earlier in the paper, leaving a second order ordinary differen-
tial equation (ODE),

d2r

dt2
+ ZαabsI0τ

2nemi

∂

∂r
|ψ�|2 = 0. (11)

There are no known analytic solutions to Eq. (11), and we opt
instead to use a parabolic approximation of ψ� given by

|ψ�|2 ≈ A −
(

r

w0
−

√
|�|
2

)2

, (12)

where A is an arbitrary amplitude scaling variable that is lost
when we use the ∂/∂r operator.

The solution of the ODE is elementary using the parabolic
approximation. Averaging the radial velocity over all posi-
tions within a beam waist, we find

〈vr〉 =
√

ZαabsI0τ

4 exp(2)nemi
. (13)

Substituting our previous simulation values, we find an av-
erage radial velocity of 〈vr〉 ≈ 0.01c. Given this, we can use
the approximation that (cτ )2 � (vrt )2 given the timescale of
the magnetic field decay is observed to be on the order of a
picosecond, allowing us to simplify Eq. (9) to

B(t − t0)

B0
≈ ln

(
1 + 1

t/tD + 0.582

)
. (14)

Here, tD = w0/(ver

√
2) is the decay parameter for the |�| = 1

mode, and t0 is the genesis time. The factor of 0.582 is set
such that B(0) = B0. Combining the results of Eqs. (13) and
(14) allows us to derive the scaling law for the time decay
parameter of the |�| = 1 driven magnetic fields,

tD[ps] ≈ 1

8

w2
0[μm]

λ[μm]

√
A

Z

1√
P[TW]

, (15)

where A is the atomic mass number of the plasma. While this
model is not valid for |�| � 2, it could be suitable for also
modeling the CP � = 0 mode given its similarities to the |�| =
1 magnetic field profile.

Using our simulation values, we estimate the decay param-
eter as tD = 0.8 ps. Determining the decay time numerically is
challenging due to the magnetic field instabilities, as well as
laser self-focusing causing the magnetic field to be dynamic
on axis. We therefore radially, azimuthally, and longitudinally
average the magnetic field through a cylinder of radius rcyl =
w0/

√
2 and length cτ . The longitudinal region is indicated

by the dashed green lines from z = 200 to 230 μm shown in
Fig. 6. The average value of the magnetic field in this region
is plotted as a function of time in Fig. 7 for three simulations.
The simulation for the 65 TW, (σz = 0, � = 1),w0 = 6 μm
mode is shown with blue circles, whereas the 50 TW, (σz =
0, � = 1), and w0 = 7.2 μm simulation is shown with red
diamonds. The purple crosses represent the data from the ini-
tial CP Gaussian (σz = 1, � = 0) simulation with P = 65 TW,
w0 = 6 μm.

Using a nonlinear least squares fit of Eq. (14) to the data,
we find a numerical decay parameter of 0.86 ps for the σz =
0, � = 1,w0 = 6 μm mode, shown by the red dashed line in
Fig. 7. This is in very good agreement with the analytic esti-
mate of 0.8 ps. Considering the σz = 0, � = 1,w0 = 7.2 μm
case with a laser power of 50 TW, we predict a decay pa-
rameter of τ = 1.3 ps and numerically find a value of 1.18 ps,
shown by the green dashed line in Fig. 7.
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FIG. 7. Average magnetic field within a cylinder of radius rcyl =
w0/

√
2 and length 30 μm from z − 200 − 230 μm as a function of

time. The LP 65 TW, � = 1, w0 = 6 μm mode is given by the blue
circles and fitted with the red dashed line with decay parameter
tD = 0.86 ps. The LP 50 TW, � = 1, w0 = 7.2 μm mode is given by
the red diamonds and fitted with the green dashed line with decay pa-
rameter tD = 1.18 ps. The 65 TW, σz = 1, � = 0, w0 = 6 μm mode
is given by the purple crosses and fitted with the black dashed line
with decay parameter tD = 0.69 ps.

Finally, for the (σz = 1, � = 0) case we find a predicted
decay of 0.8 ps and numerically find a decay time of 0.69 ps,
as shown by the black dashed line. This reduced decay time
could be due to the stronger self-focusing of the CP Gaussian
mode as it has a higher peak intensity than the LG modes.
The increased self-focusing results in a smaller beam waist
and hence a shorter decay time.

Given the dependence of the decay time on the laser beam
waist, one could control the magnetic field lifetime by adjust-
ing the f number to higher values at a cost of magnetic field
strength. An optimal f number is therefore needed to balance
the magnetic field strength, axial length, and decay time to suit
a given application of interest. Alternatively, one could adjust

the decay time of the magnetic field by changing the plasma
to a heavier ion species.

VI. SUMMARY

In summary, we have successfully demonstrated and char-
acterized the IFE with circularly polarized Gaussian and
linearly polarized OAM modes over large spatial and tem-
poral scales. We have derived a description of OAM driven
magnetic fields in underdense plasma and introduced a model
for the subsequent decay of the magnetic field. Magnetic
fields with strengths up to 1 kT extending up to 200 μm and
persisting for several picoseconds have been demonstrated.
Simulations indicated an increased absorption rate when using
increased OAM mode numbers. The decay time, axial length,
and magnetic field strength are all functions of the laser beam
waist and can be optimized to suit an experiment as such.
Plasma channel guiding of the laser pulse could extend the
magnetic field over several Rayleigh lengths and would in-
stead be limited to the pump depletion length.

With the recent demonstration of high intensity OAM
modes in high power laser facilities with parameters similar
to those assumed in this work, experimental verification of
the magnetic fields could now be feasible [16]. Generation
and control of multi-kilo-Tesla magnetic fields will open up
new opportunities in a number of areas of high energy den-
sity physics and laboratory astrophysics, including particle
acceleration schemes, magnetic reconnection, fast ignition,
and fundamental physics.
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